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Abstract: Hepatitis C virus (HCV) genotype 2 causes about 10% of global infections and has the
most variable circulation profile in Europe. The history of “endemic” HCV-2 subtypes has been
satisfactorily reconstructed, instead there is little information about the recent spread of the “epi-
demic” subtypes, including HCV-2c¢. To investigate the origin and dispersion pathways of HCV-2c,
245 newly characterized Italian and Albanian HCV-2 NS5B sequences were aligned with 247 publicly
available sequences and included in phylogeographic and phylodynamic analyses using the Bayesian
framework. Our findings show that HCV-2¢ was the most prevalent subtype in Italy and Albania.
The phylogeographic analysis suggested an African origin of HCV-2c before it reached Italy about
in the 1940s. Phylodynamic analysis revealed an exponential increase in the effective number of
infections and Re in Italy between the 1940s and 1960s, and in Albania between the 1990s and the
early 2000s. It seems very likely that HCV-2c reached Italy from Africa at the time of the second
Italian colonization but did not reach Albania until the period of dramatic migration to Italy in the
1990s. This study contributes to reconstructing the history of the spread of epidemic HCV-2 subtypes
to Europe.

Keywords: epidemiological history of HCV-2; HCV-2 subtypes; evolutionary demography of HCV-2;
phylodynamics of HCV-2 in Italy and Albania; HCV-2 Re estimation

1. Introduction

Hepatitis C virus (HCV) is one of the main causes of viral hepatitis, which first presents
as an acute infection but evolves into chronic disease in 50-70% of cases [1]. The World
Health Organization (WHO) has estimated that, in 2015, there were 71 million people living
with chronic HCV infection at risk of developing cirrhosis and hepatocellular carcinoma
(WHO data available at http:/ /www.who.int/hepatitis /publications/global-hepatitis-
report2017/en/, accessed on 16 February 2021).
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HCV belongs to the positive-sense RNA virus family Flaviviridae, and is characterised
by a high degree of genetic variability because it has a high replication rate and is under
selective pressure from the immune system, and the error-prone viral protein NS5B, an
RNA-dependent RNA-polymerase, lacks proof-reading activity [2]. This has led to the
existence of at least eight main genotypes, more than 80 subtypes and some recombinant
form, as stated by the International Committee for the Classification of Viruses (ICTV) in
May 2019 (https:/ /talk.ictvonline.org/ictv_wikis/flaviviridae/w/sg_flavi/634/table-1-
confirmed-hcv-genotypes-subtypes-may-2019, accessed on 16 February 2021) [3].

The geographical distribution of the genotypes and subtypes reflects the diversity of
the transmission rates and routes in different areas: epidemic strains such as 1a, 1b, 2a, 2b,
2c and 3a spread throughout the world as a result of the use of blood products, invasive
procedures and syringe sharing by intravenous drug users, and account for the majority of
infections in western countries, whereas endemic subtypes have low transmission rates
and generally unknown modes of transmission, thus leading to the local restriction and
diversification typical of sub-Saharan Africa and south-east Asia [4-6].

Genotype 2 has been responsible for about 10% of global infections and has the most
variable circulation profile in Europe: HCV-2a and -2b are the most prevalent subtypes in
all of the major European countries (such as Germany, Great Britain and Sweden); subtype
2¢ is prevalent in Italy and Estonia; in addition to subtypes 2a, 2b, 2c, new and mixed
subtypes have been isolated in The Netherlands, France and Belgium [7].

This diversified distribution makes it fascinating to investigate the molecular evolu-
tion of HCV-2 [8,9] because, although the evolutionary and social history of the “endemic”
genotype has been satisfactorily reconstructed [10], little is known about the recent spread
of the “epidemic” subtypes, particularly HCV-2c. Furthermore, there are some European
countries (such as Albania) for which there are hardly any subtype distribution data, al-
though the few studies that have been carried out [11,12] indicate the significant circulation
of HCV-2 in particular of subtype 2c.

