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Abstract

Numerous studies have found that the Bayesian framework, which formulates the optimal

integration of the knowledge of the world (i.e. prior) and current sensory evidence (i.e. likeli-

hood), captures human behaviours sufficiently well. However, there are debates regarding

whether humans use precise but cognitively demanding Bayesian computations for behav-

iours. Across two studies, we trained participants to estimate hidden locations of a target

drawn from priors with different levels of uncertainty. In each trial, scattered dots provided

noisy likelihood information about the target location. Participants showed that they learned

the priors and combined prior and likelihood information to infer target locations in a Bayes

fashion. We then introduced a transfer condition presenting a trained prior and a likelihood

that has never been put together during training. How well participants integrate this novel

likelihood with their learned prior is an indicator of whether participants perform Bayesian

computations. In one study, participants experienced the newly introduced likelihood, which

was paired with a different prior, during training. Participants changed likelihood weighting

following expected directions although the degrees of change were significantly lower than

Bayes-optimal predictions. In another group, the novel likelihoods were never used during

training. We found people integrated a new likelihood within (interpolation) better than the

one outside (extrapolation) the range of their previous learning experience and they were

quantitatively Bayes-suboptimal in both. We replicated the findings of both studies in a vali-

dation dataset. Our results showed that Bayesian behaviours may not always be achieved

by a full Bayesian computation. Future studies can apply our approach to different tasks to

enhance the understanding of decision-making mechanisms.

Author summary

Bayesian decision theory has emerged as a unified approach for capturing a wide range of

behaviours under uncertainty. However, behavioural evidence supporting that humans

use explicit Bayesian computation is scarce. While it has been argued that knowledge gen-

eralization should be treated as hard evidence of the use of Bayesian strategies, results

from previous work were inconclusive. Here, we develop a marker that effectively quanti-

fies how well humans transfer learned priors to a new scenario. Our marker can be applied
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to various tasks and thus can provide a path forwarding the understanding of psychologi-

cal and biological underpinnings of inferential behaviours.

Introduction

How should we make sensible decisions using uncertain and ambiguous information? This is

a major challenge we face in daily life. Bayesian decision theory (BDT) posits that probabilisti-

cally rational decisions can be reached by integrating knowledge about the environment (i.e.

prior) together with current sensory inputs (i.e. likelihood) based on their respective reliabili-

ties [1]. Some evidence has shown that across various perceptual and cognitive tasks [2–8]

behaviours are close to Bayes-optimal. However, there are behaviours which are qualitatively

Bayesian (i.e., following the reliability-based weighting principle) but fall short of Bayes-opti-

mality [9], hence casting doubt upon the ideal Bayesian-observer theory. Studies have also

shown cases where neurotypical [10] or neurodivergent populations [11,12] can fail to repre-

sent the true probability distribution of the world. These findings brought into questions

whether the brain computes behaviours using the Bayes rule [13–15]. It has been argued that

given the complexity of Bayesian computations, the brain may well use simpler approxima-

tions to achieve Bayes fashioned behaviours [15,16]. Understanding the exact strategies behind

decisions under uncertainty is important given how ubiquitous uncertainty is in every real-life

decision [17].

We have previously [18] reviewed behaviours that fell short of Bayesian optimality but can

still be better explained by Bayesian than heuristic strategies. We argued that examining how

well performance matches Bayes-optimum is not effective in resolving whether computation

conforms to Bayesian expectations, let alone understanding how the brain makes probabilistic

decision. Maloney and Mamassian [19] have proposed using a “generalization” criterion

instead to evaluate whether the brain indeed makes inference in a Bayesian way. While people

can learn a Bayes optimality policy by trial and error, these kinds of rote learners need to re-

learn the policy whenever a change occurs in a learned task. As a result, they would likely fall

short of the mark right after the change. On the contrary, a truly Bayesian agent that fully

learns and flexibly accesses the components of the BDT will generalize efficiently by integrat-

ing new changes in the likelihood to any known priors [20]. Generalization can be experimen-

tally confirmed if a learned prior is transferred to novel conditions. This process has been

coined as Bayesian transfer [19]. We need to stress that transfer itself still concerns the compu-

tation strategies, meaning that it does not answer which algorithm the brain uses to approxi-

mate Bayesian computation. However, the pattern of a divergence from optimal transfer can

inform not only computation strategies but also guide our search for corresponding algo-

rithms that suitably produce such strategies. For example, some studies have theorised how

some algorithms implemented in the brain can compute the underlying statistical information

of the world [21]. These theories provide predictions about the patterns of generalization to

unseen data beyond the context of past observations. There are also theories of Bayesian

approximators that predict “generalization” behaviours which could only be observed within

the context of past observations [22,23]. We can see how examining transfer is thus more

informative than optimality matching in advancing our understanding of how the brain

makes probabilistic decision-making.

