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ABSTRACT 
 

During the last decades, the interest in water structure has increased as an important theoretical 
and practical problem, connected with different industrial and biological applications. Theoretically, 
the mechanisms of water molecules cluster formation have been of special interest. It has been 
assumed that aggregation of water molecules depends on the energy of hydrogen bonds. The 
character of this process was investigated in the present study. The approach was based on 
measurements of the wetting angle θ of water droplets at different energy levels during their 
evaporation. Taking into account previous findings that θ depends on the average energy of 
hydrogen bonds between water molecules, it was assumed that the size of water clusters is related 
to the value of θ, measured at different energy levels. This assumption was confirmed by the 
obtained experimental results. 
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1. INTRODUCTION 
 
The interest in elucidating the structure of water 
has especially increased in connection with 
studies of hydrophobic boundary surfaces and in 
processes with practical application such as 
electrolysis, structuring of organic molecular 
crystals, non-polar media and theoretical 
analyses. New effects of water are also being 
described. 
 
The wetting angle, also known as contact angle, 
quantitatively describes how liquids wet solid 
surfaces. In terms of geometry, it is the angle 
formed at the intersection point of the three 
phase boundaries between a liquid, solid and air. 
The wetting angle is a common predictor of the 
qualities and behavior of solid surfaces after 
physical or chemical treatment [1,2]. 
 
In 1983, Antonov showed that, during 
evaporation of water droplets on different 
surfaces, the wetting angle is related with the 
average energy of the hydrogen bonds. For this 
purpose, he and co-authors designed specialized 
equipment for real time measurements of this 
angle with sufficient accuracy. So, the relation 
between the wetting angle and the average 
energy of the hydrogen bonds during droplet 
evaporation can be expressed as follows: 
 

θ = arcos(-1-bE)                                         (1) 
 
where θ is the wetting angle, E is the average 
energy of the hydrogen bonds, b is a 
temperature-dependent parameter [3, 4, 5]. 
 
It has also been found that the wetting angle 
changes discretely as water droplets evaporate. 
The shape of these curves depends on the 
composition of investigated water and other 
liquids, and this has opened up new possibilities 
for studying biochemical and biological effects. 
 
Studies have shown that clusters with different 
numbers of water molecules are formed on the 
basis of hydrogen bonds in bulk water. 
 
The following spectral methods have been 
generally used to study water clusters - H-NMR 
[6, 7], far-infrared [8], vibration-rotation-tunneling 
(VRT) [9], neutron diffraction [10], SCC-DFTB 
Method [11,12], NES [13,14]. An earlier authors’ 
study has estimated that, at (E = -0.1387 eV) (λ = 
8.95 μm) (ṽ = 1117 cm

-1
), water clusters of 

approx. 21 water molecules are formed in 
catholyte water [15]. Based on this, a cluster 

model was proposed with 20 water molecules               
in a dodecahedral structure with diameter                     
of the circumscribed sphere equal to 0.822          
nm. 
 
This result corresponds to our result by applying 
the Antonov effect to "discrete" evaporation of 
water drops. Analyses for clusters of n = 6-20 
water molecules are available in a number of 
publications [16, 17, 18]. Cases of n = 1-6 have 
been described in [19]. 
 
It has also been found that at n = 20 about 25% 
of water molecules are structured with this 
number [20]. 
 
The question arises to what extent the discrete 
change in the wetting angle during evaporation of 
water droplets depends on the formation of 
clusters with different numbers of water 
molecules. This is the purpose of the present 
study. 
 

2. MATHERIALS AND METHODS 
 
Electrochemically activated catholyte water 
[21,22] with the following parameters was used 
for the study: pH = 9.30, oxidation reduction 
potental (ORP) = - 450 mV. 
 
The wetting angle θ was measured with a 
specially designed apparatus which is described 
in detail in [13,14, 20]. Measured wetting angles 
of 10 water droplets during their evaporation from 
a solid surface varied from 74 to 0 deg. The 
measurements were sequential and N denotes 
the number of measurements taken from the 
initial value of θ0 to 0. The time interval for each 
reading was 10minutes. From the obtained 
values of θ, the average energy of the hydrogen 
bonds Е in еV was calculated according to the 
formula: 
 

E = γ
о
 (1+cosθ)/τ(1+cosθо)                         (2) 

 
where θ is the wetting angle, E is the energy of 
the hydrogen bonds. 
 
The expression τ (1+cosθ0) / γ

о
is equal to 14.33 

еV at 20°C. 
 