Direct-acting antivirals (DAAs) have recently become the new standard-of-care for
the treatment of chronic HCV infections, and their >90% efficacy has induced the WHO to
launch a program aimed at eliminating HCV as a public health threat by 2030 (WHO data
available at http:/ /www.who.int/hepatitis /publications/global-hepatitis-report2017/en/,
accessed on 16 February 2021). The treatment regimen and the duration administration
depend on the viral genotype and subtype, and so the global implementation of DAAs
strategies requires a knowledge of the main HCV genotypes and subtypes circulating in
different geographical areas. Given the particular nature of the Italian epidemiological
picture (in which -2¢ is the most prevalent HCV-2 subtype) and the scarcity of data con-
cerning the circulation of HCV-2 in Albania, the aim of this study was to characterize 245
new HCV-2 isolates in order to reconstruct the evolutionary history of HCV-2 in these two
countries phylodynamically and phylogeographically.

2. Results
2.1. Phylogenetic Analysis of the Global HCV-2 Dataset

The 245 newly characterized HCV NS5B sequences of 208 Italian and 37 Albanian
isolates were aligned with the reference sequences as described in Materials and Methods,
and analyzed using a Bayesian approach. There were a number of significant clades
(pp > 0.7) corresponding to the known HCV-2 subtypes, but all of the Italian and Albanian
strains were included in the three major clades corresponding to the “epidemic” subtypes
2a, 2b and 2c (Figure 1).


https://talk.ictvonline.org/ictv_wikis/flaviviridae/w/sg_flavi/634/table-1-confirmed-hcv-genotypes-subtypes-may-2019
https://talk.ictvonline.org/ictv_wikis/flaviviridae/w/sg_flavi/634/table-1-confirmed-hcv-genotypes-subtypes-may-2019
http://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/
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Figure 1. Bayesian phylogenetic tree of the 245 patient sequences and the 273 reference HCV-2
subtype sequences. The different HCV subtypes are highlighted in different colors (2a in yellow; 2b
in blue; 2c in green: all of the endemic subtypes in black). *: Significant clades at ML and /or Bayesian
analysis corresponding to epidemic subtypes.

The most prevalent subtype was HCV-2c in both Italy (201/208 isolates, 96.6%) and
Albania (36/37 isolates, 97.3%). The other Italian isolates were classified as 2b (6/208,
2.9%) and 2a (1/208; 0.5%), and the single Albanian isolate outside the 2c clade, was 2a
(1/37,2.7%).

Table 1 shows the main demographic and behavioral risk characteristics of the Italian
and Albanian patients infected with HCV-2.

Table 1. Demographic characteristics and reported risks of the study subjects with HCV-2 infection.

Characteristics Italian Patients (208) Albanian Patients (37) Significant (p)
Mean age (SD)-Years 72 years (15.2) 50.5 (14.3) <0.05
Males proportion:
absolute number (%) 81(389) 20 (541) )
Females
proportion:absolute 127 (61.1) 17 (45.9) 0.09
number (%)
Not-known
risk-absolute number 158 (75.9) 31 (83.7) 0.3
(%)
Iatrogenic
risk-absolute number 34 (16.3) 6 (16.2) -
(%)
Other risks -absolute 16 (7.6) } )

number (%)

More than 66% of the study population as a whole (163/245) were aged >60 years,
but the mean age of the Italian patients was significantly higher than that of the Albanian
patients (72 + 15.2 vs. 50.5 £ 14.3 years; p < 0.005). There were more females than males
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among the Italian patients (61.1% vs. 38.9%) but this difference was not significant. Given
that in the greater proportion of cases the risk of exposure was not known, in the remaining
cases the iatrogenic exposure was the most frequent in both Italian and Albanian patients
(Table 1).

2.2. Likelihood Mapping of the Main Dataset

The main dataset of 419 NS5B sequences used for the phylodynamic and phylo-
geographical studies was analyzed for phylogenetic signals using likelihood mapping
(Tree-Puzzle 5.3.rc16). The percentage of dots falling in the central area of the triangle was
8.2%, thus indicating a fully resolved phylogenetic signal (Supplementary Figure S1).

2.3. Phylogeographical and Phylodynamic Analyses
2.3.1. Estimated Substitution Rates and tMRCA

The mean evolutionary rate of the dataset of HCV-2 NS5B sequences was estimated to
be 2.4 x 1073 subs/site/year (95%HPD 1.7-3.1 x 10~%) using the GTR+I+G substitution
model, under constant population size coalescent and strict clock models selected as
described above (see Section 4).