A few studies have investigated Bayesian transfer in perception. In tasks where strong priors

from years of experience are used (e.g. inferring object locations given auditory and visual cues

such as locating a vehicle from its image and engine sounds in daily life; ref [24]) or when
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prior probability distributions are visually presented [25,26], people instantly integrate changes

of prior-likelihood pairs, which has been interpreted as successful transfer. However, where

two embedded location priors were acquired through trial-by-trial feedback during a task [27],

participants failed to show a robust transfer effect when a new likelihood was introduced. The

authors of this study [27] concluded that in their task, the complexity of two priors and the

cognitive demand of acquiring them simultaneously may have prompted the use of a computa-

tionally less expensive non-Bayesian strategy, and hence a weak transfer. These studies sug-

gested that the cognitive load of learning and maintaining priors might be a deciding factor on

whether people use a Bayesian strategy.

Besides prior complexity, the characteristics of sensory inputs (likelihoods) encountered

during transfer also affect transfer effectiveness. Studies observed successful transfer when a

likelihood distribution has either been acquired through lifelong experience [24,28] (in both

studies the manipulated sensory reliability is visual contrast) or used during learning [25,26]

(in both studies the manipulated sensory reliability is how likely a cue location is the true target

location and all the cues used in the transfer tasks were presented during learning albeit with a

prior not used in the transfer). Conversely, Kiryakova and colleagues [27] evaluated transfer

by introducing a likelihood that participants had never experienced when they learned the

location task and found trivial transfer. This difference touches on a fundamental issue about

inferential behaviours. It is often considered that the human mind excels at applying knowl-

edge to unseen data and untrained tasks [29,30]. Many argued that structured world knowl-

edge which can represent the generative processes of physical stimuli is needed to enable such

powerful generalization. The ability of the Bayesian model to explain how humans build

abstract knowledge from sensory inputs is thus strongly appealing to neuroscientists [31,32].

However, an alternative hypothesis is that the seemingly powerful generalization is an illusion

caused by the hardware (i.e. our brains) that has long evolved to fit the world we live in well

[29,33] and been optimised with extensive training data encountered during lifetime [23].

Based on this hypothesis, nearly perfect generalization in response to novel likelihoods only

occur when these likelihoods are physical features that are either well represented in the brain

as a result of natural selection (such as luminance, ref [19]), or within the context of past expe-

rience [22]. On the other hand, generalizing outside the natural selection process or living

experience would be suboptimal. Overall results from the abovementioned transfer studies

seem to support predictions by this “bounded optimal” hypothesis. However, as have been

described, the weak transfer in [27] could have simply resulted from multiple prior learning so

more studies with proper designs that can discriminate effects from each factor are needed.

“Successful transfer” has been defined by behaviours being close to Bayes-optimal in novel

conditions according to objective prior/likelihood distributions. However, research has repeat-

edly shown that humans can behave qualitatively Bayesian and yet represent prior/likelihood

uncertainty differently from objective parameters [9,26,34]. Importantly, in these studies,

Bayesian models still explain behaviours better than non-Bayesian models, meaning that nei-

ther can imperfect prior/likelihood weighting exclude the use of Bayesian strategy, nor can

close-to-Bayes-optimal be taken as evidence for transfer. In fact, Kiryakova and colleagues [27]

acknowledged that a lack of transfer in their study may be due to a small effect size caused by

biased uncertainty estimation. Therefore, examining transfer using a proper mathematically

operationalised criterion that can separate the influence of imperfect prior/likelihood estima-

tion from suboptimal transfer is needed before we can draw any conclusions about the effect

of cognitive demand on the use of Bayesian strategies or consider any implications of transfer-

ring outside training data.

In this study, we propose a mathematical definition of transfer that is prior/likelihood inde-

pendent and provides a quantification of knowledge generalization. We applied a visual-spatial
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task (Fig 1A and 1B) adapted from [35] in which the location of a hidden target is sampled

from prior distributions (with low or high variance that participants learn from location feed-

back) and scattered dots provide noisy likelihood information about target location each trial

(with variance manipulated using dot dispersion). Human participants could use both prior

and likelihood to estimate positions of hidden visual targets. We report two experiments. The

first asked whether the use of Bayesian strategies depends on cognitive loads. To do so, we

compared transfer performance between sequential and simultaneous learning of two priors

(Fig 1C). Based on past studies, we hypothesised that transfer would be worse in simultaneous

learning due to its higher cognitive demand. The second experiment asked whether knowledge

transfer depends on generalizing within (i.e., interpolation) or outside learning (i.e., extrapola-

tion) conditions (Fig 1D). Based on past studies we hypothesised that transfer would be close

to optimal in the interpolation but suboptimal in the extrapolation condition. Further, in

response to the replication crisis [36], for both experiments, we present data from a discovery

and an independent validation dataset.

Results

Experiment 1. Linear mixed models were used for (Fig 3A, 3B and 3D) for data which

were not normally distributed. We used likelihood ratio tests to compare linear mixed-effect

models that were designed to delineate the effects of prior, likelihood, and learning group.

ANOVA and t-test were used for the transfer score of the discovery set (Fig 3C).

