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ABSTRACT 
 
Geostatistical models have been widely used to represent disease prevalence in spatial disease 
mapping. More recently, these models have been employed to estimate geographic ‘spread’ of 
artemisinin resistance (AR) in South East Asia from genetic mutations identified in the K13 gene of 
the malaria Plasmodium falciparum parasite. Here, I revisit the question of ‘spread’ of AR as 
represented by resistant plasmodium falciparum in Myanmar, when re-evaluated from K13 mutant 
alleles data published by Tun et al. [1]. The new analysis gives a broader perspective by 
incorporating information published by the World Health Organization (WHO) in 2015 and 
subsequently in 2018 of the K13 mutant alleles confirmed to confer or to be associated with 
artemisinin resistance. This provides insights which hitherto have not been described and reveals 
the disparity between the estimation of ‘spread’ of AR by Tun et al. [1] and that of AR prevalence 
based on metrics which are supported by published WHO data.  
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1. INTRODUCTION 
 
Malaria is caused by a microscopic Plasmodium 
parasite conveyed into humans by some of the 
mosquito species in the Anopheles genus. 

Antimalarial drugs have long been developed to 
combat the disease, but their effectiveness has 
been shown to typically decrease with time as 
antimalarial drug resistance evolves in certain 
regional populations (e.g. [2]). More recently, 
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there has been an emphasis on geostatistical 
maps to describe the regional status of 
antimalarial drug resistance in epidemiological 
mapping studies [3-5,1,6]. Such mappings 
attempt to depict the prevalence of antimalarial 
drug resistance in a geographical region using 
geostatistical models parameterized with data 
taken from infected persons, but the data are 
typically limited in sample size and spatial 
distribution. Their accuracy is dependent also 
upon the choice of metric used to denote 
antimalarial drug resistance as well as what 
constitutes statistical significance for the 
gathered data. For relatively recent antimalarial 
drugs such as artemisinin, the uncertainty 
surrounding all these factors remains largely 
unresolved. This leaves assessments of 
antimalarial drug resistance and interpretation of 
its ‘spread’ open to overestimation and 
sensationalization as a scaremongering tactic 
[7,8,1], which could arguably lead to a conflict of 
interest in disease mitigation strategies. 
 
The efficacy of an antimalarial drug is typically 
evaluated by recording the time taken for an 
arbitrary fixed percentage (usually 50%) of 
malaria parasites to be cleared from an infected 
person after administering the drug. If the 
parasite clearance time, when measured over a 
large number of infected individuals in a given 
geographical region is statistically slower than a 
specific, yet arbitrary average, then antimalarial 
resistance to the drug in use is deemed to be 
present in the region. Although the assumption of 
delayed parasite clearance times equating with 
the presence of artemisinin resistant Plasmodium 
falciparum parasites and hence artemisinin 
resistance (AR) is generally accepted, this has 
been questioned by some leading authors [9,10]. 
In line with Tun et al. [1] however, the 
assumption is accepted as axiomatic for the 
purposes of this paper. 
 
In the case of artemisinin, concerns of 
artemisinin-resistant Plasmodium falciparum 
spreading across parts of South-East Asia and in 
particular Myanmar, have been loudly broadcast 
[1]. The thesis is assisted by the discovery of a 
genetic association between specific mutations 
of the Kelch13 (K13) gene in the Plasmodium 
parasites with longer malarial parasite clearance 
times. But it is also important to recognise that 
parasite clearance delay times vary both with 
different K13 codon mutations and sampling 
location [11]. For example, the artemisinin 
resistance (AR) ‘effect’ of codon F446I has been 
measured as mild in northern Myanmar where 

this mutation predominates [1,12]. In short, the 
precise causal reasons for the genetic 
associations and variations in their effect on 
artemisinin resistance still remain unknown 
[13,14]. Nevertheless, identification of specific 
mutant alleles which confer resistance to 
artemisinin has been the subject of much 
ongoing research since the discovery was 
published by Ariey et al. [5]. 
 
In 2015, the World Health Organisation (WHO) 
published a list of K13 mutant allele codon 
numbers, which at the time were either confirmed 
to confer AR or to be candidates associated with 
AR [15]. This was updated to reflect the current 
knowledge in a later published list [16]. Such 
definitive genetic marker information provides a 
statistical handle, which enables AR to be more 
rapidly estimated through inference from blood 
samples taken from infected persons. It is the 
association of AR resistant Plasmodium 
falciparum with these K13 gene mutations, when 
observed in spatial locations where infected 
persons are present, that provides the marker 
tool for mapping estimated AR prevalence on a 
geographical basis.  
 
In Tun et al. [1] however, the set of all mutant 
alleles with a codon number greater than 440 
(henceforth referred to as the g440 metric) 
collected in their sampling, was assumed to 
confer AR. Surprisingly, no supporting scientific 
data were provided for this assumption and it 
appears to have been an arbitrary choice based 
only on codons located in the propeller region of 
the K13 protein. The g440 metric, was then 
employed in geostatistical models to generate 
maps of the estimated ‘spread’ of artemisinin 
resistant plasmodium from K13 gene mutations 
identified in blood sample data obtained at sites 
across Myanmar. Again, neither the robustness 
nor the importance of the underlying 
assumptions made (that all the mutant alleles 
greater than codon 440 confer AR) was 
addressed in producing the maps in question. 
From a scientific standpoint, all these factors are 
crucial, given that not all these codons 
necessarily confer AR and that many others, 
such as A578S, are known to not confer AR 
[17,12,18]. Fairhurst [19] for example, provided a 
list of mutant alleles known to confer AR, which 
included only 5 of the mutant alleles employed in 
the g440 metric of Tun et al.[1].  
 