Figure 2 shows the dated tree including the patient and reference sequences of geno-
type 2 using the substitution rate estimated for the whole dataset.

1 0.87

1600

1650

1700 1750 1800 1850 1900 1950 2000

Figure 2. The maximum clade credibility (MCC) tree of the HCV-2 NS5B gene sequences. The letters and arrows indicate

the significant internal nodes (posterior probability > 0.8). The scale at the bottom of the tree represents calendar years. The

clades corresponding to the three epidemic subtypes (2a, 2b and 2c) are highlighted.

Only five nodes in the internal backbone of the tree had posterior probabilities of >0.7
(A-E in Figure 2): nodes B, D and E corresponded to the MRCAs of the main “epidemic”
HCV subtypes (2a, 2c and 2b respectively), whereas nodes A and C were in a deeper
position and respectively represented a common ancestor of all of the HCV-2 strains, and a
deeper ancestor of the HCV-2c and HCV-2a clades. Table 2 shows the estimated tMRCAs
of the significant internal nodes.
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Table 2. Estimated times and credibility intervals (95%HPD) of the most recent common ancestors (tMRCAs) and most
probable locations, with the state posterior probabilities (spp) of the main clades in the tree shown in Figure 3.

Lower Upper Year Lower Upper g Location
NSO Clade  tMRCA  \jRCA  tMRCA Mean Year Year Location o 1 ability
Root 434.7 223 684 1574 1332 1793 Gwinea 0.49
A 227.2 137 639 1781 1377 1879 Ghana 0.89
B HCV-2b 61.03 49 75 1948 1941 1967 Netherlands 0.99
C 83.86 61.2 109.2 1925 1906.8 1954.8 Ghana 0.99
D HCV-2¢ 60.9 44.2 79.7 1948 1936.3 1971.8 Italy 0.83
E HCV-2a 56.2 39.4 73.1 1954 1942.9 1976.6 Indonesia 0.38
LOCATIONS|
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o
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Figure 3. The Bayesian phylogeographical MCC tree of 419 HCV-2 NS5B gene sequences. The branches are colored on the
basis of the most probable location of the descendent nodes (see color code in upper left inset). The initials on the internal
nodes correspond to the country code of the most probable location, and the shapes of the internal nodes have been sized in
proportion with their posterior probabilities. The scale at the bottom of the tree represents calendar years.

The tree-root tMRCA was estimated to be a mean 435 years ago (YA: 95%HPD
223-684 YA), corresponding to the year 1574 (CI 1332-1793). The tMRCA estimates of
the three main clades corresponding to nodes B, D and E were between 1948 (2b and
2¢) and 1954 (2a). The estimated tMRCA of the highly significant node C preceding the
common ancestor of HCV-2c was an average of 83.9 YA, corresponding to the year 1925
(95%HPD 1907-1954).

2.3.2. Phylogeography of HCV-2

Figure 3 shows the phylogeographical Baysian tree indicating the most probable
locations of the internal nodes by different branches colors.

The most probable location of the tree root was Guinea Bissau (st pp = 0.49 vs. France
st pp = 0.32) (Table 2). The most probable locations of the MRCAs of the epidemic subtypes
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were Italy (st pp = 0.83) for HCV-2c, and The Netherlands (st pp = 0.99) for HCV-2b;
Indonesia and The Netherlands had similar posterior probabilities of being the location of
the HCV-2a ancestor (Indonesia st pp = 0.38; The Netherlands st pp = 0.24). The second
highly significant internal node (C) of HCV-2c had Ghana as the most probable location
(st pp = 0.99). The Albanian isolates tended to group into two sub-clades supported by low
posterior probabilities (pp > 0.50).

Supplementary Table S1 shows the 33 identified significant non-zero rates (BF > 3),
most of which included Italy (10), Africa (8), France (5), and The Netherlands (4).

In particular, Italy showed highly significant linkages with Albania (BF = 4561),
Argentina (BF = 86,827), The Netherlands (BF = 86,827), Venezuela (BF = 86,827), Tunisia
(BF = 14,463), France (BF = 3766), and Ghana (BF = 29.5).