Learning phase

Discovery set A model with the prior and likelihood fixed effects explained slope data best. We

showed that participants were qualitatively Bayesian (Fig 3A), i.e. weighting according to the

reliability of prior (linear mixed model p = 5.43 X 10−13) and likelihood (linear mixed model

p = 1.57 X 10−15) but they gave more weights to the likelihood than Bayesian optimal observers

would have (one tailed sign rank test compared to optimal slope p< .00001 except the PwLn
combination). No statistical evidence showed that the two cognitive load groups behaved dif-

ferently in the learning phase. Models which included group as a fixed effect did not fit the

data better than models which did not (log likelihood ratio 10.28 compared the model with

prior, likelihood and group effects to the model with prior and likelihood main effects,

p = 0.12) and slope values between the two groups were not significantly different

(median ± iqr = .74 ± .41 for serial and median ± iqr = .77 ± .25 for parallel, Wilcoxon rank

sum test p = .84).

Validation set (Fig 3C) A linear mixed model that includes prior, likelihood and cognitive

load group and their interactions as fixed-effect terms explained the data best (log likelihood

ratio 51.05 compared to a model with prior and likelihood and their interaction as the fixed

effect, p< .001). There was a significant three-way interaction (p = 1.33 X 10−3) as well as a

group-likelihood (p = 6.59 X 10−07) and a prior-likelihood (p = 1.81 X10-5) interaction. Further

analyses found that the statistical result was explained by a bigger slope difference between

PnLn and PnLw trials in the serial group, as compared to those of the parallel group (PnLn in

serial median±iqr = .83±.41, PnLw in serial median±iqr = .20±.35; PnLn in parallel median

±iqr = .74 ±.26, and PnLw in parallel median±iqr = .61±.54). Importantly, despite the numeri-

cal difference, both groups were qualitatively Bayesian, i.e. weighting according to the reliabil-

ity of prior (prior effect of linear mixed model: serial group p = 0.02; parallel group p = 9.63 X

10−4) and likelihood (likelihood effect of linear mixed model: serial group p = 6.30 X 10−19;

parallel group p = 5.85 X 10−7). Like the discovery set, in both cognitive load groups, partici-

pants gave more weights to the likelihood than Bayesian optimal observers would have (one
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Fig 1. Experimental design A Trial description in likelihood-only task, coin task—learning and coin task—transfer phases. In the beginning of each trial,

participants saw 5 dots which represented splashes caused by a thrower throwing a coin into the pond (grey screen). Participants moved a net (blue vertical

bar) to the position where they think the centre of splashes (likelihood-only task), or the coin (coin task) is. After participants submitted a response, feedback

information was displayed for 1 second on the screen. The next trial then started automatically. Feedback information differed between tasks and phases. In

the likelihood-only task, the horizontal position of the real centre of splashes was displayed as an orange vertical line. In the learning phase of the coin task,

the true coin position was displayed as a yellow dot every trial. An accumulated score was displayed when participants hit the coin. In the transfer phase, only

an accumulated score was displayed. B Task design: Likelihood uncertainty was manipulated through the dot dispersion. Prior uncertainty was manipulated

through the accuracy of the thrower, which participants learned from coin position feedback during the learning phase of coin task. Specific prior and

likelihood combinations of the experiment 1 and 2 are explained in detail as follows. C Design of experiment 1. There were two priors (narrow Pn σ = .025

and wide Pw σ = .085) and two likelihoods (narrow Ln σ = .06 and wide Lw σ = .15). Participants underwent two orthogonal prior/likelihood combinations

in the learning phase and then one prior coupling with both likelihoods in the transfer phase. In the figure example, the learning conditions are PnLn and

PwLw (boxes with “L” ticks) while the transfer conditions are PwLn and PwLw (boxes with “T” ticks), with PwLn being the new combination of the transfer

phase. For the serial group, combinations in the learning phase were delivered block-wise. For the parallel group, combinations in the learning phase were

delivered in an interspersed way. Trials were always administered in an interspersed way in the transfer phase. D Design of experiment 2. In the learning

phase, participants underwent combinations having one prior (wide Pw σ = .085) paired with two out of three (narrow Ln σ = .024, medium Lm σ = .06,

wide Lw σ = .15) likelihoods. During learning, the interpolation group experienced PwLn and PwLw trials while the extrapolation group experienced PwLn

and PwLm trials. All participants then undertook PwLn, PwLm and PwLw trials in the transfer phase. For the interpolation group, PwLm was the new

combination. For the extrapolation group, PwLw was the new combination. All trials were administered in an interspersed way.

https://doi.org/10.1371/journal.pcbi.1011769.g001
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tailed sign rank test compared to optimal slope p< .00001 in all prior/likelihood combinations

except the PwLn trials).

Transfer phase

Discovery set We separated transfer phase data into “old” and “new” trial types. “Old” indicates

those prior/likelihood combinations that individual participants had experienced during the

learning phase while “new” indicates those combinations that were introduced in the transfer

phase. Linear mixed models constructed to comparing the “old” combinations in the learning

and transfer phase found that the model with prior and likelihood fixed effects explained slope

data best. We showed that reliability-based weighting maintained in the “transfer-old” trials (lin-

ear mixed model; prior p = 7.45 X 10−3; likelihood p = 1.60 X 10−4, Fig 3A), meaning that behav-

iours remained Bayesian after the removal of location feedback. This was further supported by a

non-significant phase effect (Wilcoxon signed rank test p = .55, evidence of phase effect BF10 =

.18) when comparing the “old” combinations of the learning phase with those of the transfer

phase. We then inspected the “transfer-new” trials. No group effect was observed (model includ-

ing group effect v.s. model not including group effect: log likelihood ratio = 2.05, p = .22). There

was a significant difference in slope between prior types but not between likelihood types (linear

mixed model; prior p = .01, likelihood p = .32. Model including prior and likelihood effects v.s.

model including only prior effect: log likelihood ratio = 1.00, p = 0.36) implying participants may

not have transferred the knowledge in a way that ideal Bayesian observer should have (Fig 3A).