This raises the important, but unanswered 
question, of how the choice of g440 metric may 
have influenced the inference and geostatistical 



 
 
 
 

Grist; IJTDH, 43(15): 1-16, 2022; Article no.IJTDH.89422 
 

 

 
3 
 

mapping of estimated ‘spread’ of AR in Myanmar 
made by Tun et al. [1]. The purpose of this 
paper, is therefore, to determine how the choice 
of metric for K13 mutant allele codons conferring 
AR from the K13 genetic marker data as 
published by Tun et al. [1] in Myanmar: 

 
I. influenced the estimation of AR 

prevalence, 
II. compares with estimates based on K13 

mutant alleles codons that have been 
recognised as conferring AR by the WHO. 

 
2. MATERIALS AND METHODS 
 
2.1 Sample Sizes 
 
A first avenue into the strength of the statistical 
inference possible from the Tun et al. [1] data, is 
provided by examining the sample sizes at each 
of the sampled sites. Fig. 1 shows a plot of the 

sample size distribution when viewed across all 
samples taken from all the study sites. 
 
This plot immediately reveals the sparsity of 
larger samples obtained at any specific location 
and that the vast majority (28, greater than 50%) 
of the samples were obtained from site samples 
of less than 5 individuals. The spatial extent of 
the corresponding information supporting any 
thesis of ‘spread’ of AR is thus severely limited. 
In Tun et al. [1], this limitation is concealed by 
appealing to plots of local prevalence based on 
agglomerated data shown only for the local 
administrative regions (in their Fig. 3).  
 

2.2 Choice of AR Metric 
 

In Table 1, four different AR metrics named 
Metric 1 to Metric 4 are defined in terms of the 
K13 mutant alleles of the codon numbers 
implicated in AR based on the official lists of 
2015 and 2018 published by the WHO [15,16].  

 

 
 

Fig. 1. Site sample sizes of the Tun et al. [1] data. The blue bars show relative frequencies of 
site sample sizes as a proportion of the total samples collected (n=940) with the cumulative 
proportion superimposed (solid black line). The 50% median percentile (vertical thin line) 
demonstrates that the majority (28) of the 54 sites sampled had fewer than 5 individuals. 
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Table 1. K13 mutant allele codons either confirmed to confer artemisinin resistance (AR) or 
identified as candidates to confer AR by the WHO in the official lists of WHO [15] and WHO 
[16]. Those shown in bold type were included in the g440 metric of mutant allele codons used 
to estimate AR ‘spread’ in Myanmar, as presented by Tun et al. [1]. All codons are listed in full 
notation (with prefix and suffix letters) in the bottom panel. Those codons employed in Metrics 
1 to 4, as defined in this paper to estimate AR prevalence in Myanmar, are listed in the 
adjacent 4 separate columns. 
 

WHO 2015 Myanmar WHO 2018 Myanmar 

Confirmed Candidate Metric 1 Metric 2 Confirmed Candidate Metric 3 Metric 4 

n=4 n=9 n=1 n=8 n=9 n=11 n=5 n=14 
493 441 580 441 446 441 446 441 
539 446  446 458 449 458 446 
543 449  449 476 469 476 449 
580 553  458 493 481 561 458 
 458  561 539 527 580 469 
 561  574 543 537  476 
 568  580 553 538  481 
 574  675 561 568  527 
 675   580 574  537 
     673  538 
     675  561 
       574 
       580 
       675 
P441L , F446I , G449A , N458Y , C469F , M476I, A481V , Y493H , P527H , N537I , G538V , R539T, I543T , 

P553L, R561H , V568G , P574L , C580Y , F673I , A675V 
 

These codons fall into two categories within each 
listed year, respectively defined as either 
confirmed to confer AR, or candidates to confer 
AR at the time of the WHO publications in 2015 
and 2018. These findings, therefore, provide 4 
logical options for defining an AR metric in terms 
of codon subgroups: 
 
Metric 1. Confirmed codons to confer AR in 
2015. 
Metric 2. Confirmed and candidate codons to 
confer AR in 2015. 
Metric 3. Confirmed codons to confer AR in 
2018. 
Metric 4. Confirmed and candidate codons to 
confer AR in 2018. 
 
These metrics provide a straightforward scientific 
basis for assessing the estimation of AR 
prevalence by incorporating official information 
on K13 mutant alleles codons as published by 
the WHO in 2015 and in 2018.  Metric 1 and 
Metric 2 respectively correspond to the best-case 
and worst-case scenarios based on the WHO 
[15] list. Metric 1 represents the minimum 
number of codons at 2015 confirmed to confer 
AR, while Metric 2 represents the potential 
perceived maximum number of codons that could 
confer AR. Metric 3 and Metric 4 respectively 

correspond to parallel definitions as at 2018 
based on the WHO [16] list. 
 
