Biocatalyzed Flow Oxidation of Tyrosol to Hydroxytyrosol and Efficient Production of Their Acetate Esters

Annunziata, Francesca and Contente, Martina L. and Pinna, Cecilia and Tamborini, Lucia and Pinto, Andrea (2021) Biocatalyzed Flow Oxidation of Tyrosol to Hydroxytyrosol and Efficient Production of Their Acetate Esters. Antioxidants, 10 (7). p. 1142. ISSN 2076-3921

[thumbnail of antioxidants-10-01142.pdf] Text
antioxidants-10-01142.pdf - Published Version

Download (746kB)

Abstract

Tyrosol (Ty) and hydroxytyrosol (HTy) are valuable dietary phenolic compounds present in olive oil and wine, widely used for food, nutraceutical and cosmetic applications. Ty and HTy are endowed with a number of health-related biological activities, including antioxidant, antimicrobial and anti-inflammatory properties. In this work, we developed a sustainable, biocatalyzed flow protocol for the chemo- and regio-selective oxidation of Ty into HTy catalyzed by free tyrosinase from Agaricus bisporus in a gas/liquid biphasic system. The aqueous flow stream was then in-line extracted to recirculate the water medium containing the biocatalyst and the excess ascorbic acid, thus improving the cost-efficiency of the process and creating a self-sufficient closed-loop system. The organic layer was purified in-line through a catch-and-release procedure using supported boronic acid that was able to trap HTy and leave the unreacted Ty in solution. Moreover, the acetate derivatives (TyAc and HTyAc) were produced by exploiting a bioreactor packed with an immobilized acyltransferase from Mycobacterium smegmatis (MsAcT), able to selectively act on the primary alcohol. Under optimized conditions, high-value HTy was obtained in 75% yield, whereas TyAc and HTyAc were isolated in yields of up to 80% in only 10 min of residence time.

Item Type: Article
Subjects: Impact Archive > Agricultural and Food Science
Depositing User: Managing Editor
Date Deposited: 12 Oct 2023 05:43
Last Modified: 12 Oct 2023 05:43
URI: http://research.sdpublishers.net/id/eprint/2722

Actions (login required)

View Item
View Item