The phylogeographical reconstruction of migration flows (Figure 4a-d) showed that,
after its origin in western Africa (Guinea Bissau) in the XVI century, the HCV-2 genotype
migrated to central Africa, (in particular Ghana for HCV-2a and -2c). From Africa, it moved
to Europe and had reached France, The Netherlands and Italy by the 1930s-1950s.

1900 1967

Figure 4. Significant non-zero migration rates of HCV-2 worldwide. Only the rates supported by a BF > 3 are shown. The

map was reconstructed using SPREAD (see Section 4). The four panel (a—d) correspond to snapshots of the four different

times indicated in correspondence with the panel.

2.3.3. Evolutionary Demography and R0O/Re Estimates in Italy and Albania

The Italian and Albanian HCV-2c¢ isolates were separated for further independent
phylodynamic analyses. The skyline plot of the Italian sequences showed a growth in the
effective number of infections during the period from the 1940s to the mid-1960s, followed
by a plateau (Figure 5a). The direct estimate of HCV Re using the birth-death model and
five intervals of time showed that it started to grow in the 1940s, reached a peak of 3.2
(95%HPD 1.1-7.5) in the period between the 1980s and early 2000s, after which it levelled
off before starting to decrease only recently (Figure 5b). The model estimate indicated
that the origin of the HCV genotype 2 epidemic in Italy was 70.5 YA (42.7-100.0 YA). The
estimate of the becoming-non-infectious rate was 0.199 (CI = 0.02-0.47), corresponding to a
mean time of infectiousness of five years (CI 2-50 years).
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Figure 5. HCV-2 in Italy (a,b) and Albania (c,d). Bayesian skyline plots (a,c) and birth-death skyline plots (b,d) for the
estimated median values and HPD intervals of effective population size (Ne) and effective reproduction numbers (Re).

The skyline plot analysis of the Albanian sequences (Figure 5¢c) showed an exponential
growth in the effective number of infections between the early 1990s and the mid-2000s,
after which it reached a plateau. The birth-death model estimate of the trend of Re was
similar: growth between the 1990s and early 2000s, followed by a rapid decrease. The
origin of the epidemic was estimated to be 40.6 YA (26.3-86.9), corresponding to 1975
(Figure 5d).

3. Discussion

The aim of this study was to reconstruct the epidemiological history of HCV-2 and
its “epidemic” subtypes in Europe, particularly HCV-2c as it is the most frequent HCV-2
subtype in Italy and Albania. To do this, we characterized NS5B sequences from 208
Italian and 37 Albanian isolates obtained from patients with chronic HCV-2 infection over
a period of 25 years. A subset of these sequences was subsequently aligned with reference
sequences obtained in different parts of the world at different times and retrieved from
public databases in order to allow phylodynamic and phylogeographical analyses.

The vast majority (97%) of the isolates obtained from Italian patients were HCV-2¢; the
only exceptions were six isolates forming a significant monophyletic group of subtype 2b
dating back to 1989, with an outgroup of six Dutch sequences obtained between the end of
the 1980s and the early 2000s. This is in line with the findings of other studies showing that
subtype 2c is very frequently found in Italy, whereas it represents only a minority of the
isolates collected in other European countries [7]. Interestingly, the 2c strain also accounted
for 97% of the isolates taken from HCV-2 positive Albanian patients. There are only a few
studies of the prevalence of HCV genotypes in Albania, but all of them have found that
HCV-2c is the most frequent subtype after HCV-1b, infecting 9-18% of all of the Albanian
patients with chronic HCV infection [11,13,14].

Another main finding is that the Italian patients infected by HCV-2 were older than
their Albanian counterparts: 66% were more than 60 years old. Other studies have found
that HCV-2 is highly prevalent among elderly Italians [15-17]; it was also highly prevalent
among Italian children, but its prevalence has been decreasing in those born after 1990 [18].



Diagnostics 2021, 11, 327

8 of 15

A number of epidemiological studies suggested that HCV-2 used to be even more prevalent
in Italy in the past [15-17,19-23], which would explain its widespread prevalence among
elderly Italians, but it has now been overtaken by other genotypes in younger subjects,
who have mainly been infected as a result of intravenous drug use or contaminated blood
transfusions [24].

The penetration of HCV-2 in Albania is probably more recent (see below), which
would explain its greater frequency among younger Albanians with HCV-2 infection.