Metric 1 consists of the sole codon C580Y, which 
was the only codon in the Tun et al. [1] data 
confirmed to confer AR at 2015 by the WHO. A 
comparison of the codons listed for Metric 2 (8 in 
total), with those listed for Metric 3 (5 in total), 
importantly shows that three of the Metric 2 
candidate 2015 codons (P441L, P574L, A675V) 
were still candidates and were not subsequently 
confirmed to confer AR in 2018. One other WHO 
[15] candidate, codon V568G, and not found in 
the Myanmar data, also remained a candidate in 
the WHO [16] list. If this process of incomplete 
progression (from candidate to confirmed data) 
continues to the next updated WHO list, yet to be 
published, it will likely imply that Metric 4 with 
inclusion of all perceived candidate codons, also 
gives an overestimation of the AR prevalence in 
Myanmar.  

 
Metric 3 therefore provides a current benchmark 
as the minimum subset of 5 mutant allele codons 
found by Tun et al. [1] currently confirmed to 
confer AR by the WHO. Metric 4 gives an upper 
bound on Metric 3 as a maximal subset (14 in 
total) to confer AR as currently reported on the 
assumption that the 9 candidates listed in WHO 
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[16] will subsequently be confirmed to confer AR. 
However, the estimate of AR ‘spread’ by Tun et 
al. [1] when using the g440 metric, namely with 
all 24 mutant alleles presented with codon 
number greater than 440, still exceeds this upper 
bound. Further, it includes an additional 10 
codons never included in the WHO 2018 list 
which was published 3 years later. In simple 
terms this conspicuously exposes the extent of 
the overestimation of AR prevalence made by 
Tun et al. [1] in Myanmar’s case at the time of 
that publication. 
 

2.3 Estimation of AR Spread 
 
In estimating ‘spread’ of AR, it is critical to define 
exactly what is meant by ‘spread’. Woodrow and 
White [12] allude to this by differentiating 
between independent ‘de novo’ geographic 
emergences of AR [20] in the sense of a ‘soft 
sweep’ of competing mutants arising and 
‘spread’ as a ‘hard sweep’ in which with time, 
many of the soft sweep mutants decline to a few 
in particular.  In Tun et al. [1], the usage of the 
word ‘spread’ of AR also comes with a dynamic 
innuendo of spreading spatially in time (also 
pointed out by Plowe and Ringwald (2015)), 
though this obviously cannot be supported as the 
data are effectively limited to a snapshot and 
therefore, unlike a disease time series [21], lack 
a temporal component.   
 
In the current paper, I use the term ‘spread’ of 
AR in the spatial sense and distinguish this from 
‘spread’ of AR in the population sense. In the 
former sense, spread is determined by a                    
spatial measure, most fundamentally as the 
number of sampled sites where mutant alleles 
were found, which I refer to as spatial sites 
coverage. In the latter sense, spread is 
determined by the frequency of mutant alleles 
found in the sampled individuals from the study 
population. 
 
Spatial sites coverage provides a crude summary 
statistic for assessing the spread of AR in terms 
of the proportion of sampled sites where cases of 
AR (by a chosen metric) were found.  However, 
such an approach takes no account of the 
number of individuals sampled, other than that 
one or more were found presenting with an AR 
mutant allele at each site.  Thus, if only a few 
individuals with AR mutant alleles were found but 
were located over several closely located sites, 
AR spread would receive a higher estimate than 
if many individuals were found at a few but 
widely dispersed sites.  

On the other hand, population spread as the 
summary statistic for assessing spread of AR, 
namely as the proportion of sampled individuals 
where cases of AR (by a chosen metric) were 
found, could also be a crude estimate for AR 
spread because this approach takes no account 
of spatial information.  Population spread 
accuracy in determining geographic prevalence 
is dependent only on whatever spatial diversity is 
(unwittingly) inherent, but this is not explicitly 
recorded in the configuration of site sampling 
locations. 
 
When contrasted with both the above crude 
metrics of spread, a geostatistical model can 
enable a more sophisticated estimate of spread 
of AR to be derived by taking into account both 
the number of cases of AR (whatever the chosen 
metric) and the spatial site sampling locations, 
together with number of individuals sampled at 
each study site. This is achieved by spatial 
interpolation across the geographic domain at 
points where no sampling occurred, based on 
data, statistical modelling assumptions and 
knowledge. In addition, geostatistical maps 
readily enable a visualisation of the spatial extent 
of spread of AR to be compared using different 
metrics of interest for the given data. In this 
paper, I determine geostatistical maps of AR 
prevalence in Myanmar through the widely used 
Bayesian hierarchical model approach [22]. The 
models incorporate either the commonly used 
Poisson [23] or binomial [24] underlying 
distributional assumptions together with a Besag-
York-Mollie (BYM) specification [25] and were 
evaluated using the R-INLA software [26,27] with 
details given in Appendix 1. 
 

3. RESULTS 
 
Fig. 2 compares the distribution of AR spread 
obtained by the two definitions of population 
proportion and spatial sites coverage in 
percentage, using the g440 AR metric of Tun et 
al. [1].  A comparison of the bar plot for spread in 
the spatial sites coverage sense (Fig. 2B) with 
that of spread in the population sense (Fig. 2A) 
shows that the estimate of AR spread is more 
accentuated when evaluated by spatial sites 
coverage.  
 