However, it is also obvious that from Fig 3A, slopes varied widely between participants even in

the learning phase. This noise in the data could have greatly diminished the power of detecting

transfer. To remove slope variabilities caused by subject-specific prior and likelihood estimations,

we computed the “transfer score” (ts) (Fig 2B, also see the Methods section). As intended, trans-

fer scores did not differ between prior and likelihood conditions (three-way ANOVA; prior

main effect p = .94, evidence of main effect BF10 = .14; likelihood main effect p = .83, evidence of

main effect BF10 = .15; Fig 3C upper panel); supporting the “transfer score” a prior/likelihood-

invariant and more valid measure of transfer. We pooled the data of different prior/likelihood

combinations and found that there was significant (i.e. larger than zero; right tailed t-test;

p = 7.04 X 10−12) but suboptimal (i.e. smaller than one; left tailed t-test p = 1.80 X 10−10) Bayesian

transfer (Fig 3C lower panel). Transfer scores in the serial group were numerically higher than

those in the parallel group but not statistically different (tsserial mean±SE = 0.59±.10, tsparallel
mean±SE = 0.46±.09; two sampled t-test p = 0.3321, BF10 = .34; Fig 3C lower panel).

Validation set A linear mixed model with prior, likelihood and their interactions as fixed-

effect terms explained the slopes of the “old-combinations of learning and transfer phases”

best (log likelihood ratio compared to a model with the prior and likelihood main effects as the

fixed effect 5.20, p = .02). Slopes did not differ between the learning and “transfer-old” trials

(log likelihood ratio between a model with phase, prior, likelihood and prior-likelihood inter-

action and a model with only prior, likelihood and prior-likelihood interaction 0.64, p = 0.35;

Wilcoxon signed rank test between “old” combinations of the learning and transfer phases,

p = 0.78). Reliability-based weighting maintained in the “transfer-old” trials (linear mixed

model; prior p = 6.88 X 10−5; likelihood p = 4.35 X10-7, Fig 3B), meaning that slope remained

qualitatively Bayesian after the removal of location feedback. We then inspected the “transfer-

new” trials. Again, no group effect was observed. There was a significant difference in sensory

weighting between prior types but not between likelihood types (linear mixed model; prior

p = 2.22 X 10−05, likelihood p = .94; Fig 3B), as has been found in the discovery set.

Transfer scores did not differ between prior and likelihood conditions (linear model with

prior, likelihood, cognitive load group and their interactions as fixed-effect terms: prior main
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effect p = .42, evidence of main effect BF10 = .01; likelihood main effect p = .39, evidence of

main effect BF10 = .01; Fig 3D upper panel). Nor was any interaction or group main effect

(group main effect p = .81, evidence of main effect BF10 = .01) found. We again identified sig-

nificant (i.e. larger than zero; right tailed sign rank test p = 1.44 X 10−15) but suboptimal (i.e.

smaller than one; left tailed sign rank test p = 7.30 X 10−9) Bayesian transfer in pooled data.

Transfer score was .52±.65 (median±iqr) in the serial group and .50±.72 (median±iqr) in the

parallel group (rank sum test p = 0.90, Fig 3D).

Fig 2. visualisation of quantitative performance measures including slope (A), transfer score (B) and optimality index (C). A Slope in the coin task was

calculated by linearly regressing participants’ estimated coin position over the centre of splashes. The values of slope vary between 0 and 1. A higher slope

means a higher weighting on likelihood, with 1 meaning total reliance on likelihood and 0 meaning no reliance on likelihood. B A transfer score was calculated

by normalising a measured slope change by a predicted slope change based on subject-specific prior and likelihood estimations. A transfer score of 1 means

transferring following an optimal Bayesian observer model. A transfer score equals or smaller than 0 means no transfer. C optimality index. For each trial given

the true posterior, we can compute the probability that a coin would be within the net from the chosen position (Xnet), i.e., the success probability. We defined

the optimality index for a trial as the success probability normalised by the maximal success probability. In the figure, this equals to the blue area divided by the

yellow area. Note that here for visualisation purpose only, there is no overlap between the two areas, which may not and does not have to be the case in real

measurement.