These data are in line with the rapidly changing epidemiology of HCV genotypes in
Europe [25].

Several authors have tried to reconstruct the origin and global spread of genotype 2
using various phylogenetic approaches. One of the most important studies is that of
Markov et al. [26], who suggested that HCV-2 originated in western Africa (Guinea Bissau)
between 1400 and 1500 AD, and then migrated eastward to central Africa. In a subsequent
study, the same authors demonstrated the central role of European (particularly Dutch and
French) colonialism in the spread of endemic HCV-2 subtypes throughout the New World,
whereas the dissemination of the epidemic subtypes 2a, 2b and 2¢ did not occur until the
XX century, and was due to the use of contaminated blood products or intravenous drug
use [10], as shown by their clustering on the basis of the mode of transmission. Other
authors have confirmed the western African origin of HCV-2 and underlined the role of
colonialism in its spread [8,26,27].

These studies were mainly aimed at reconstructing the history of endemic subtypes,
but they were less effective in assessing the history of epidemic subtypes, possibly because
of differences in the time scales of the evolution of the two groups of subtypes. It has
been shown that the time dependency of substitution rates leads to overestimates when
timescales are short (as in the case of the epidemic strains of HCV) and underestimates
when timescales are long (as in the case of the endemic strains) [28]; however, most
of the studies cited above used the same NS5B fragment substitution rate (5 x 10~*
subs/site/year) for both endemic and epidemic subtypes. This substitution rate was
independently estimated using HCV-1 isolates collected after an epidemic event due
to accidental transmission caused by a single batch of anti-rhesus immunoglobulin in
Ireland in 1978 [29], and it was used by Pybus et al. in their first reconstruction of the
phylodynamics of HCV genotypes [30]. However, various factors can affect the substitution
rate of viruses [31], including the epidemiological/ecological dynamics of the infection in
the host population [32-34] and the main routes of transmission [35], two characteristics
that clearly distinguish endemic and epidemic HCV geno/subtypes [4].

As the aim of this study was to reconstruct the molecular evolution of epidemic HCV-2
subtypes by including a large number of Italian and Albanian HCV-2c sequences newly
characterized by us, we estimated the substitution rate on the basis of sampling years, and
obtained a mean value of 2.4 x 1073 subs/site/ year (CI 1.7-3.1 x 1073 subs/site/ year).
This is faster than the mean rate used by other authors, but in line with a recent re-
view of HCV evolution that suggested a mean evolutionary rate of about 1 x 1073
subs/site/year [36]. It also confirms the observation that different genotypes/subtypes
may have different substitution rates as HCV-2 has evolved much more rapidly than the
other genotypes [37].

Despite our use of a faster rate, our phylogeographical reconstruction confirmed that
the most probable origin of HCV-2 was western Africa (Guinea Bissau) at least 500 years
ago, after which it spread eastward through central Africa to Ghana, an important center
of its further spread out of Africa [26,27]. Our estimates of the tMRCAs of the significant
clades and analyses of the significant linkages between locations suggest that the epidemic
subtypes migrated to Europe between the 1930s and 1950s, when HCV-2 reached The
Netherlands, Italy and France, which became the main centers of the further worldwide
spread of the epidemic up to the 1980s.

Our phylogeographical analysis indicates that HCV-2c has two internal node MRCAs:
one dating back to the 1950s with a more probable location in Italy, and another (including
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also HCV-2a subtype) dating back to the 1930s with Africa (i.e., Ghana) as the most likely
location. Interestingly, other authors have suggested Ghana as a further possible location of
the origin of HCV-2 [27], thus underlining the central role of the country in its dissemination.
The analysis of genetic flow rates suggests that HCV-2c moved to Italy between the 1930s
(when its ancestor existed in Africa) and the 1950s (when the common ancestor of the
currently circulating HCV-2c appeared in Italy), after a largely unknown journey lasting at
least 20 years.

