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1 Introduction

Fractional derivatives are used in the modeling of many physical phenomena, such as heat diffusion through
a semi-infinite solid, flow in oil reservoirs, rheological properties of solids etc. In general, it is difficult to find
the exact solution of a nonlinear fractional differential equation. Many numerical methods are used to find an
approximate solution. Commonly used numerical methods are the variational iteration method (VIM) [1, 2],
the Adomian decompositional method (ADM) [3, 4, 5], and the generalized differential transformation method
(GDTM) [6, 7] .Recently, the SBA method [8, 9, 10] which is a combination of the Adomian method, the method
of successive approximations [11, 12] and the Picard principle, is also used. The nonlinear fractional differential
equations are also solved with techniques combining numerical methods with integral transformations, such as
the Homotopy perturbation method combined with the Elzaki transformation (EHTPM) [13, 14], the Homotopy
perturbation method combined with the Sumudu transformation (HPSTM) [15], the Adomian decomposition
method combined with the Elzaki transformation (EADM) [16]. The discretization methods are also used
[17, 18]. In this paper, we propose a new technique to find the exact solution or an approximate solution of
nonlinear fractional differential equations. This technique is a combination of the SBA method and the Elzaki
transform (SBATEM). After having recalled some notions on fractional calculus and on the Elzaki transform,
we will give the principle of this new technique, then we will apply it on some examples of nonlinear fractional
differential equations.

2 Definitions and Basic Properties

In this section, we recall some definitions and properties of fractional calculus and the Elzaki transformation.

2.1 Gamma function and Mittag-Leffler function

Gamma function. The Euler Gamma function [19, 20] is defined on the half-plane P = {z ∈ C/ Re(z) > 0}
by

Γ(z) =

∫ +∞

0

tz−1e−tdt. (1)

For any natural number n : Γ(n+ 1) = n!.

Mittag-Leffler function. For any complex number z, we define the one-parameter Mittag-Leffler function
[21, 20] by

Eα(z) =

∞∑
k=0

zk

Γ (αk + 1)
; α ∈ C, Re(α) > 0. (2)

In particular, when α = 1, this function coincides with the exponential function:

E1(z) =

∞∑
k=0

zk

Γ (k + 1)
=

∞∑
k=0

zk

k!
=ez. (3)

2.2 Caputo fractional derivative

Definition 2.1. Let [a, b] be a finite interval of R and f ∈ L1([a, b]). The fractional Riemann-Liouville left-
handed integral of order α > 0 of the function f is defined by [21]

Iαa,xf(x) =
1

Γ(α)

∫ x

a

(x− t)α−1 f(t)dt. (4)
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Definition 2.2. The fractional Caputo left derivative of order α > 0 of the function f(x), x ∈ [a, b] is defined
by [22]

CD
α
a,xf(x) = Im−αa,x

(
f (m)(x)

)
=

1

Γ(m− α)

∫ x

a

f (m)(t)

(x− t)α−m+1
dt, (5)

where m = [α] + 1 if α /∈ N and m = α if α ∈ N.

2.3 Elzaki transform

Consider the following set of functions of exponential order

A =
{
f(t) : ∃M,k1, k2 > 0, |f(t)| < Me|t|/kj , if t ∈ (−1)j × [0,∞)

}
. (6)

Definition 2.3. For f ∈ A, the Elzaki transform of f is given by the following formula [23]

E [f(t)] = T (s) = s

∫ ∞
0

e−
t
s f(t)dt, k1 ≤ s ≤ k2 (7)

From the formula (7), we obtain the following Elzaki transforms:

E [1] = s2, E [t] = s3E [tα] = Γ(α+ 1)sα+2, α > 0 (8)

The Elzaki transform verifies the linearity property: ∀ f, g ∈ A and ∀ a, b ∈ R, we have

E [af(t) + bg(t)] = aE [f(t)] + bE [g(t)] (9)

Theorem 2.1. The Elzaki transform of the fractional Caputo derivative is [24]:

E [Dα
t f(t)] = s−αE [f(t)]−

m−1∑
k=0

s2−α+kf (k)(0), m− 1 < α ≤ m (10)

Theorem 2.2. [23] Let T (u) be the Elzaki transform of f(t) such that

(i) sT

(
1

s

)
is a meromorphic function, with singularities having Re(s) < α, and

(ii) There exists a circular region d with radius R and positive constants, M and K with∣∣∣∣sT (1

s

)∣∣∣∣ < MR−K (11)

Then the function f(t) is given by

E−1 [T (s)] =
1

2πi

∫ α+i.∞

α−i.∞
estsT

(
1

s

)
ds =

∑
resudues of

[
estsT

(
1

s

)]
(12)
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3 Description of the SBATEM Techniquee

Consider the following nonlinear and inhomogeneous fractional differential equation

Dα
t u(x, t) = Lu(x, t) +Nu(x, t) + g(x, t), α > 0, (13)

with the initial conditions:

u(x, 0) = h0(x),
∂ku(x, 0)

∂tk
= hk(x), k ∈ {1, ...,m− 1} , (14)

where Dα
t =

∂α

∂tα
is the fractional derivative of Caputo with respect to t of order α > 0; L and N are linear and

nonlinear differential operators, respectively.