https://doi.org/10.1371/journal.pcbi.1011769.g002
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Fig 3. Slope and transfer score in the experiment 1. slope A Discovery & B Validation set. Violin plots show the distribution of slopes in the learning,

transfer-old and transfer-new trials of experiment 1, separated by prior, likelihood and cognitive load group (upper serial, lower parallel). The central blue line

shows the median. The error bar represents the interquartile range. Filled dots represent each participant. Each prior/likelihood combination is represented by

orange PnLn, green PnLw, pink PwLn, and violet PwLw. Bayes-optimal values are presented as coloured dashed lines, with colours corresponding to prior/

likelihood types. transfer score B Discovery & D validation sets. The distribution of transfer scores in the serial and parallel groups. The upper panels show

distribution of transfer scores of each prior/likelihood combination, separated by cognitive load group. Lower panels merge data of different prior/likelihood

combinations. The central black line and error bar in the discovery set (Fig 3B) represent the mean and standard error while the central black line and error

bar in the validation set (Fig 3D) represent the median and interquartile range. *p< = .05; ** p< = .01; ***p< = .001; n.s. non-significant.

https://doi.org/10.1371/journal.pcbi.1011769.g003
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Experiment 2

Linear mixed models were used because data were not normally distributed.

Learning phase

Discovery set A full model which includes the likelihood and group effects, and their interaction

explained the slope data best (log likelihood ratio as compared to a model with the likelihood

and group effect but no interaction 7.89, p = .02). A significant likelihood-group interaction was

found (p = 4.52 X 10−3). Pos-Hoc analysis showed that slopes were qualitatively Bayesian for

both interpolation (median ± iqr = .98 ± .04 for PwLn and median ± iqr = .87 ± .18 for PwLw;

Wilcoxon sign rank test p = 1.14 X 10−5) and extrapolation (median ± iqr = .99 ± .04 for PwLn
and median ± iqr = .98 ± .04 for PwLm; Wilcoxon sign rank test p = .003) groups, i.e. partici-

pants decreased sensory weighting as the variance of likelihood became bigger. We concluded

that the interaction was caused by a larger disparity between prior/likelihood pairs in the inter-

polation group than which in the extrapolation group. Like experiment 1, participants however

relied on likelihoods more than Bayesian optimal observers would have in the medium and

wide likelihood conditions (one tailed sign rank test compared to optimal slope interpolation–

PwLw p = 1.18 X 10−4, extrapolation–PwLm p = 1.18 X 10−7, Fig 4A).

Fig 4. Slope and transfer score of experiment 2, A discovery & B validation set Violin-plots show the distributions of slope in the learning and transfer

phases of experiment 2, separated by likelihood and group. The central green line represents the median. The vertical bar within the violin spans between the

second and third quartiles. Each filled dot represents one participant. Three optimal slopes given likelihoods are presented as colour dashed lines, with pink

representing PwLn, blue representing PwLm, and violet representing PwLw respectively. C discovery & D validation set Distributions of transfer scores in the

interpolation and extrapolation groups. The central green line is the median of each group, and the vertical bar is the interquartile range. Insets showed

predicted slope (gray bar) along with measured slope (olive bar) in the transfer-new trials. Note that there was no significant difference in the interpolation

group. *p< = .05; ** p< = .01; ***p< = .001; n.s. non-significant.

https://doi.org/10.1371/journal.pcbi.1011769.g004

PLOS COMPUTATIONAL BIOLOGY Knowledge transfer in Bayesian inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011769 January 8, 2024 9 / 25

https://doi.org/10.1371/journal.pcbi.1011769.g004
https://doi.org/10.1371/journal.pcbi.1011769


Validation set A full model which includes the likelihood and group effects, and their inter-

action explained the slope data best (log likelihood ratio 14.68, p = .01). A significant likeli-

hood-group interaction was found (p = 1.09 X 10−4). Pos-Hoc analysis showed that slopes

were qualitatively Bayesian for both interpolation (median ± iqr = .98 ± .05 for PwLn and

median ± iqr = .88 ± .21 for PwLw; Wilcoxon sign rank test p = 3.27 X 10−12) and extrapolation

(median ± iqr = .99 ± .03 for PwLn and median ± iqr = .98 ± .06 for PwLm; Wilcoxon sign

rank test p = 2.30 X 10−3) groups, i.e. participants decreased sensory weighting as the variance

of likelihood became bigger. We concluded that the interaction was caused by a larger dispar-

ity between prior/likelihood pairs in the interpolation group than which in the extrapolation

group. There was an over reliance on likelihoods in the medium and wide likelihood condi-

tions (right tailed sign rank test compared to optimal slopes; interpolation–PwLw p = 1.30 X

10−13, extrapolation–PwLm p = 5.34 X 10−13, Fig 4B).

Transfer phase

Discovery set We did not find significant slope differences between transfer-old trials and

learning trials (slope of “learning” trials median ± iqr = .97 ± .07 & “transfer-old” trials

median ± iqr = .98 ± .07, Wilcoxon sign rank test p = .38, BF10 = .13). For all transfer trials, a

likelihood-only model explained slope data best (log likelihood ratio as compared to the model

with likelihood and group effects 3.96, p = .06). Slopes in the transfer phase remained Bayesian

(likelihood effect p = 1.82 X 10−08).

