Residual Stress and Fracture Toughness Study in A516 Gr70 Steel Joints Welded and Repaired by Arc Processes

de Barros, Régis de Matos Curvelo and das Neves, Mauricio David Martins (2023) Residual Stress and Fracture Toughness Study in A516 Gr70 Steel Joints Welded and Repaired by Arc Processes. Engineering, 15 (11). pp. 749-758. ISSN 1947-3931

[thumbnail of eng_2023112716202613.pdf] Text
eng_2023112716202613.pdf - Published Version

Download (1MB)

Abstract

Structural components made of steel are used in several areas and require welding for assembly. In some situations, repair of the weld bead, also performed by electric arc welding, can be used to correct, and eliminate any discontinuities. However, electric arc welding causes the presence of residual stresses in the joint, which can impair its performance and not meet specific design requirements. In this paper, welded joints made of ASTM A 516 GR 70 steel plates, with a thickness of 30.5 mm, welded by the MAG—Metal Active Gas process (20% CO2) and using a “K” groove were analysed. The joints were manufactured with seven welding passes on each side of the groove. After welding, one batch underwent repair of the bead by TIG welding (Tungsten Insert Gas) and another batch underwent two repairs by TIG welding. Were presented results of the behaviour of the residual stress profile measured by X-ray diffraction and the Vickers microhardness profile in the joints as well the fracture toughness in the conditions only welded and submitted to repairs. The results indicated that the greater number of repair passes reduced the residual compressive stress values obtained in the material manufacturing process and caused a stabilization on the Vickers hardness values. It was concluded that compressive residual stresses did not play a major role in the R-curve results. The presence of discontinuities in the welded joint caused greater influence on the behaviour of the R curve.

Item Type: Article
Subjects: Impact Archive > Engineering
Depositing User: Managing Editor
Date Deposited: 20 Dec 2023 07:27
Last Modified: 20 Dec 2023 07:27
URI: http://research.sdpublishers.net/id/eprint/3792

Actions (login required)

View Item
View Item