Applying the Elzaki transform to (13), we obtain

E [Dα
t u(x, t)] = E [Lu(x, t)] + E [Nu(x, t)] + E [g(x, t)] (15)

Using Theorem 2.1. and the initial conditions (14), we obtain

E [u(x, t)] =

m−1∑
k=0

s2+khk(x) + sαE [g(x, t)] + sαE [Lu(x, t)] + sαE [Nu(x, t)] . (16)

Applying the inverse Elzaki transform to (16), we obtain

u(x, t) = H(x, t) + E−1 [sαE [Lu(x, t)]] + E−1 [sαE [Nu(x, t)]] , (17)

where

H(x, t) = E−1

[
m−1∑
k=0

s2+khk(x)

]
+ E−1 [sαE [g(x, t)]] . (18)

Apply the method of successive approximations to (17), we get:

uk(x, t) = H(x, t) + E−1
[
sαE

[
Luk(x, t)

]]
+ E−1

[
sαE

[
Nuk−1(x, t)

]]
. (19)

The Adomian agorithm associated with (19) is the following:{
uk0(x, t) = H(x, t) + E−1

[
sαE

[
Nuk−1(x, t)

]]
, k ≥ 1

ukn(x, t) = E−1
[
sαE

[
Lukn−1(x, t)

]]
, n ≥ 1.

(20)

We will call the above algorithm the SBATEM algorithm.

Let us apply Picard’s principle to (20): we choose u0 ∈ V any root of the equation Nu = 0. Step 1. For
k = 1, we compute u1 using the following algorithm{

u1
0(x, t) = H(x, t)

u1
n(x, t) = E−1

[
sαE

[
Lu1

n−1(x, t)
]]
, n ≥ 1.

(21)

If the series
∑
n≥0

u1
n is convergent, then we get:
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u1 =
∑
n≥0

u1
n, (22)

approximate solution of the problem (13)-(14) in step 1.

Step 2. For k = 2, we compute u2 using the following algorithm:{
u2
0(x, t) = H(x, t) + E−1

[
sαE

[
Nu1(x, t)

]]
u2
n(x, t) = E−1

[
sαE

[
Lu2

n−1(x, t)
]]
, n ≥ 1.

(23)

If the series
∑
n≥0

u2
n is convergent, then we get:

u2 =
∑
n≥0

u2
n, (24)

approximate solution of the problem (13)-(14) in step 2.

Step k. Recursively, if the series
∑
n≥0

ukn is convergent for k ≥ 1, then we get:

uk =
∑
n≥0

ukn, (25)

approximate solution of the problem (13)-(14) in step k. The solution of the problem (13)-(14) is then:

u = lim
k→∞

uk. (26)

Proposition 3.1. Consider the following nonlinear and inhomogeneous fractional differential equation:

Dα
t u(x, t) = Lu(x, t) +Nu(x, t) + g(x, t), α > 0 (27)

with the initial conditions:

u(x , 0 ) = h0(x ),
∂ku(x, 0)

∂tk
= hk(x ), k ∈{1, ...,m− 1} (28)

where Dα
t =

∂α

∂tα
is the fractional derivative of Caputo with respect to t of order α > 0; L is a linear operator

and N a nonlinear operator defined in a suitably chosen space V ; g ∈ V and u the unknown function.

Let be the SBATEM agorithm associated to (27)-(28) :{
uk0(x, t) = H(x, t) + E−1

[
sαE

[
Nuk−1(x, t)

]]
, k ≥ 1

ukn(x, t) = E−1
[
sαE

[
Lukn−1(x, t)

]]
, n ≥ 1.

(29)

By Picard’s principle, we choose u0 ∈ V such that Nu0 = 0.

(a) If Nu1 = 0, then the problem (27)-(28) admits a unique solution u = u1.

(b) If for a fixed integer p, up = up−1, p ≥ 2, then the problem (27)-(28) admits a unique solution u = up−1.
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Proof. Existence. (a) Let u1 be the approximate solution in step 1. Assume that Nu1 = 0, so the scheme in
step 2 is written: {

u2
0(x, t) = H(x, t)

u2
n(x, t) = E−1

[
sαE

[
Lu2

n−1(x, t)
]]
, n ≥ 1.

(30)

This scheme is identical to the scheme in step 1. So the approximate solution in step 2 is u2 = u1.

We have Nu2 = Nu1 = 0; therefore the scheme at step 3 is also identical to the scheme at step 2. Therefore,
the solution at
step 3 is u3 = u2 = u1.

Recursively, the approximate solution at step k (k ≥ 2) is uk=uk−1 = ...=u1.

The solution of the problem (27)-(28) is

u = lim
k→∞

uk= u1 (31)

(b) Suppose that for a fixed integer p, up = up−1, p ≥ 2; then we have Nup = Nup−1.

At step p+ 1, the algorithm is written:{
up+1
0 (x, t) = H(x, t) + E−1 [sαE [Nup(x, t)]]

up+1
n (x, t) = E−1

[
sαE

[
Lup+1

n−1(x, t)
]]
, n ≥ 1.