Transfer scores (Fig 4C) were significantly bigger than zero (right tailed sign rank test

p = 1.29 X 10−7), implying the presence of transfer. The transfer score of the interpolation

group was .85 ± 1.04 (Median ± iqr) while that of the extrapolation group was .35±.57

(Median ± iqr). The statistics is marginally significant (two side rank sum test p = 0.08). We

identified one difference between the two groups: For the extrapolation group, the transfer

score was significantly smaller than one (one sample sign rank test, p = 4.94 X 10−04, predicted

versus measured slope p = .005). For the interpolation group, the transfer score did not differ

from one (one sample sign rank test p = .12; predicted versus measured slope p = 0.20). The

Bayes factor (BF01) was 0.63, showing anecdotal evidence supporting the null hypothesis.

Validation set Comparing “old” trials between the learning and transfer phases, a model

which includes the likelihood, group effects, and their interaction explained the slope best (log

likelihood ratio as compared to a model including likelihood and group but no interaction

22.65, p = .01). It is noticeable that a model which also includes the phase effect failed to

explain slope better than the winning model (log-likelihood ratio 4.80, p = .39), supporting no

changes of slopes after removing position feedback. Indeed, the difference of slope values

between transfer-old trials and learning trials was negligible (“learning” trials median ± iqr =

.98 ± .07 versus “transfer-old” trials median ± iqr = .98 ± .06; Wilcoxon sign rank test p = .78).

The post-hoc analysis for a significant likelihood-group interaction (p = 1.83 X 10−6) found

that the interaction was caused by a larger disparity between prior/likelihood pairs of the inter-

polation group (median ± iqr = .98 ± .05 for PwLn; median ± iqr = .88 ± .22 for PwLw; Wil-

coxon sign rank test p = 8.99 X 10−21) than which of the extrapolation group (median ± iqr =

.99 ± .03 for PwLn; median ± iqr = .98 ± .06 for PwLm; Wilcoxon sign rank test p = 8.61 X

10−6).

For all transfer trials, a model including the likelihood and group effects and their interac-

tion explained the slope data better than any other models (log likelihood ratio 5.5, p = .01).

There was a main likelihood effect (p = 3.16 X 10−10), indicating slopes in the transfer phase

remained qualitatively Bayesian. Interaction was again found resulting from a larger disparity

between each prior/likelihood pairs in the interpolation group than which in the extrapolation
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group (interpolation PwLn–PwLm–PwLw (median ± iqr) .98±.04 –.95±.13 –.87±.13 versus

extrapolation PwLn–PwLm–PwLw (median ± iqr) .99±.03 –.98±.05 –.93±.15).

Transfer scores (Fig 4D) were significantly higher than zero (right tailed sign rank test

p = 8.35 X 10−11), implying the presence of transfer. Transfer score (Fig 4D) of the interpola-

tion group was statistically larger than which of the extrapolation group (interpolation

0.84 ± 1.39 (median±iqr); extrapolation 0.40 ±.53 (median±iqr); two tailed rank sum test, p =

.02; sign rank test predicted versus measured slope interpolation group p = 0.77; extrapolation

p = 6.07X10-07) (inset of Fig 4D).

Optimality index

We compared the optimality index between the first and last 10 trials of transfer-new trials

(Fig 5). There was no difference (Fig 5 left panels; paired t-test; Fig 5A experiment 1-discovery

p = .81, Fig 5B experiment 1- validation p = .76, Fig 5C experiment 2- discovery p = 0.92, Fig

5D experiment 2- validation p = 0.09), showing that participants did not use partial feedback

in the transfer phase to improve performance incrementally. Similarly, no difference was

Fig 5. Optimality index. A discovery experiment 1 B validation experiment 1 C discovery experiment 2 D validation experiment 2 Bar graphs show the

mean optimality index and error bars represent standard errors. In the left panel of each subplot, the mean of first 10 trials of the transfer-new (light green bar)

is compared against the mean of the last 10 trials (dark green bar). In the right panel, the mean of the last 10 trials of the learning phase (light green bar) is

compared against the first 10 transfer-old trials (dark green bar).

https://doi.org/10.1371/journal.pcbi.1011769.g005
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found between the first 10 transfer-old-trials and the last 10 in the learning phase (Fig 5 right

panel; paired t-test; Fig 5A experiment 1-discovery p = 0.54, Fig 5B experiment 1-validation

p = 0.60 Fig 5C experiment 2-discovery p = 0.83, Fig 5D experiment 2-validation p = 0.63),

further supporting that performance did not diminish after the removal of position feedback.

Comparing with non-Bayesian models

Comparing differences between modelled and measured transfer scores (Fig 6C and 6D

upper panels), we showed that the Bayesian model has the smallest difference to real world

data in both experiments. Bayesian information criterion further showed evidence in favour of

Bayesian model for both experiments (Fig 6C and 6D lower panels). See S4 Fig for simulated

transfer scores of likelihood-only and linear regression models and S5 Fig for simulated trans-

fer scores of exemplar model.