Fig. 3 shows geostatistical maps of estimated             
AR prevalence in Myanmar obtained with the 
g440 metric and Tun et al. [1] data, generated                
by R-INLA software [26] with a BYM                   
specification [28] and either a Poisson or 
binomial underlying distribution. Results for the 
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Poisson model are shown in the top row, with 
Fig. 3A showing the map of estimated AR 
prevalence and Fig. 3B showing the associated 
‘uncertainty’ map. The results for the binomial 
model are shown in the bottom row, with Fig. 3C 
showing the AR prevalence map and Fig. 3D 

depicting the uncertainty map. The maps                      
in Fig. 3(A and C) are strongly reminiscent,                    
as would be expected, of those maps                             
generated by the geostatistical Bayesian models 
used for estimating AR prevalence in Tun et al. 
[1].  

 
 

Fig. 2. Bar plots showing the codon number (with prefix and suffix letters omitted) frequencies 
of K13 mutant alleles as presented in the Tun et al. [1] data: (A) by number of individuals 
(n=940) and (B) by number of sites (n=54). The shaded bars indicate those codon numbers 
included in the g440 metric (those codon numbers > 440) which was used in the estimation of 
artemisinin resistance (AR) ‘spread’ by Tun et al. [1]. The -1 denotes the wild-type. 
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Fig. 3. Geostatistical maps of artemisinin resistance (AR) ‘spread’ in Myanmar generated by R-
INLA with the BYM model specification using the g440 metric of Tun et al. [1] and data 
presented for mutant allele codons; with an underlying Poisson distribution (A) prevalence 
and (B) associated uncertainty; with an underlying binomial distribution (C) prevalence and (D) 
associated uncertainty. The colour scale in (A) and (C) ranges from dark blue (0%) to dark red 
(>=50%) as was scaled in Tun et al. [1]. Site sample sizes are superimposed at site locations as 
centred circles scaled by area in the corresponding legend box (bottom left of each frame). 
 
A comparison of estimated AR prevalence in the 
Fig. 3 maps, obtained by using the g440 metric, 
was made with estimated AR prevalence by each 
of the four Metrics based on WHO data. The 
respective R-INLA maps as here generated, are 
shown in Fig. 4 for Metric 1 and Metric 2 based 
on the WHO [15] list of codons and in Fig. 5 for 
Metric 3 and Metric 4, based on the WHO [16] 
list. 

 
In Fig. 4A for the Poisson model and Fig. 4C for 
the binomial model, where the Metric 1 consists 
of only the sole codon C580Y confirmed to 
confer AR by the WHO as at 2015,there is 
minimal estimated spread of AR, as represented 
by a tiny zone located in a south eastern location 

near the Kayin border with Thailand. These maps 
contrast strongly with the maps generated by 
each model shown respectively in Fig. 4B and 
Fig. 4D, where the confirmed and candidate 
codons in Metric 2 (9 in total) listed by the WHO 
as at 2015 are included. The latter maps show a 
wider regional estimated prevalence of AR in the 
eastern half of the country together with two 
clearly defined additional hotspots in the north at 
Kachin (driven by codon F446I) and immediately 
below that in a more central location (driven by 
codon P574L).  
 
Similarly, comparisons are made in Fig. 5 for 
Metric 3 and Metric 4, based on the more 
recently confirmed and candidate mutant allele 
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codons published in WHO [16]. Here, the codons 
that were included into the AR metric are the 
confirmed codons of Metric 3, resulting in the R-
INLA maps shown in Figs. 5A and 5C 
respectively for the Poisson or binomial                
models, or the confirmed and candidate codons 
of Metric 4 as respectively shown in Figs. 5B and 
5D. 
 
Again, the disparity between estimated 
prevalence of AR by Metric 3 in the geostatistical 
maps, as shown in Fig. 5 (A and C) when 
compared with those obtained by the g440 metric 
as shown in Fig. 3(A and C) is readily             
apparent. 

In the former maps with Metric 3, there are only 
two miniscule hotspots that are indicated by 
red/yellow locations, consistent with those of 
Metric 2. One of these is located in the northern 
side of the country in Kachin while the other is at 
a south-eastern location near the Kyin border of 
with Thailand. However, in the latter maps of Fig. 
3(A and C) with the g440 metric, these hotspots 
are completely subsumed within a much larger 
red/yellow zone, which extends along the entire 
eastern border region of the country on the right 
side of the map.  In addition, there is now a large 
hotspot, immediately below Kachin, contained 
within the central region of this zone.  
 
 

 
 
Fig. 4. Geostatistical maps of estimated AR prevalence in Myanmar generated by R-INLA with 
the BYM model specification using Metric 1 or Metric 2 as defined in Table 1, respectively of 
either K13 mutant allele confirmed or confirmed and candidate codons to confer artemisinin 
resistance (AR) based on the WHO [15] list, as presented in the Tun et al. [1] data. Respective 
maps are shown for an underlying Poisson distribution in (A) with Metric 1 and (B) with Metric 
2; or for an underlying binomial distribution in (C) with Metric 1 and (D) with Metric 2. The 
colour scale in all the maps ranges from dark blue (0%) to dark red (>=50%) as was scaled 
in.Tun et al. [1]. Site sample sizes are superimposed at site locations as centred circles scaled 
by area in the corresponding legend box (bottom left of each frame). 
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Fig. 5. Geostatistical maps of estimated AR prevalence in Myanmar generated by R-INLA with 
the BYM model specification using Metric 3 or Metric 4 as defined in Table 1, respectively of 
either K13 mutant allele confirmed or confirmed and candidate codons to confer artemisinin 
resistance (AR) based on the WHO [16] list, as presented in the Tun et al. [1] data. Respective 
maps are shown for an underlying Poisson distribution in (A) with Metric 3 and (B) with Metric 
4, or for an underlying binomial distribution in (C) with Metric 3 and (D) with Metric 4. The 
colour scale in all the maps ranges from dark blue (0%) to dark red (>=50%) as scaled in Tun et 
al. [1]. Site sample sizes are superimposed at site locations as centred circles scaled by area 
in the corresponding legend box (bottom left of each frame). 