(32)

From this algorithm, we obtain:
up+1
0 (x, t) = H(x, t) + E−1 [sαE [Nup(x, t)]] = H(x, t) + E−1

[
sαE

[
Nup−1(x, t)

]]
= up0(x, t),

up+1
1 (x, t) = E−1

[
sαE

[
Lup+1

0 (x, t)
]]

= E−1 [sαE [Lup0(x, t)]] = up1(x, t),

up+1
2 (x, t) = E−1

[
sαE

[
Lup+1

1 (x, t)
]]

= E−1 [sαE [Lup1(x, t)]] = up2(x, t),
...
up+1
n (x, t) = E−1

[
sαE

[
Lup+1

n−1(x, t)
]]

= E−1
[
sαE

[
Lupn−1(x, t)

]]
= upn(x, t).

So

up+1 =
∑
n≥0

up+1
n =

∑
n≥0

upn = u
p
. (33)

Similarly, we show that at step p+ 2, up+2 = up+1.

Recursively, the approximate solution at step k (k ≥ p− 1) is uk=uk−1 = ...=up = up−1.

The solution of the problem (27)-(28) is thus

u = lim
k→∞

uk= up−1. (34)

Uniqueness. suppose that the problem (27)-(28) admits by the SBA method two distinct solutions u and v.
Let ϕ = u− v. Then we have:{

uk0(x, t) = H(x, t) + E−1
[
sαE

[
Nuk−1(x, t)

]]
, k ≥ 1

ukn(x, t) = E−1
[
sαE

[
Lukn−1(x, t)

]]
, n ≥ 1

(35)
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and {
vk0 (x, t) = H(x, t) + E−1

[
sαE

[
Nvk−1(x, t)

]]
, k ≥ 1

vkn(x, t) = E−1
[
sαE

[
Lvkn−1(x, t)

]]
, n ≥ 1.

(36)

Making the difference (35)-(36), we get:{
ϕk0 = E−1

[
sαE

[
Nuk−1(x, t)

]]
− E−1

[
sαE

[
Nvk−1(x, t)

]]
, k ≥ 1

ϕkn = E−1
[
sαE

[
Lϕkn−1(x, t)

]]
, n ≥ 1

(37)

where ϕkn = ukn − vkn.

Step 1. For k = 1, we have: {
ϕ1

0 = 0

ϕ1
n = E−1

[
sαE

[
Lϕ1

n−1(x, t)
]]
, n ≥ 1.

(38)

- For n = 1, we have:

ϕ1
1 = E−1 [sαE [Lϕ1

0(x, t)
]]

= 0. (39)

- For n = 2, we have:

ϕ1
2 = E−1 [sαE [Lϕ1

1(x, t)
]]

= 0. (40)

- We find that for all n ≥ 0, ϕ1
n = 0. Therefore, we have:

ϕ1 =
∑
n≥0

ϕ1
n = 0. (41)

Therefore, we obtain u1 = v1.

Step 2. For k = 2, we have: {
ϕ2

0 = L−1
t Nu1 − L−1

t Nv1

ϕ2
n = L−1

t R(ϕ2
n−1), n ≥ 1.

(42)

Since u1 = v1, then Nu1 = Nv1. As a result, the scheme (42) is written{
ϕ2

0 = 0

ϕ2
n = L−1

t R(ϕ2
n−1), n ≥ 1.

(43)

This scheme is identical to the scheme in step 1; thus for all n ≥ 0, ϕ2
n = 0. Hence

ϕ2 =
∑
n≥0

ϕ2
n = 0. (44)

Therefore, we get u2 = v2.

Recursively, for all k ≥ 1, uk = vk. Therefore u = v; which is absurd. So the problem (27)-(28) admits a unique
solution.
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4 Applications

In this section, we apply the SBATEM technique to solve four examples of nonlinear fractional differential
equations.

Example 4.1. Consider the following nonlinear fractional partial differential equation

Dα
t u− 3 (ux)2 + uxxx = 0, t > 0, 0 < α ≤ 1 (45)

with the initial condition

u(x, 0) = 6x. (46)

We have: Lu(x, t) = −uxxx(x, t), Nu(x, t) = 3 (ux(x, t))2 and g(x, t) = 0.

The SBATEM algorithm associated to the problem (45)-(46) is{
uk0(x, t) = H(x, t) + E−1

[
sαE

[
Nuk−1(x, t)

]]
, k ≥ 1

ukn(x, t) = E−1
[
sαE

[
Lukn−1(x, t)

]]
, n ≥ 1

(47)

with

H(x, t) = E−1

[
m−1∑
k=0

s2+khk(x)

]
+ E−1 [sαE [g(x, t)]] (48)

= E−1 [s2h0(x)
]

= h0(x) = 6x.

The algorithm (47) is again written{
uk0(x, t) = 6x+ E−1

[
sαE

[
Nuk−1(x, t)

]]
, k ≥ 1

ukn(x, t) = E−1
[
sαE

[
Lukn−1(x, t)

]]
, n ≥ 1.

(49)

Let us apply to (49) Picard’s principle: we take u0 = 0, then Nu0 = 0.

Step 1. For k = 1, we compute u1 using the following algorithm{
u1
0(x, t) = 6x

u1
n(x, t) = E−1

[
sαE

[
Lu1

n−1(x, t)
]]
, n ≥ 1.