The main obstacle to reconstructing the route taken by this original strain before its
arrival in Italy is the lack of isolates from other African countries. Nevertheless, as in the
case of the other HCV-2 subtypes, it is reasonable to assume that European colonial history
played an important role in the arrival of HCV-2c in Italy [38], even if the history of Italy in
Africa is more restricted in time and space than that of other western countries: from the
1890s to the end of World War II in regions of eastern Africa (Somalia, Eritrea, Ethiopia)
and northern Africa (Libya). One recent study has shown a high prevalence of HCV-2¢c
in Ethiopia [39], where Italian soldiers and often resident migrant workers were present
from 1936 to 1941. It is therefore possible that, after the end of World War II, the Italians
who returned to Italy carried HCV-2c infection with them. Further studies including more
African isolates would be useful to clarify how HCV-2c reached Ethiopia from Ghana, and
the role played by eastern Africa in allowing HCV-2c to reach Italy.

The Bayesian skyline plot of population dynamics showed that, like that of other HCV
subtypes in other western countries [10,40], the exponential growth of HCV-2¢ infection in
Italy started in the 1950s and continued until the 1980s. We also traced the changes in the Re
of epidemic HCV-2c in Italy using a birth-death model to estimate the effective replication
number and other important epidemiological parameters. The results of these analyses
indicate that, over a period of about 70 years (the estimated origin of the epidemics), Re
rapidly increased between the 1950s and the 1980s, continued to grow at a slower rate until
the 2000s, and then started to decline.

On the contrary, the skyline analysis showed that exponential growth of both the
effective number of infections and the Re in Albania started later, between the early
1990s and the 2000s- Re began to decrease in 2000s. Albania was associated with Italian
colonization during the twenty years of the fascist period, but our estimates of the tMRCAs
of the significant Albanian clades suggests that HCV-2c reached Albania from Italy more
recently, between the 1990s and 2010. During that period, Albania was going through a
political and economic crisis due to the fall of the communist regime, and hundreds of
thousands of Albanian migrated to Italy [41], particularly in the early 1990s and the late
1990s/early 2000s. This suggests that the infection was exported from Italy to Albania
when infected Albanian migrants returned to their native country.

In conclusion, the findings of this study (the first to report the trend of the effective
reproductive number of HCV-2 in two European countries) contribute to reconstructing the
history of the spread of epidemic HCV-2 subtypes to Europe in the XX century, and show
that Italy was an important center of the spread of HCV-2c in the Mediterranean area.

4. Material and Methods
4.1. Ethics Statement

This retrospective research was conducted on serum samples collected for clinical
purposes and stored in the participating centers. All data used in the study were previously
anonymized, according to the requirements set by Italian Data Protection Code (leg. Decree
196/2003) and by the General authorizations issued by the Data Protection Authority.

Approval by Ethics Committee was deemed unnecessary because, under Italian law,
such an approval is required only in the hypothesis of prospective clinical trials on medical
products for clinical use (art. 6 and art. 9, leg. Decree 211/2003). Written informed
consent for medical procedures/interventions performed for routine treatment purposes
was collected for each patient.
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4.2. HCV-2 Positive Patients and Sequences

The 245 HCV-2 NS5B sequences newly characterized in our laboratory were obtained
from 208 Italian samples taken from patients attending the Infectious Diseases Department
of L. Sacco University Hospital in Milan or the Virology Unit of the Campus Bio-Medico
University in Rome, and 37 samples taken from Albanian patients attending the National
Blood Transfusion Centre of Tirana. The data concerning the samples and patients (age,
country of birth and town of residence) were collected between 2001 and 2016. Patients
plasma samples with >1000 IU of HCV RNA/mL were genotypically analyzed using a
VERSANT® HCV Genotype 2.0—LiPA kit (Siemens Healthcare, Erlangen, Germany), and
the same samples were further characterized by means of NS5B gene sequencing.

4.3. Sample Processing and HCV RNA Sequencing

Viral RNA was extracted from the patients’ serum (200 pL stored at —80 °C) using
NucleoMag 96 Virus (Macherey-Nagel, Diiren, Germany) and automated KingFisher™
Magnetic Particle Processors (Thermo Fisher Scientific Inc., Waltham, MA, USA) in accor-
dance with the manufacturer’s instructions. Serum samples from healthy subjects were
used as negative controls. The RNA was eluted in 50 pL of nuclease-free distilled water, and
reverse transcribed using the SuperScript III reverse transcriptase protocol (Thermo Fisher
Scientific, Waltham, Massachusetts, USA): the cDNA was amplified by means of nested
polymerase chain reaction (PCR) using GoTaq® DNA Polymerase (Promega, Madison, W1,
USA). The primers for the first and second rounds of NS5B amplification and the PCR
conditions have been previously described [42,43].

