Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge

Li, Kan and Príncipe, José C. (2021) Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge. Frontiers in Artificial Intelligence, 4. ISSN 2624-8212

[thumbnail of pubmed-zip/versions/2/package-entries/frai-04-568384-r1/frai-04-568384.pdf] Text
pubmed-zip/versions/2/package-entries/frai-04-568384-r1/frai-04-568384.pdf - Published Version

Download (3MB)

Abstract

There is an ever-growing mismatch between the proliferation of data-intensive, power-hungry deep learning solutions in the machine learning (ML) community and the need for agile, portable solutions in resource-constrained devices, particularly for intelligence at the edge. In this paper, we present a fundamentally novel approach that leverages data-driven intelligence with biologically-inspired efficiency. The proposed Sparse Embodiment Neural-Statistical Architecture (SENSA) decomposes the learning task into two distinct phases: a training phase and a hardware embedment phase where prototypes are extracted from the trained network and used to construct fast, sparse embodiment for hardware deployment at the edge. Specifically, we propose the Sparse Pulse Automata via Reproducing Kernel (SPARK) method, which first constructs a learning machine in the form of a dynamical system using energy-efficient spike or pulse trains, commonly used in neuroscience and neuromorphic engineering, then extracts a rule-based solution in the form of automata or lookup tables for rapid deployment in edge computing platforms. We propose to use the theoretically-grounded unifying framework of the Reproducing Kernel Hilbert Space (RKHS) to provide interpretable, nonlinear, and nonparametric solutions, compared to the typical neural network approach. In kernel methods, the explicit representation of the data is of secondary nature, allowing the same algorithm to be used for different data types without altering the learning rules. To showcase SPARK’s capabilities, we carried out the first proof-of-concept demonstration on the task of isolated-word automatic speech recognition (ASR) or keyword spotting, benchmarked on the TI-46 digit corpus. Together, these energy-efficient and resource-conscious techniques will bring advanced machine learning solutions closer to the edge.

Item Type: Article
Subjects: Impact Archive > Multidisciplinary
Depositing User: Managing Editor
Date Deposited: 23 Mar 2023 05:27
Last Modified: 17 Jan 2024 03:50
URI: http://research.sdpublishers.net/id/eprint/1060

Actions (login required)

View Item
View Item