(50)

We have: 
u1
1(x, t) = E−1

[
sαE

[
Lu1

0(x, t)
]]

= 0

u1
2(x, t) = E−1

[
sαE

[
Lu1

1(x, t)
]]

= 0
...

u1
n(x, t) = E−1

[
sαE

[
Lu1

n−1(x, t)
]]

= 0, ∀n ≥ 1.

(51)

So

u1(x, t) =
∑
n≥0

u1
n(x, t) = u1

0(x, t) = 6x (52)
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is approximate solution of the problem (45)-(46) in step 1.

Step 2. For k = 2, we compute u2 using the following algorithm:{
u2
0(x, t) = 6x+ E−1

[
sαE

[
Nu1(x, t)

]]
u2
n(x, t) = E−1

[
sαE

[
Lu2

n−1(x, t)
]]
, n ≥ 1.

(53)

We have:

Nu1(x, t) = 3(6)2 = 108 (54)

and 

u2
0(x, t) = 6x+ E−1

[
sαE

[
Nu1(x, t)

]]
= 6x+

108tα

Γ(α+ 1)

u2
1(x, t) = E−1

[
sαE

[
Lu2

0(x, t)
]]

= 0

u2
2(x, t) = E−1

[
sαE

[
Lu2

1(x, t)
]]

= 0
...

u2
n(x, t) = E−1

[
sαE

[
Lu2

n−1(x, t)
]]

= 0, ∀n ≥ 1.

(55)

So

u2(x, t) =
∑
n≥0

u2
n(x, t) = u2

0(x, t) = 6x+
108tα

Γ(α+ 1)
(56)

is approximate solution of the problem (45)-(46) in step 2.

Step 3. For k = 3, we compute u3 using the following algorithm:{
u3
0(x, t) = 6x+ E−1

[
sαE

[
Nu2(x, t)

]]
u3
n(x, t) = E−1

[
sαE

[
Lu3

n−1(x, t)
]]
, n ≥ 1

(57)

We have:

Nu2(x, t) = 3(6)2 = 108 (58)

and 

u3
0(x, t) = 6x+ E−1

[
sαE

[
Nu2(x, t)

]]
= 6x+

108tα

Γ(α+ 1)

u3
1(x, t) = E−1

[
sαE

[
Lu3

0(x, t)
]]

= 0

u3
2(x, t) = E−1

[
sαE

[
Lu3

1(x, t)
]]

= 0
...

u3
n(x, t) = E−1

[
sαE

[
Lu3

n−1(x, t)
]]

= 0, ∀n ≥ 1.

(59)

So

u3(x, t) =
∑
n≥0

u3
n(x, t) = u3

0(x, t) = 6x+
108tα

Γ(α+ 1)
(60)
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We have u3 = u2; so by Proposition 3.1.(b), the exact solution of the problem (45)-(46) is:

u(x, t) = u2(x, t) = 6x+
108tα

Γ(α+ 1)
. (61)

Example 4.2. Consider the following nonlinear diffusion problem:{
Dα
t u = kuxx + u3 + (uxx)3

u(x, 0) = sinx
(62)

where 0 < α ≤ 1, x ∈ R and t > 0.

We have: Lu(x, t) = kuxx(x, t), Nu(x, t) = (u(x, t))3 + (uxx(x, t))3 and g(x, t) = 0.

The SBATEM algorithm associated to the problem (62) is{
uk0(x, t) = H(x, t) + E−1

[
sαE

[
Nuk−1(x, t)

]]
, k ≥ 1

ukn(x, t) = E−1
[
sαE

[
Lukn−1(x, t)

]]
, n ≥ 1

(63)

with

H(x, t) = E−1

[
m−1∑
k=0

s2+khk(x)

]
+ E−1 [sαE [g(x, t)]] (64)

= E−1 [s2h0(x)
]

= h0(x) = sinx.

The algorithm (64) is again written{
uk0(x, t) = sinx+ E−1

[
sαE

[
Nuk−1(x, t)

]]
, k ≥ 1

ukn(x, t) = E−1
[
sαE

[
Lukn−1(x, t)

]]
, n ≥ 1.

(65)

Let us apply to (65) Picard’s principle: we take u0 = 0, then Nu0 = 0.

Step 1. For k = 1, we compute u1 using the following algorithm:{
u1
0(x, t) = sinx

u1
n(x, t) = E−1

[
sαE

[
Lu1

n−1(x, t)
]]
, n ≥ 1.

(66)

We have: 

u1
1(x, t) = E−1

[
sαE

[
Lu1

0(x, t)
]]

= E−1 [sαE [−ksinx]] =
−ksinxtα

Γ(α+ 1)

u1
2(x, t) = E−1

[
sαE

[
Lu1

1(x, t)
]]

= E−1

[
sαE

[
k2sinxtα

Γ(α+ 1)

]]
=
k2sinxt2α

Γ(2α+ 1)

u1
3(x, t) = E−1

[
sαE

[
Lu1

2(x, t)
]]

= E−1

[
sαE

[
−k3sinxt2α

Γ(2α+ 1)

]]
=
−k3sinxt3α

Γ(3α+ 1)
...

u1
n(x, t) = E−1

[
sαE

[
Lu1

n−1(x, t)
]]

=
sinx(−ktα)n

Γ(nα+ 1)
, ∀n ≥ 1

(67)
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So

u1(x, t) =
∑
n≥0

u1
n(x, t) = sinx

∑
n≥0

(−kt)nα

Γ(nα+ 1)
= sinxEα(−ktα) (68)

is approximate solution of the problem (62) in step 1.
Step 2. For k = 2, we compute u2 using the following algorithm:{

u2
0(x, t) = sinx+ E−1

[
sαE

[
Nu1(x, t)

]]
u2
n(x, t) = E−1

[
sαE

[
Lu2

n−1(x, t)
]]
, n ≥ 1.