 
A parallel comparison was also obtained in terms 
of mutant allele codon frequency distributions for 
either population proportions or spatial sites 
coverage, of the four Metrics based on the WHO 
[15] and WHO [16] data. These are shown as bar 
plots in Figs. 6 and 7 and enable a direct 
comparison to be made with those obtained for 
the g440 metric shown in Fig. 2. Fig. 7(A and C) 
also reveals that the estimated prevalence of AR 
by the benchmark Metric 3 is driven by                      
just 5 codons (namely F446I, N458Y, M476I, 
R561H, C580Y) out of the 24 in total 
incorporated into the g440 metric used by Tun et 
al. [1]. 

Table 2 compares all the summary statistics for 
the g440 metric of Tun et al. [1] with those of the 
four WHO-based Metrics that were used for 
assessing the spread of AR either by population 
proportion, spatial site coverage or R-INLA 
geostatistical map. These statistics demonstrate 
that by using the g440 metric, consistent 
overestimation of AR prevalence occurs when 
compared to all four of the WHO- based metrics.  
 
In the light of the Metric 3 benchmark, Metric 1 
produces a clear underestimate of the 
prevalence of AR. This implies that the WHO 
perception of AR prevalence in Myanmar in 
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Fig. 6. Bar plots showing codon number (with prefix and suffix letters omitted) frequencies of 
K13 mutant alleles presented in the Tun et al. [1] data, as either confirmed (Metric 1) or 
confirmed and candidate codons (Metric 2) to confer artemisinin resistance (AR), based on the 
WHO [15] published list. The -1 denotes the wild-type. The shaded bars indicate frequencies 
recorded for individuals (n=940) in (A) by Metric 1 and (B) by Metric 2, or number of sites 
(n=54) in (C) by Metric 1 and (D) by Metric 2. 
 

 
 

Fig. 7. Bar plots showing codon number (with prefix and suffix letters omitted) frequencies of 
K13 mutant alleles presented in the Tun et al. [1] data, as either confirmed (Metric 3) or 
confirmed and candidate codons (Metric 4) to confer artemisinin resistance (AR), based on the 
WHO [16] published list. The -1 denotes the wild-type. The shaded bars indicate frequencies 
recorded for individuals (n=940) in (A) by Metric 3 and (B) by Metric 4, or number of sites 
(n=54) in (C) by Metric 3 and (D) by Metric 4. 
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Table 2. Measures of ‘spread’ of artemisinin resistance (AR) estimated by the g440 metric of 
Tun et al. [1] and compared with the four Metrics defined in Table 1 of this paper. Metric 1 and 
Metric 2 are respectively defined as the K13 mutant allele confirmed codons or confirmed and 
candidate codons to confer AR in the WHO [15] list; Metric 3 and Metric 4 are respectively 
defined as the K13 mutant allele confirmed codons or confirmed and candidate codons to 
confer AR in the WHO [16] list. The values are shown in percentages to 2 significant figures 
and evaluated by using the 3 different estimation approaches of: (top panel) mean prevalence 
in the geostatistical map generated by R-INLA with the BYM model specification with either a 
Poisson or binomial underlying distribution; (middle panel) proportion of sampled population; 
(bottom panel) proportion of sampled sites sampled. 
 

Summary statistic of AR spread g440 Metric 1 Metric 2 Metric 3 Metric 4 

Geostatistical map      
Poisson  mean prevalence (%) 22   1.0  15   8.0 18  
Binomial mean prevalence (%) 24  0.0  14  7.0  18  
Population       
Population proportion  (%) 39 10 29 25 36 
Number of individuals (n=940) 371 97 272 231 338 
Sites       
Sites proportion (%) 57 15 50 43 52 
Number of sites (n=54) 31 8 27 23 28 

 
2015, based on the codons then known to confer 
AR (only codon C580Y), was a clear 
underestimation. By the same benchmark of 
Metric 3, if all the candidate codons in the WHO 
[15] list are included to give Metric 2, an 
overestimation could then be produced. The 
overestimation could be increased by extending 
the Metric 3 to Metric 4 through inclusion of all 
the candidate codons in the WHO [16] list. 
However, this overestimation is still well below 
that produced by the g440 metric, as can be 
seen by a direct comparison with any of the 
respective summary statistics in Table 2. 
 
Finally, a comparison of the mean estimated 
prevalence in Table 2, obtained with the R-INLA 
geostatistical maps with either of the underlying 
distributions (Poisson or binomial), re-enforces 
the point again. The mean prevalence of AR 
estimated by the g440 metric (22% or 24%) and 
by the benchmark Metric 3 (8% or 7%) differ by 
an overestimation factor of the order of 3. This 
margin is lower when a comparison is made with 
Metric 4 through the additional inclusion of all the 
candidate codons published by the WHO in 2018 
(18% or 18%), however the overestimation factor 
is then still around one third higher by the g440 
metric. 
 