Discussion

The Bayesian decision model has achieved great success in describing human behaviours

across various domains. However, whether humans make explicit Bayesian computation, i.e.

learning and maintaining prior and likelihood distributions to compute posterior for decision,

remains an ongoing debate. Examining whether people transfer experienced priors and likeli-

hoods to a new scenario can help answer this question. However, previous studies testing

Bayesian transfer were inconclusive because they simply compared how close behaviours were

to Bayes optimal in new scenarios. This is problematic because it largely depends on prior/like-

lihood estimation accuracy rather than transfer per se. Indeed, there are several reasons that

can explain suboptimal behaviours, as previously discussed [18]. Moreover, a direct quantifica-

tion of transfer was lacking. To address these limitations, we devised transfer score–a mathe-

matical marker that quantifies transfer without being hindered by prior/likelihood estimation

biases. By applying the transfer score to the coin task [35], we found significant albeit subopti-

mal transfer in two perceptual decision studies. For each study, our results were replicated

across two independent datasets (discovery and validation sets), suggesting robust

replicability.

In the first study, we manipulated the way in which two location priors were learned and

observed their effects on Bayesian transfer. The purpose was to better understand how much

cognitive load can restrict the use of Bayesian computation. One argument against explicit

Bayesian computation in human cognition is its complex calculations, and hence the greater

demand it imposes on the brain compared to non-probabilistic computations [15,37]. A previ-

ous study [27] tested Bayesian transfer when people concurrently learned two position priors.

They found that weighting change in accordance with the newly introduced likelihood uncer-

tainty did happen, but not sufficiently, and it only happened until an explicit instruction

informing two different prior uncertainties was given. Thus, it was considered “suboptimal

transfer”. We hypothesised if simultaneous multiple prior learning was the cause of such weak

transfer they observed, sequentially presenting priors may rescue transfer performance as sug-

gested by another study [25]. We compared sequential (similar to [25]) and concurrent (simi-

lar to [27]) prior learning side by side. Our transfer scores showed that the two conditions led

to equivalently suboptimal transfer. Thus, we did not find evidence supporting that simulta-

neous learning of two spatial priors prompted the use of non-Bayesian strategies to impede

transfer. Interestingly, even though we explicitly instructed participants that our two priors

had different levels of uncertainty, we could not identify transfer in the slope measurement as

defined and observed in Kiryakova and colleagues [22]. We concluded that these suboptimal
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Fig 6. Computational models and comparison of model fitness with Bayesian decision model A schematic illustration of a linear regression model for the

coin task. An optimal linear mapping between scatters of splashes and slopes (solid line) will produce optimal extrapolation even if no true generative process is

represented. In reality, because of noisy slope estimations (dotted line), interpolation (darker green zone) would be closer to optimal than extrapolation (light

green zone). B schematic illustration of an exemplar model for the coin task. Instead of representing the parameters of prior distribution, participants retrieved

exemplar samples (violet circles) acquired from the learning phase. Samples are then weighted (bars representing weighting) by the gaussian likelihood of

splashes to infer the coin position of a given trial. C (experiment 1) & D (experiment 2) Model comparison using Bayesian information criteria (BIC). Colour

code: grey Bayesian model, blue linear regression model, green likelihood-only regression model, and violet exemplar model. The smaller BIC values indicate

the better models. Insets showed differences between modelled and measured transfer scores.

https://doi.org/10.1371/journal.pcbi.1011769.g006
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behaviours found in past studies and ours are more likely a manifestation of imprecise uncer-

tainty estimation rather than the execution of non-probabilistic computation.

The critical question is how much people can generalize knowledge to unseen data in any

given task. We addressed the question head on in the second study. We compared the transfer

score between generalization within (interpolation) and outside (extrapolation) the range of

experienced sensory information (likelihoods) when performing our visuospatial task. Again,

there was significant but suboptimal transfer in both conditions. Between the two conditions,

people had a lower transfer score in the extrapolation and this difference was statistically sig-

nificant in the (larger) validation dataset. These results indicated that generalization is better

when new data points are within the context of past observations. This is consistent with what

Kiryakova and colleagues [27] have shown. However, our design shielded any observed effect

from the influence of imperfect uncertainty estimation (in the approximation algorithm) and

is hence more robust. Moreover, unlike previous studies, we quantified the degree of transfer.

Taking findings of the two experiments, we ask, what is the most possible computation

strategy for the coin task? There was no evidence supporting the use of a heuristic strategy in

experiment 1. A stable optimality index also suggests participants did not make decisions

using model-free (error-based) learning. A Bayesian observer that acquires a true generative

model of the task, however, would have behaved similarly between interpolation and extrapo-

lation, which was not what we observed in the second experiment. The results of the two

experiments seemed to be at odds, with the first supporting and the second casting a doubt on

Bayesian computation, albeit with knowledge transfer. Due to the Gaussian noise feature of

the coin task, the optimal policy is a linear mapping between stimuli and response (Eq 1). We

need to entertain the possibility that participants could have capitalised on this feature and

learned a mapping for one stimulus type without forming a generative model. One might

think that a linear-mapping learner should paradoxically generalize equally well in interpola-

tion and extrapolation. We argue that due to the biased estimates observed in our data, it is

only reasonable to see lower transfer in extrapolation if our participants used a linear mapping

policy (Fig 6A). We constructed such linear models. While we did observe better transfer in

interpolation than in extrapolation, Bayesian Information Criterion did not support this

hypothesis (Fig 6C and 6D). Along with a total absence of transfer in extrapolation (S4C and

S4D Fig), it is unlikely that people utilise a linear mapping strategy for the coin task. We also

built an exemplar model to understand if people could also have used exemplar memory

acquired from the learning phase for transfer and failed to find evidence to support so.

