A Modular Framework for Domain-Specific Conversational Systems Powered by Never-Ending Learning

Pinna, Felipe Coelho de Abreu and Hayashi, Victor Takashi and Néto, João Carlos and Marquesone, Rosangela de Fátima Pereira and Duarte, Maísa Cristina and Okada, Rodrigo Suzuki and Ruggiero, Wilson Vicente (2024) A Modular Framework for Domain-Specific Conversational Systems Powered by Never-Ending Learning. Applied Sciences, 14 (4). p. 1585. ISSN 2076-3417

[thumbnail of applsci-14-01585.pdf] Text
applsci-14-01585.pdf - Published Version

Download (4MB)

Abstract

Complex and long interactions (e.g., a change of topic during a conversation) justify the use of dialog systems to develop task-oriented chatbots and intelligent virtual assistants. The development of dialog systems requires considerable effort and takes more time to deliver when compared to regular BotBuilder tools because of time-consuming tasks such as training machine learning models and low module reusability. We propose a framework for building scalable dialog systems for specific domains using the semi-automatic methods of corpus, ontology, and code development. By separating the dialog application logic from domain knowledge in the form of an ontology, we were able to create a dialog system for the banking domain in the Portuguese language and quickly change the domain of the conversation by changing the ontology. Moreover, by using the principles of never-ending learning, unsupported operations or unanswered questions create triggers for system knowledge demand that can be gathered from external sources and added to the ontology, augmenting the system’s ability to respond to more questions over time.

Item Type: Article
Subjects: Impact Archive > Multidisciplinary
Depositing User: Managing Editor
Date Deposited: 17 Feb 2024 05:35
Last Modified: 17 Feb 2024 05:35
URI: http://research.sdpublishers.net/id/eprint/3922

Actions (login required)

View Item
View Item