4. DISCUSSION 
 
The Tun et al. [1] assessment of AR ‘spread’ in 
Myanmar differs radically from the AR 
prevalence estimated in this paper, based on 

WHO [15] data of mutant allele codons 
associated with AR. The later perspective also 
provided here and based on the updated WHO 
[16] data, although achieving a higher estimation 
of AR prevalence, also gives a prevalence level 
which is far below that estimated by Tun et al. 
[1].  
 
If the choice of AR metric is restricted to mutant 
alleles as confirmed to confer AR in the WHO 
[16] list by the benchmark Metric 3, only two 
small localised hot spots of artemisinin 
resistance at disparate locations are identified in 
the south and north of Myanmar. It is impossible 
to view this map as ‘spread’ of AR as purveyed 
by Tun et al. [1]. Even by including all the known 
candidate mutant alleles in WHO [16] defined by 
Metric 4, the degree and range of contiguity in 
the estimated prevalence map remains far below 
that of the extensive geographic coverage when 
conveyed by the g440 metric.  
 
The R-INLA geostatistical maps of Figs. 3, 4 and 
5 of this paper strongly demonstrate the degree 
of disparity between estimated prevalence of AR 
in Myanmar by the g440 metric employed by Tun 
et al. [1] with that of metrics based on the WHO 
[15] and [16] published data. These maps 
demonstrate that the inclusion (or not) of 
candidate codons listed in 2015 and 2018 by the 
WHO has a profound influence on assessment of 
AR spread. They also convey a wide range for 
the estimated AR prevalence but, which broadly, 
increases in spatial coverage as the number of 
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mutant codons included into the AR metric are 
increased. This can be seen to be more 
pronounced in 2018, with the inclusion of more 
candidate codons to confer AR in the larger 
WHO list of 2018, by a direct comparison of all 
the respective maps shown in Figs. 4ABCD with 
those of Figs. 5ABCD. 
 
In the light of increasing scientific knowledge on 
genetic markers, the WHO [15,16] data lists of 
confirmed and candidate mutant allele codons 
conferring AR may not have been necessarily 
definitive.  Indeed, the efficacy of the role of the 
WHO in tackling global health matters has often 
been unclear and viewed with scepticism, as was 
re-iterated by the recent failure of many countries 
to heed warnings of the covid pandemic issued 
by the WHO in January 2020 (Maxmen 2021). 
However, the WHO [16] data are still the most 
current officially published data on codons known 
to either confer or to be candidates associated 
with conferring AR. The analysis presented in 
this paper shows that by asserting all codons 
above codon number 440 in the propeller region 
of the K13 genetic marker confer artemisinin 
resistance, as was done by Tun et al. [1], 
necessarily leads to an unsupportable 
misrepresentation of ‘spread’ of AR in Myanmar.  
Some leading authors have warned that this 
controversial pursuit of ‘AR spread’ may deflect 
the focus away from other key research issues 
such as partner-drug efficacy when used in 
artemisinin combination therapies (ACTs) or the 
importance of initial parasite densities  in tackling 
malaria endemicity [9,10].  
 
The current analysis shows that AR prevalence 
estimates in Myanmar based on metrics derived 
from WHO [15] and WHO [16] published data 
followed a logical progression. These estimates 
are readily supportable by geostatistical maps, 
which were produced from either confirmed or 
candidate codons then known to confer AR as 
listed. In addition, the WHO data sets can 
provide clear benchmarks to calibrate the 
importance of ongoing future progress of K13 
mutant allele codon identification of AR. 

 
5. CONCLUSION 
 
While it is prudent to adopt a precautionary 
approach by evaluating worst case scenarios for 
the spread of AR, it is necessary also that the 
robustness of such assertions is meticulously 
examined to ensure that they are scientifically 
rigorous. This principle was notably absent in the 

estimation made with the g440 metric of ‘spread’ 
of AR in Myanmar by Tun et al. [1].  
 
The danger of ‘crying wolf’ [8] is of also invoking 
‘once bitten, twice shy’. That will mean 
estimations of true emerging artemisinin 
resistance, wherever they might actually occur, 
are not given the attention they deserve in future 
research work.  
 

CONSENT AND ETHICAL APPROVAL 
 
It is not applicable. 
 

ACKNOWLEDGEMENTS 
 
I thank Dr. Alastor M. Coleby and the four 
anonymous reviewers for their suggestions and 
valuable remarks which improved the original 
manuscript. 
 

COMPETING INTERESTS 
 
Author has declared that no competing interests 
exist. 
 