The fragments obtained by means of PCR were purified using a commercial purifica-
tion kit (QIAquick PCR Purification Kit, Qiagen, Hilden, Germany), and then sequenced
bi-directionally using a BigDye Terminator Kit version 3.1 (Applied Biosystems, CA, USA)
in accordance with the manufacturer’s instructions.

The sequencing products were purified from a 10 uL sample by means of precipitation
in an ethanol/sodium acetate mixture. Finally, the sequences were determined using an
automated DNA sequencer (ABI PRISM 3130 XL Genetic Analyser, Applied Biosystems).

4.4. HCV-2 NS5B Datasets

The 245 newly characterized NS5B sequences were aligned for phylogenetic analysis
with 273 reference sequences (representative of previously described HCV-2 subtypes 2a,
2b, 2¢, 2e, 2f, 2i, 2j, 2m and 2q) retrieved from public databases (http://www.ncbi.nlm.nih.
gov/genbank/, accessed on 16 February 2021).

Bayesian phylogeographical and phylodynamic analyses were carried out using a
dataset of 419 sequences, including a total of 112 Italian NS5B sequences randomly selected
from the main dataset and all of the Albanian sequences, which were aligned with 270
reference sequences. The reduction in the number of Italian sequences was necessary in
order to limit the effects of sampling errors due to the number of taxa per location on the
assessment of the posterior probability of the root location. The reference viral sequences
were selected on the basis of the following inclusion criteria: (1) they had been published
in peer-reviewed journals; (2) there was no uncertainty about the sub-genotype assignment
of each sequence and all were classified as non-recombinant; and (3) the city/state of
origin were known and clearly stated in the original publication. The accession numbers,
sampling localities and characteristics of the isolates included in the dataset are summarized
in Supplementary Table S2. The sampling dates ranged from 1985 to 2016.

Two other datasets were constructed: a subset including 199 Italian HCV-2c NS5B
partial sequences, and a subset including 36 HCV-2c NS5B partial sequences collected
in Albania.

The sampling locations of the isolates included in the main dataset were Albania (AL,
n = 37), Argentine (AR, n = 26), Burkina Faso (BE, n = 5), Canada (CA, n = 3), Cameroon
(CM, n =7), China (CN, n = 10), Estonia (EE, n = 3), France (FR, n = 18), Ghana (GH, n = 18),
Guinea Bissau (GW, n = 16), Indonesia (ID, n = 15), Italy (IT, n = 112), Morocco (MA, n =9),
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Nigeria (NE, n = 9), The Netherlands (NL, n = 76), Russia (RU, n = 11), Spain (SP, n = 2),
Suriname (SR, n = 8), Tunisia (TN, n = 15), the United States (US, n = 2), Venezuela (VE,
n =15), and Vietnam (VN, n = 2).

4.5. Likelihood Mapping Analysis

In order to obtain an overall impression of the phylogenetic signals in the partial NS5B
gene sequences, we made a likelihood-mapping analysis [44] of 10,000 random sets of four
sequences (quartets) generated using TreePuzzle software [45]. If the frequency of dots
within the central area (star-like trees) of the triangle is more than 30%, it is likely that the
data includes a high level of noise.

4.6. Bayesian Phylogenetic and Phylogeographical Reconstructions

The main dataset and the subsets were aligned using the ClustalW software included
in BioEdit [46], followed by manual editing (final alignment length = 211 nucleotide).

The JModelTest was used to select the simplest evolutionary model fitting the data,
which was the GTR+I+G model of nucleotide substitutions for the main dataset and the
Albanian subset, and the GTR+G model for the Italian subset.

The phylogenetic tree, model parameters, evolutionary rates and population growth
were co-estimated using the Bayesian Markov chain Monte Carlo (MCMC) method im-
plemented in BEAST v.1.8.4 [47]. Statistical support for specific clades was obtained by
calculating the posterior probability of each monophyletic clade. Four simple parametric
demographic models (constant population size, and exponential, expansion and logistic
population growth) and a piecewise-constant Bayesian skyline plot (BSP) under both a strict
and a relaxed (uncorrelated log-normal) clock were compared as coalescent priors [47].