(69)

We have
Nu1(x, t) =

(
u1(x, t)

)3
+
(
u1
xx(x, t)

)3
= (sinxEα(−ktα))3 + (−sinxEα(−ktα))3 = 0; (70)

so by Proposition 3.1.(a), the exact solution of the problem (45)-(46) is:

u(x, t) = sinxEα(−ktα). (71)

Example 4.3. Consider the following fractional Riccati differential equation:

dαy(t)

dtα
= 2y(t)− y2(t) + 1, 0 < α ≤ 1 (72)

with the following initial condition

y(0) = 0. (73)

We have: Ly(t) = 2y(t), Ny(t) = −y2(t) and g(t) = 1.

The SBATEM algorithm associated to the problem (72)-(73) is
yk0 (t) = H(t) + E−1

[
sαE

[
Nyk−1(t)

]]
, k ≥ 1

ykn(t) = E−1
[
sαE

[
Lykn−1(t)

]]
, n ≥ 1

(74)

with

H(t) = E−1

[
m−1∑
k=0

s2+khk(t)

]
+ E−1 [sαE [g(t)]]

= E−1 [s2h0(t)
]

+ E−1 [sαE [1]] = h0(t) +
tα

Γ(α+ 1)
=

tα

Γ(α+ 1)
. (75)

The algorithm (74) is again written
yk0 (t) =

tα

Γ(α+ 1)
+ E−1

[
sαE

[
Nyk−1(t)

]]
, k ≥ 1

ykn(t) = E−1
[
sαE

[
Lykn−1(t)

]]
, n ≥ 1.

(76)
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Let us apply to (76) Picard’s principle: we take y0 = 0, then Ny0 = 0.

Step 1. For k = 1, we compute y1 using the following algorithm:
y10(t) =

tα

Γ(α+ 1)

y1n(t) = E−1
[
sαE

[
Ly1n−1(t)

]]
, n ≥ 1.

(77)

We have 

y11(t) = E−1
[
sαE

[
Ly10(t)

]]
= E−1

[
sαE

[
2

tα

Γ(α+ 1)

]]
=

1

2

(2tα)2

Γ(2α+ 1)

y12(t) = E−1
[
sαE

[
Ly11(t)

]]
= E−1

[
sαE

[
4

t2α

Γ(2α+ 1)

]]
=

1

2

(2tα)3

Γ(3α+ 1)

y13(t) = E−1
[
sαE

[
Ly12(t)

]]
= E−1

[
sαE

[
8

t3α

Γ(3α+ 1)

]]
=

1

2

(2tα)4

Γ(4α+ 1)
...

y1n(t) = E−1
[
sαE

[
Ly1n−1(t)

]]
=

1

2

(2tα)n+1

Γ((n+ 1)α+ 1)
, n ≥ 1.

(78)

So

y1(t) =
∑
n≥0

y1n(t) =
1

2

∑
n≥0

(2tα)n+1

Γ((n+ 1)α+ 1)
=

1

2

∑
n≥1

(2tα)n

Γ(nα+ 1)
=

1

2
Eα(2tα)− 1

2
(79)

is approximate solution of the problem (72)-(73) in step 1.

Step 2. For k = 2, we compute y2 using the following algorithm:
y20(t) =

tα

Γ(α+ 1)
+ E−1

[
sαE

[
Ny1(t)

]]
, k ≥ 1

y2n(t) = E−1
[
sαE

[
Ly2n−1(t)

]]
, n ≥ 1.

(80)

We have:

Ny1(t) = −
(

1

2
Eα(2tα)− tα

Γ(α+ 1)

)2

= −
(
tα

a1
+ 2

t2α

a2
+ 4

t3α

a3
+ 8

t4α

a4
+ 16

t5α

a5
+ 32

t3α

a6
+ 64

t7α

a7
...