Evaporation of water drops was performed in a 
hermetic chamber with stable temperature of 
20°C [21]. The drops were placed on BoPET 
(biaxially-oriented polyethylene terephthalate) foil 
with 350 µm thicknesses. 
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3. RESULTS AND DISCUSSION 
 

The average weight reduction values of the 
investigated water drops during their evaporation 
and to the corresponding values of the wetting 
angle are shown in Table 1. The average initial 
height of the droplets was hi=2.30 mm and their 
average final height was hf=0.26 mm. The 
layering structure of water has a periodicity of 
0.30 ± 0.03 nm [23]. 
 
Fig. 1 shows the dependence of the wetting 
angle on the sequential number of the 
corresponding measurement. This angle 
decreased from 74 deg to 10 deg and the 
dependence had a step character. 
 
Table 1. Average weight reduction values of 
water drops during their evaporation and the 

corresponding values of the wetting angle 
 

Wetting angle 
(
o
) θ 

Weight 
mg 

74 48.0 
66 37.9 
58 29.0 
50 21.3 
42 14.8 
34 9.4 
26 5.3 
18 2.4 
10 0.6 

 

 
 

Fig. 1. Dependence of the wetting angle θ on 
the sequential number of the corresponding 

measurement 

Fig. 2 shows the change in the average energy 
of the hydrogen bonds calculated with formula 
(2). 
 
As it can be seen from the above figure, the 
average energy (-E) of the hydrogen bonds 
increases from 0.0912 to 0.1387 eV. Its 
dependence on the wetting angle is shown in 
Fig. 3. 
 

 
 

Fig. 2. Dependence of the average energy of 
hydrogen bonds E on the sequential number 

of the corresponding measurement 
 

 
 

Fig. 3. Dependence of the average energy of 
hydrogen bonds on the wetting angle θ 
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Fig. 4. Dependence of ∆Е on N 
 

It illustrates that the smaller the wetting angle, 
the higher the average hydrogen bonds energy 
is. From the point of view of the physical process, 
when the water evaporates from the drop, the 
energy of the hydrogen bonds increases. The 
dependence of the wetting angle is not linear, as 
can be seen from Fig. 1. The wetting angle 
decreases with greater values as evaporation of 
water from the drop advances. However, the 
energy of the hydrogen bonds E increases 
linearly, as shown in Fig. 2. Therefore, the 
energy of the hydrogen bonds increases 
stepwise, but with a constant value. Fig. 4 shows 
the difference at each step of the change of E. 
 

As can be seen from Fig. 4, ∆E is a constant 
value during the whole process of evaporation of 
water drops. Then the question arises about 
what determines this constancy in the magnitude 
of ∆Е. As it was pointed above, clusters of 
different numbers of water molecules form in bulk 
water. They also determine the amount of 
average energy of the hydrogen bonds. If the 
evaporation of water from water drops causes 
disintegration of these clusters, each step will 
correspond to the loss of a single water 
molecule. Then the average energy of the 
hydrogen bonds in the system will decrease with 
the value of the energy of the bond that had 
been associated with this water molecule in the 
cluster. 
 
If this release energy is equal to 0.0025 eV, as 
can be seen from Fig. 4, then this will also 
determine the step in the change of E, which is 
calculated from the wetting angle θ. This fact 
makes it possible to calculate the number of 
water molecules involved in the formation of 
clusters for each energy presented in Fig. 2. If 

the corresponding values are divided by 0.0025 
and then by 2, because each hydrogen bond is 
associated with two water molecules, numbers 
are obtained that correspond in order of 
magnitude to the numbers of molecules that form 
particular clusters in bulk water. 
 
Therefore, it can be assumed that the stepwise 
nature of the change in the energy of the 
hydrogen bonds is due to the disintegration of 
the existing clusters in bulk water. This 
determines the nature of the change and the 
wetting angle of water drops during evaporation. 
 

4. CONCLULISION 
 
Clusters of different numbers of water molecules 
are formed in water on the basis of hydrogen 
bonds. This results in different values of the 
average energy of the hydrogen bonds, proved 
by measurements of the wetting angle during 
water droplets evaporation from surfaces of 
different materials. When droplets evaporate, 
disintegration of water clusters takes place 
through separation of water molecules from 
them. 
 

This changes the average energy of the 
hydrogen bonds and causes its stepwise change. 
On this basis, the abrupt changes in the wetting 
angle during evaporation of water droplets can 
be explained. Clusters can be formed in water, 
composed of more than 20 water molecules and 
with a high average hydrogen bonds energy. 
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