REFERENCES  
 

1. Tun KM, Imwong M, Lwin KM, Win Aa, 
Hlaing TM, Hlaing T, Lin K, Kyaw MP, 
Plewes K, et al. Spread of artemisinin-
resistant Plasmodium falciparum in 
Myanmar: a cross-sectional survey of the 
K13 molecular marker. The Lancet 
Infectious Diseases. 2015;21–26. 
DOI:https://doi.org/10.1016/S1473-
3099(15)70032-0 

2. Bwire GM, Ngasala B, Mikomangwa WP, 
Kilonzi M, Kamuhabwa AAR. Detection of 
mutations associated with artemisinin 
resistance at k13-propeller gene and a 
near complete return of chloroquine 
susceptible falciparum malaria in 
Southeast of Tanzania. Scientific Reports. 
2020;10(1):1–7.  
DOI:https://doi.org/10.1038/s41598-020-
60549-7 

3. Edwards HM, Dixon R, de Beyl CZ, Celhay 
O, Rahman M, Oo MM, Lwin T, Lin Z, San 
T, et al. Prevalence and seroprevalence of 
plasmodium infection in myanmar reveals 
highly heterogeneous transmission and a 
large hidden reservoir of infection. PLoS 
ONE.2021;16(6 June):1–20. 
DOI:https://doi.org/10.1371/journal.pone.0
252957 

https://doi.org/10.1016/S1473-3099(15)70032-0
https://doi.org/10.1016/S1473-3099(15)70032-0


 
 
 
 

Grist; IJTDH, 43(15): 1-16, 2022; Article no.IJTDH.89422 
 

 

 
13 

 

4. Grist EPM, Flegg JA, Humphreys G, Mas 
IS, Anderson TJC, Ashley EA, et al. 
Optimal health and disease management 
using spatial uncertainty: A geographic 
characterization of emergent artemisinin-
resistant Plasmodium falciparum 
distributions in Southeast Asia. 
International Journal of Health 
Geographics. 2016;15(1):1–10. 
DOI:https://doi.org/10.1186/s12942-016-
0064-6 

5. Ariey F, Witkowski B, Amaratunga C, 
Beghain J, Langlois AC, Khim N, Kim S, 
Duru V, et al. A molecular marker of 
artemisinin-resistant Plasmodium 
falciparum malaria. 
Nature.2014;505(7481):50–55.  
DOI:https://doi.org/10.1038/nature12876 

6. Zaw MT, Emran NA, Lin Z. Updates on k13 
mutant alleles for artemisinin resistance in 
Plasmodium falciparum. Journal of 
Microbiology, Immunology and Infection. 
2018;51(2):159–165.  
DOI:https://doi.org/10.1016/j.jmii.2017.06.0
09 

7. Chookajorn T. How to combat emerging 
artemisinin resistance: Lessons from “The 
Three Little Pigs.” PLoS Pathogens. 
2018;14(4):4–11.  
DOI:https://doi.org/10.1371/journal.ppat.10
06923 

8. Meshnick S. Perspective: Artemisinin-
resistant malaria and the wolf. American 
Journal of Tropical Medicine and Hygiene. 
2012;87(5):783–784.  
DOI:https://doi.org/10.4269/ajtmh.2012.12-
0388 

9. Ferreira PE, Culleton R, Gil JP, Meshnick 
SR. Artemisinin resistance in Plasmodium 
falciparum: What is it really? Trends in 
Parasitology. 2013;29(7):318–320. 
DOI:https://doi.org/10.1016/j.pt.2013.05.00
2 

10. Krishna S, Kremsner PG. rtemisinin 
resistance needs to be defined rigorously 
to be understood: Response to dondorp 
and ringwald. Trends in Parasitology. 
2013;A29(8):361–362. 
DOI:https://doi.org/10.1016/j.pt.2013.05.00
6 

11. Abubakar UF, Adam R, Mukhtar MM, 
Muhammad A, Yahuza AA, Ibrahim SS. 
Identification of Mutations in antimalarial 
resistance gene Kelch13 from Plasmodium 
falciparum isolates in Kano, Nigeria. 
Tropical Medicine and Infectious Disease. 
2020;5(2). 

DOI:https://doi.org/10.3390/tropicalmed502
0085 

12. Woodrow CJ, White NJ. The clinical impact 
of artemisinin resistance in Southeast Asia 
and the potential for future spread. FEMS 
Microbiology Reviews. 2017;41(1):34–48. 
DOI:https://doi.org/10.1093/femsre/fuw037 

13. Mok S, Stokes BH, Gnädig NF, Ross LS, 
Yeo T, Amaratunga C, Allman E, Solyakov 
L, Bottrill AR, et al. Artemisinin-resistant 
K13 mutations rewire Plasmodium 
falciparum’s intra-erythrocytic metabolic 
program to enhance survival. Nature 
Communications. 2021;12(1):1–15. 
DOI:https://doi.org/10.1038/s41467-020-
20805-w 

14. Siddiqui FA, Liang X, Cui L. Plasmodium 
falciparum resistance to ACTs: 
Emergence, mechanisms, and outlook. 
International Journal for Parasitology: 
Drugs and Drug Resistance. 2021; 
16(January):102–118.  
DOI:https://doi.org/10.1016/j.ijpddr.2021.05
.007 

15. World Health Organization. Status report 
on artemisinin and ACT resistance, 
September 2015. World Health 
Organization; 2015.  
Available:https://apps.who.int/iris/handle/1
0665/338493 

16. World Health Organization. Artemisinin 
resistance and artemisinin-based 
combination therapy efficacy: status report, 
August 2018.World Health 
Organization;2018. 