)2

. (81)

For t� 1, we approximate Ny1(t) by:

Ny1(t) ' − t
2α

a21
− 4

t3α

a1a2
− 4

(
1

a22
+

2

a1a3

)
t4α −

(
16

a1a4
+

16

a2a3

)
t5α −

(
32

a1a5
+

32

a2a4

)
t6α

−
(

64

a1a6
+

64

a2a5

)
t7α −

(
128

a1a7
+

128

a2a6

)
t8α (82)

- Calculation of y20 :
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y20(t) =
tα

a1
+ E−1 [sαE [Ny1(t)

]]
=
tα

a1
− a2t

3α

a21a3
− 4a3t

4α

a1a2a4

− 4

(
1

a22
+

2

a1a3

)
a4
a5
t5α −

(
16

a1a4
+

16

a2a3

)
a5
a6
t6α −

(
32

a1a5
+

32

a2a4

)
a6
a7
t7α

−
(

64

a1a6
+

64

a2a5

)
a7
a8
t8α −

(
128

a1a7
+

128

a2a6

)
a8
a9
t9α (83)

-Calculation of y21 :

y21(t) = E−1 [sαE [Ly20(t)
]]

=
2t2α

a2
− 2a2t

4α

a21a4
− 8a3t

5α

a1a2a5

− 8

(
1

a22
+

2

a1a3

)
a4
a6
t6α − 2

(
16

a1a4
+

16

a2a3

)
a5
a7
t7α − 2

(
32

a1a5
+

32

a2a4

)
a6
a8
t8α

− 2

(
64

a1a6
+

64

a2a5

)
a7
a9
t9α − 2

(
128

a1a7
+

128

a2a6

)
a8
a10

t10α (84)

- Calculation of y22 :

y22(t) = E−1 [sαE [Ly21(t)
]]

=
4t3α

a3
− 4a2t

5α

a21a5
− 16a3t

6α

a1a2a6

− 16

(
1

a22
+

2

a1a3

)
a4
a7
t7α − 4

(
16

a1a4
+

16

a2a3

)
a5
a8
t8α − 4

(
32

a1a5
+

32

a2a4

)
a6
a9
t9α

− 4

(
64

a1a6
+

64

a2a5

)
a7
a10

t10α − 4

(
128

a1a7
+

128

a2a6

)
a8
a11

t11α (85)

- Calculation of y23 :

y23(t) = E−1 [sαE [Ly22(t)
]]

=
8t4α

a4
− 8a2t

6α

a21a6
− 32a3t

7α

a1a2a7

− 32

(
1

a22
+

2

a1a3

)
a4
a8
t8α − 8

(
16

a1a4
+

16

a2a3

)
a5
a9
t9α − 8

(
32

a1a5
+

32

a2a4

)
a6
a10

t10α

− 8

(
64

a1a6
+

64

a2a5

)
a7
a11

t11α − 8

(
128

a1a7
+

128

a2a6

)
a8
a12

t12α (86)

We find that for any n ≥ 1 :

y2n(t) = E−1 [sαE [Ly2n−1(t)
]]

=
2n+1t(n+1)α

2an+1
− 2n+3a2t

(n+3)α

8a21an+3
− 2n+4a3t

(n+4)α

4a1a2an+4

−
(

1

a22
+

2

a1a3

)
2n+5a4t

(n+5)α

8an+5
−
(

1

a1a4
+

1

a2a3

)
2n+6a5
4a(n+6)

t(n+6)α −
(

1

a1a5
+

1

a2a4

)
2n+6a6
4an+7

t(n+7)α

−
(

1

a1a6
+

1

a2a5

)
2n+8a7
4an+8

t(n+8)α −
(

1

a1a7
+

1

a2a6

)
2n+9a8
4an+9

t(n+9)α (87)

So
y2(t) =

∑
n≥0

y2n(t)
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is an approximate solution of the problem (72)-(73) in step 2.

Numerical analysis

When α = 1, the exact solution of the problem (72)-(73) is given by yex(t) = 1 +
√

2 tanh(
√

2t+ (1/2) log((
√

2−
1)/(
√

2 + 1))). We will compare this exact solution with the approximate solution yap(t) = y2(t) =
∑
n≥0

y2n(t) for

α = 1.
If α = 1, then we have:

yap(t) = y2(t) =
∑
n≥0

(2t)(n+1)

2Γ(n+ 2)
−
∑
n≥0

2(2t)(n+3)

8Γ(n+ 4)
−
∑
n≥0

3(2t)(n+4)

4Γ(n+ 5)
−
∑
n≥0

7(2t)(n+5)

4Γ(n+ 6)

−
∑
n≥0

15(2t)(n+6)

4an+6
−
∑
n≥0

21(2t)(n+7)

4an+7
−
∑
n≥0

28(2t)(n+8)

4an+8
−
∑
n≥0

36(2t)(n+9)

4an+9
. (88)

By simplifying (88), we obtain

yap(t) = y2(t) = −109e2t

4
+

109

4
+

111t

2
+

111t2

2
+

110t3

3
+

107t4

6

+
20t5

3
+

17t6

9
+

128t7

315
+

2t8

35
. (89)

The following comparison table (Table 1) gives the deviation between the exact solution and the approximated
solution for values of t between 0 and 0.5 for α = 1. We represent graphically the exact solution and the
approximate solution for α = 1 in the following figure (Fig. 1).

Table 1. Comparison of the exact solution with the approximate solution of the Riccati problem
(72)-(73) for α = 1

t yex(t) yap(t) |yex(t)− yap(t)|
0 0 0 0

0.10 0.1103 0.1103 1.7600× 10−6

0.15 0.1734 0.1734 1.5295× 10−5

0.20 0.2420 0.2419 7.3574× 10−5

0.25 0.3159 0.3157 2.5567× 10−4

0.30 0.3951 0.3944 7.2254× 10−4

0.35 0.4792 0.4774 0.0018

0.40 0.5678 0.5639 0.0039

0.45 0.6603 0.6524 0.0079

0.50 0.7560 0.7410 0.0150

Example 4.4. Consider the following fractional Korteweg-de Vries (KDV) equation

Dα
t u− 3

(
u2)

x
+ uxxx = 0, t > 0, 0 < α ≤ 1 (90)

with the initial condition

u(x, 0) = 6x. (91)
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Fig. 1. Exact solution and approximate solution of the Riccati problem (72)-(73) for α = 1.

