Supervised Learning Computer Vision Benchmark for Snake Species Identification From Photographs: Implications for Herpetology and Global Health

Durso, Andrew M. and Moorthy, Gokula Krishnan and Mohanty, Sharada P. and Bolon, Isabelle and Salathé, Marcel and Ruiz de Castañeda, Rafael (2021) Supervised Learning Computer Vision Benchmark for Snake Species Identification From Photographs: Implications for Herpetology and Global Health. Frontiers in Artificial Intelligence, 4. ISSN 2624-8212

[thumbnail of pubmed-zip/versions/1/package-entries/frai-04-582110.pdf] Text
pubmed-zip/versions/1/package-entries/frai-04-582110.pdf - Published Version

Download (3MB)

Abstract

We trained a computer vision algorithm to identify 45 species of snakes from photos and compared its performance to that of humans. Both human and algorithm performance is substantially better than randomly guessing (null probability of guessing correctly given 45 classes = 2.2%). Some species (e.g., Boa constrictor) are routinely identified with ease by both algorithm and humans, whereas other groups of species (e.g., uniform green snakes, blotched brown snakes) are routinely confused. A species complex with largely molecular species delimitation (North American ratsnakes) was the most challenging for computer vision. Humans had an edge at identifying images of poor quality or with visual artifacts. With future improvement, computer vision could play a larger role in snakebite epidemiology, particularly when combined with information about geographic location and input from human experts.

Item Type: Article
Subjects: Impact Archive > Multidisciplinary
Depositing User: Managing Editor
Date Deposited: 10 Mar 2023 06:30
Last Modified: 04 Jul 2024 06:46
URI: http://research.sdpublishers.net/id/eprint/1130

Actions (login required)

View Item
View Item