Available:https://apps.who.int/iris/handle/1
0665/274362. License: CC BY-NC-SA 3.0 
IGO 

17. Ménard, D, Khim, N, Beghain, J, Adegnika, 
A. A, Shafiul-Alam, M, Amodu, O, Rahim-
Awab G, et al. A Worldwide Map of 
Plasmodium falciparum K13-Propeller 
polymorphisms. New England Journal of 
Medicine. 2016;374(25):2453–2464.  

DOI:https://doi.org/10.1056/nejmoa151313
7 

18. Yobi DM, Kayiba NK, Mvumbi DM, Boreux 
R, Bontems S, Kabututu PZ, et al. The lack 
of K13-propeller mutations associated with 
artemisinin resistance in Plasmodium 
falciparum in Democratic Republic of 
Congo (DRC). PLoS ONE. 2020;15(8 
August 2020):1–9. 
DOI:https://doi.org/10.1371/journal.pone.0
237791 

19. Fairhurst RM. Understanding artemisinin-
resistant malaria. Current Opinion in 



 
 
 
 

Grist; IJTDH, 43(15): 1-16, 2022; Article no.IJTDH.89422 
 

 

 
14 

 

Infectious Diseases. 2015;28(5):417–425.  
DOI:https://doi.org/10.1097/qco.00000000
00000199 

20. Takala-Harrison S, Jacob CG, Arze C, 
Cummings MP, Silva JC, Dondorp AM, et 
al. Independent emergence of artemisinin 
resistance mutations among Plasmodium 
falciparum in Southeast Asia. The Journal 
of Infectious Diseases. 2015;211(5):670–
679. 
DOI:https://doi.org/10.1093/infdis/jiu491 

21. Kaestli M, Grist EPM, Ward L, Hill A, Mayo 
M, Currie BJ. The association of 
melioidosis with climatic factors in Darwin, 
Australia: A 23-year time-series analysis. 
Journal of Infection.2016;72(6):687–697.  
DOI:https://doi.org/10.1016/j.jinf.2016.02.0
15 

22. Lawson AB. Bayesian disease mapping: 
Hierarchical modeling in spatial 
epidemiology. Chapman and Hall/CRC; 
2008. 
DOI:https://doi.org/10.1111/j.1467-
985x.2010.00681_11.x 

23. Walker L, Gotway C. Applied spatial 
statistics for public health, New York, 
Wiley; 2004. 

24. Morgan O, Vreiheid M, Dolk H. risk of low 
birth weight near eurohazcon hazardous 
waste landfilll sites in England. Archives                
of Environmental Health. 2004;59:149- 
151. 

25. Samat NA, Mey LW. Malaria disease 
mapping in Malaysia based on Besag-
York-Mollie (BYM) Model. Journal of 
Physics: Conference Series. 2017;890(1).  
DOI:https://doi.org/10.1088/1742-
6596/890/1/012167 

26. Lindgren F, Rue H. Bayesian spatial 
modelling with R-INLA. Journal of 
Statistical Software.2015;63(19):1–25.  
DOI:https://doi.org/10.18637/jss.v063.i19 

27. Rue H, Martino S, Chopin N. Approximate 
Bayesian inference for latent Gaussian 
models by using integrated nested Laplace 
approximations. Journal of the Royal 
Statistical Society: Series B (Statistical 
Methodology). 2009;71(2):319–392.  
DOI:https://doi.org/10.1111/j.1467-
9868.2008.00700.x 

28. Besag J, York J, Mollié A. A Bayesian 
image restoration with two applications in 
spatial statistics Ann Inst Statist Math. 
1991;43:1–59. Find This Article 
Online.43(1):1–20. 

 
 
 
 
 
 
  

https://doi.org/10.1111/j.1467-985x.2010.00681_11.x
https://doi.org/10.1111/j.1467-985x.2010.00681_11.x


 
 
 
 

Grist; IJTDH, 43(15): 1-16, 2022; Article no.IJTDH.89422 
 

 

 
15 

 

APPENDIX 1 
 

Poisson model 
 

The case count    is assumed to have a mean    within each small area i of the gridded 5km x 5km  
[= 0.04159721 decimal degree square] domain covering the whole of the Myanmar map, plotted as 
latitude (vertical axis) against longitude (horizontal axis) in decimal degrees and to be independently 
distributed as  
 

                 
 

so the likelihood is 
 

          
               

 

   

 

 
The usual assumption is made that data are independently distributed with expectation 
 

              
 
where    is the expected rate for the ith area,     is the relative risk for the ith area and  {  }  are 

assumed to be conditionally independent given knowledge of {  }.  
 
The relative risk    is then modelled as a linear predictor by assuming the logarithmic link 
 

         
 
Binomial model 
 

The probability of a case is assumed to be    and the case count    within each small area i of the 
gridded 5km x 5km domain [covering the whole of the Myanmar map] is assumed to be distributed 
independently as 
 

                
 

so, the likelihood is 
 

              
  

  

   
        

 

   

      
        

 
and for   to be a linear predictor, a logit link is chosen so that 
 

   
       

         
 

 
The BYM model is then specified by 
 

            
 

where  
 

              
  ) 

 
 is the unstructured residual and 
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 is the spatially structured residual modelled as an intrinsic conditional autoregressive (iCAR) structure 
with 
 

    
         

     
 

and 

  
  

  
 

     
 

 
where        denotes a neighbouring area to area i and         denotes the number of areas which 

have boundaries with the ith one. So    
   and    

 control the random effects respectively in    and     .  
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