We have: Lu(x, t) = −uxxx(x, t), Nu(x, t) = 3
(
u2(x, t)

)
x

and g(x, t) = 0.

The SBATEM algorithm associated to the problem (90)-(91) is
uk0(x, t) = H(x, t) + E−1

[
sαE

[
Nuk−1(x, t)

]]
, k ≥ 1

ukn(x, t) = E−1
[
sαE

[
Lukn−1(x, t)

]]
, n ≥ 1

(92)

with

H(x, t) = E−1

[
m−1∑
k=0

s2+khk(x)

]
+ E−1 [sαE [g(x, t)]] (93)

= E−1 [s2h0(x)
]

= h0(x) = 6x.

The algorithm (92) is again written
uk0(x, t) = 6x+ E−1

[
sαE

[
Nuk−1(x, t)

]]
, k ≥ 1

ukn(x, t) = E−1
[
sαE

[
Lukn−1(x, t)

]]
, n ≥ 1.

(94)

Let us apply to (94) Picard’s principle: we take u0 = 0, then Nu0 = 0.

Step 1. For k = 1, we compute u1 using the following algorithm
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u1
0(x, t) = 6x

u1
n(x, t) = E−1

[
sαE

[
Lu1

n−1(x, t)
]]
, n ≥ 1.

(95)

We have: 
u1
1(x, t) = E−1

[
sαE

[
Lu1

0(x, t)
]]

= 0

u1
2(x, t) = E−1

[
sαE

[
Lu1

1(x, t)
]]

= 0
...

u1
n(x, t) = E−1

[
sαE

[
Lu1

n−1(x, t)
]]

= 0, ∀n ≥ 1.

(96)

So

u1(x, t) =
∑
n≥0

u1
n(x, t) = u1

0(x, t) = 6x (97)

is approximate solution of the problem (90)-(91) in step 1.

Step 2. For k = 2, we compute u2 using the following algorithm:
u2
0(x, t) = 6x+ E−1

[
sαE

[
Nu1(x, t)

]]
u2
n(x, t) = E−1

[
sαE

[
Lu2

n−1(x, t)
]]
, n ≥ 1.

(98)

We have

Nu1(x, t) = 3(36x2)x = 216x (99)

and 

u2
0(x, t) = 6x+ E−1

[
sαE

[
Nu1(x, t)

]]
= 6x+

216xtα

Γ(α+ 1)

u2
1(x, t) = E−1

[
sαE

[
Lu2

0(x, t)
]]

= 0

u2
2(x, t) = E−1

[
sαE

[
Lu2

1(x, t)
]]

= 0
...

u2
n(x, t) = E−1

[
sαE

[
Lu2

n−1(x, t)
]]

= 0, ∀n ≥ 1.

(100)

So

u2(x, t) =
∑
n≥0

u2
n(x, t) = u2

0(x, t) = 6x+
216xtα

Γ(α+ 1)
(101)

is approximate solution of the problem (90)-(91) in step 2.

Step 3. For k = 3, we compute u3 using the following algorithm:
u3
0(x, t) = 6x+ E−1

[
sαE

[
Nu2(x, t)

]]
u3
n(x, t) = E−1

[
sαE

[
Lu3

n−1(x, t)
]]
, n ≥ 1.

(102)
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We have:

Nu2(x, t) = 3

[(
6x+

216xtα

Γ(α+ 1)

)2
]
x

= 6x

(
6 +

216tα

Γ(α+ 1)

)2

= 216x

(
1 +

36tα

Γ(α+ 1)

)2

= 216x

[
1 +

72tα

Γ(α+ 1)
+

362t2α

(Γ(α+ 1))2

]
(103)

and



u3
0(x, t) = 6x+ E−1

[
sαE

[
Nu2(x, t)

]]
= 6x+

108tα

Γ(α+ 1)

= 6x+ 216xE−1

[
sαE

[
1 +

72tα

Γ(α+ 1)
+

362t2α

(Γ(α+ 1))2

]]
= 6x+ 216x

(
tα

Γ(α+ 1)
+

72t2α

Γ(2α+ 1)
+

362Γ(2α+ 1)t3α

(Γ(α+ 1))2Γ(3α+ 1)

)
u3
1(x, t) = E−1

[
sαE

[
Lu3

0(x, t)
]]

= 0

u3
2(x, t) = E−1

[
sαE

[
Lu3

1(x, t)
]]

= 0
...

u3
n(x, t) = E−1

[
sαE

[
Lu3

n−1(x, t)
]]

= 0, ∀n ≥ 1.

(104)

So

u3(x, t) =
∑
n≥0

u3
n(x, t) = u3

0(x, t)

= 6x+ 216x

(
tα

Γ(α+ 1)
+

72t2α

Γ(2α+ 1)
+

362Γ(2α+ 1)t3α

(Γ(α+ 1))2Γ(3α+ 1)

)
(105)

is approximate solution of the problem (90)-(91) in step 3.