The phylogeographical reconstruction was made using the continuous-time Markov
Chain (MCC) process over discrete sampling locations implemented in BEAST [48], and
the Bayesian Stochastic Search Variable Selection (BSSVS) model that allows diffusion
rates to be zero with a positive prior probability. Comparison of the posterior and prior
probabilities that the individual rates would be zero provided a formal Bayesian factor (BF)
for testing the significance of the linkages between locations: rates with a BF of >3 were
considered well supported and assumed to be the migration pathway.

The HCV-2 dataset and the Italian HCV-2c subset were investigated by running two
independent MCMCs for 500 million generations, with sampling every 50,000 generations;
the Albanian HCV-2c subset was investigated using 50 million generations, with sampling
every 5000 generations. The data were combined using LogCombiner v. 1.80 in the BEAST
package. Convergence was assessed on the basis of the effective sampling size (ESS) after
a 10% burn-in using Tracer v. 1.5 software (http://tree.bio.ed.ac.uk/software/tracer/,
accessed on 16 February 2021). Only ESS’s of >200 were accepted. Uncertainty in the
estimates was indicated by 95% highest posterior density (95% HPD) intervals, and the
best fitting models were selected using the BF and marginal likelihoods implemented
in BEAST [49]; in accordance with Kass [50], only 2InBF values of >6 were considered
significant. The trees were summarized in a target tree using the Tree Annotator program
included in the BEAST package and selecting the tree with the maximum product of
posterior probabilities (maximum clade credibility) after a 10% burn-in. The estimates
of the time of the most recent common ancestor (tMRCA) were expressed as the mean
number of years and 95% HPD before the most recent sampling dates (which corresponded
to 2016). The final trees were visualized using FigTree v. 1.4 (available at http://tree.bio.ed.
ac.uk/software, accessed on 16 February 2021). In order to visualize diffusion rates over
time, it is also possible to convert the location-annotated MCC tree to a GeoJSON data
format suitable for viewing with georeferencing software and, using the new SPREAD3
analytical tool, the MCC tree was converted to a JavaScript object notation (JSON) file. The
visualization was rendered using a Data Driven Document (D3) library [51].
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4.7. Birth-Death Skyline Plot Estimate of Effective Reproduction Number (Re)

In order to make a direct estimate of the changes in effective reproductive number (Re)
over time, we reconstructed the phylogenetic tree of the Italian and Albanian HCV-2c iso-
lates using a birth-death skyline plot [52], which makes it possible to infer the transmission
rate (lambda), the death/recovery rate (delta), and the sampling proportion (p).

We used a serial birth-death skyline plot (a forward-in-time model allowing the
parameters to change in a piecewise fashion) and a lognormal prior probability distribution
of the reproductive number (R), with a mean value (M) of 0.0, a variance (5) of 1.25, and a
total of five dimensions. The becoming-non-infectious parameter was estimated using a
lognormal prior with M = 0.5 and S = 1.5, so that the 95% probability of the infectious period
fell between 0.1 and 19.4 years, with a median of five years. The prior of the sampling
probability followed a beta distribution with an alpha value of 1 and a beta value of 100,
which corresponds to a minority of sampled cases in relation to all cases (from 0.0005
to 0.03).

As there are no data concerning the origin of the outbreak of HCV-2 infection in Italy
and it is known that the circulation of HCV-2 has been widespread over the last 100 years,
we used a lognormal prior with M = 4 and S = 0.4. The highest probability was a period
between approximately 28.3 and 105 years ago, with a median of about 54.6 years.

Similar values were used for the serial birth-death skyline plot of the Albanian se-
quences, with the exception that there were four dimensions of Re and the prior for the
origin was between 15 and 100 years ago.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4
418/11/2/327/s1, Figure S1: Likelihood mapping of the HCV-2 sequences, Table S1: Significant
non-zero rates of different sampling locations supported by a BF > 3, Table S2: Years, codes, locations
and country codes of the HCV-2 sequences included in the dataset.
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IT Italy
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Us The United States
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VN Vietnam
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GTR+I+G  Generalized time reversible + proportion of invariable sites + gamma distribution
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