Step 4. For k = 4, we compute u4 using the following algorithm:


u4
0(x, t) = 6x+ E−1

[
sαE

[
Nu3(x, t)

]]
u4
n(x, t) = E−1

[
sαE

[
Lu4

n−1(x, t)
]]
, n ≥ 1.

(106)

To simplify the expressions, let’s put an = an(α) = Γ(nα+ 1). We have:
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Nu3(x, t) = 3

[(
6x+ 216x

(
tα

a1
+

72t2α

a2
+

362a2t
3α

a21a3

))2
]
x

= 216x

[(
1 + 36

(
tα

a1
+

72t2α

a2
+

362a2t
3α

a21a3

))2
]

= 216x

[
1 +

72tα

a1
+

4× 362t2α

a2
+

2× 363a2t
3α

a21a3
+ 362

(
tα

a1
+

72t2α

a2
+

362a2t
3α

a21a3

)2
]

(107)

= 216x

[
1 +

72tα

a1
+

4× 362t2α

a2
+

2× 363a2t
3α

a21a3

+362

(
t2α

a21
+

722t4α

a22
+

364(a2)2t6α

a41a
2
3

+
144t3α

a1a2
+

2× 362a2t
4α

a31a3
+

4× 363t5α

a21a3

)]
and



u4
0(x, t) = 6x+ E−1

[
sαE

[
Nu3(x, t)

]]
= 6x+ 216x

[
tα

a1
+

72t2α

a2
+

4× 362t3α

a3
+

2× 363a2t
4α

a21a4

+362

(
a2t

3α

a21a3
+

722a4t
5α

a22a5
+

364(a2)2a6t
7α

a41a
2
3a7

+
144a3t

4α

a1a2a4
+

2× 362a2a4t
5α

a31a3a5
+

4× 363a5t
6α

a21a3a6

)]
u4
1(x, t) = E−1

[
sαE

[
Lu4

0(x, t)
]]

= 0

u4
2(x, t) = E−1

[
sαE

[
Lu4

1(x, t)
]]

= 0
...

u4
n(x, t) = E−1

[
sαE

[
Lu4

n−1(x, t)
]]

= 0, ∀n ≥ 1

(108)

So

u4(x, t) =
∑
n≥0

u4
n(x, t) = u4

0(x, t)

= 6x+ 216x

[
tα

a1
+

72t2α

a2
+

4× 362t3α

a3
+

2× 363a2t
4α

a21a4

+362

(
a2t

3α

a21a3
+

722a4t
5α

a22a5
+

364(a2)2a6t
7α

a41a
2
3a7

+
144a3t

4α

a1a2a4
+

2× 362a2a4t
5α

a31a3a5
+

4× 363a5t
6α

a21a3a6

)]
. (109)

is approximate solution of the problem (90)-(91) in step 4.

Numerical analysis

When α = 1, the exact solution of the problem (90)-(91) is given by uex(x, t) =
6x

1− 36t
. We will compare this

exact solution with the approximate solution uap(x, t) = u4(x, t) for α = 1.

If α = 1, then we have:

uap(x, t) = u4(x, t) = 6x+ 216x
[
t+ 36t2 + 864t3 + 7776t4 (110)

+362

(
t3

3
+

1296t5

5
+

186624t7

7
+ 18t4 +

864t5

5
+ 5184t6

)]
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or again

uap(x, t) = 6x+ 216x

[
t+ 36t2 + 1296t3 + 31104t4 + 559872t5 + 6718464t6 +

241864624t7

7

]
(111)

The following comparison table (Table 2) gives the deviation between the exact solution and the approximated
solution for values of x and t between 0 and 1, and between 0 and 0.01, respectively, for α = 1.We represent
graphically the exact solution and the approximate solution for α = 1 in the following figure (Fig. 2) .

Table 2. Comparison of the exact solution with the approximate solution of the KDV problem
(90)-(91)

x t uex(x, t) uap(x, t) |uex(x, t)− uap(x, t)|
0 0 0 0 0

0.1 0.001 0.6224 0.6224 3.6132× 10−7

0.2 0.001 1.2448 1.2448 7.2264× 10−7

0.3 0.001 1.8672 1.8672 1.0840× 10−6

0.4 0.004 2.8037 2.8033 4.6563× 10−4

0.5 0.004 3.5047 3.5041 5.8203× 10−4

0.6 0.004 4.2056 4.2049 6.9844× 10−4

0.7 0.007 5.6150 5.6052 0.0098

0.8 0.007 6.4171 6.4059 0.0112

0.9 0.007 7.2193 7.2066 0.0126

1 0.01 9.3750 9.2983 0.0767

Fig. 2. Exact solution and approximate solution of the KDV problem (90)-(91) for α = 1.
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5 Conclusion

In this work, we have given a new technique that allows to find the exact solution or an approximate solution
of ordinary or fractional nonlinear differential equations with given initial conditions. This technique consists in
coupling the Elzaky transform and the SBA method. The results obtained in the resolution of some nonlinear
fractional differential equations prove the efficiency and simplicity of this new technique.
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