Together, it is possible that participants acquired a probabilistic recognition model linking

contextualised sensory inputs to corresponding policies [21,22]. The model approximates pos-

terior where it has been covered by training data with a surrogate distribution. It would gener-

alize well enough within, but not as well as outside past experience.

One limitation of transfer score is that its accuracy is dependent on the accuracy of s2
Pi (Eq

4). When slopes are close to 1, there could be arbitrarily large prior variances (Eq 4) leading to

unrealistic transfer scores. In this study we have made great efforts to reduce this negative

effect (as described in S1 Text ‘Handling arbitrarily large slopes’ and ‘Outlier participant exclu-

sion criteria’). Importantly, by scrutinising the data (see S1 Text and S2 Fig), we showed that

our transfer score patterns are unlikely to be subject to this limitation. However, we acknowl-

edge that attrition of participants during the process of transfer score outlier exclusion is a

shortcoming. This can potentially be improved in the future by choosing prior/likelihood

combinations which are unlikely to produce large slope values.

Our studies showed that people may not perform decisions under uncertainty by comput-

ing the full generative model. This is in line with many neurocomputational theories
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formulating that approximation algorithms are needed for human Bayesian cognition [22,38–

40]. We showed that perceptual decisions use Bayesian approximation with knowledge trans-

fer, albeit suboptimal. We also demonstrated that we can more effectively validate transfer

using a rigorous mathematical definition of transfer score, that can be applied to various prob-

abilistic inference tasks and advance our computational understanding of human behaviours.

It would be especially valuable to test transfer in a similar perceptual decision task that uses

likelihoods presenting realistic noise (such as luminance). Based on the abovementioned

bounded-optimal hypothesis, transfer will be close to optimal in both interpolation and extrap-

olation case given that our brain has been trained by such types of likelihood through life-long

experience (i.e., hardwired priors) while linear mapping learners are likely to behave similarly

to the current study.

More studies are needed to confirm the exact computation underpinning decisions.

Recently, another paradigm [41] was proposed for scrutinising whether humans make infer-

ence using explicit Bayesian computation. The paradigm uses multiple prior-likelihood pairs

in the Bayesian decision model which lead to an identical decision policy and investigates the

learning dynamics when new component (i.e. prior-likelihood) pairs being introduced to dis-

criminate explicit Bayesian learners from policy learners. In short, right after a transition to a

new pair, explicit Bayesian learners’ performance would temporarily deteriorate as they re-

learn the new prior/likelihood while policy learners would maintain the same level of perfor-

mance. We previously argued that some tasks are more sensitive to transfer manipulations

while others are more sensitive to component-pair manipulations and the two can be comple-

mentary in validating true Bayesian learners behaviourally [18]. Future work could make use

of these two complementing paradigms to systematically inquire about the exact process

model that supports different types of decision under uncertainty.

Methods

Participants

The online research was approved by the University of Melbourne research ethics committee

(research ethics project reference number 20592). Participants were recruited using the Uni-

versity of Melbourne psychology research participation pool and Prolific online survey plat-

form (prolific.co). All participants completed self-reported questionnaire to confirm that they

had normal or corrected-to-normal visual acuity, and no history of neurological, psychiatric

disorders or substance use, and gave written informed consent prior to taking part in the

study. Participants were compensated with course credits or £5 per hour for their time.

For experiment 1, 102 adults (74 females, age mean ± SD = 19.81 ± 3.92 yrs) were recruited

for the discovery study. Among these participants, data from 6 participants were excluded

entirely, 1 for not meeting the inclusion criteria and 5 for poor data quality (exclusion criterion

based on data quality see below Data analysis), resulting in a final sample of 96 participants

(48 for each group). For the validation study, 170 participants (120 females, age

mean ± SD = 19.90 ± 5.60 yrs) were recruited. Among them, 11 participants were excluded for

poor data quality, resulting in a final sample of 159 participants (80 for serial group and 79 for

parallel group). There was neither a significant age nor gender difference between the discov-

ery and validation set.

For experiment 2, 99 participants (66 females, age mean ± SD = 20.36 ± 3.91 yrs) were

recruited for the discovery study. Among these participants, data from 13 participants were

excluded for history of neurological or psychiatric disorders and 11 for poor data quality,

resulting in a final sample of 75 participants (35 for interpolation and 40 for extrapolation

group). For the validation study, 174 participants (136 females, age mean ± SD = 19.71 ± 3.28
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yrs) were recruited. Among them 10 participants were excluded for poor data quality, resulting

in a final sample of 164 participants (82 for each group). There was neither a significant age

nor a gender difference between the discovery and validation set.

Our power analysis was based on the findings of the discovery data (R software: “SSDbain”

and [42], indicating that, to increase the power to 80% to confirm a moderate effects at

a = 0.05 for a one-sided t test, 80 participants would be required for each group.

Experiments

All experiments were designed using PsychoPy (PsychoPy 2020) and launched online through

the Pavlovia platform. Stimuli were displayed on participants’ own screens. The minimum

requirement for a screen resolution was 1172x553 pixel.

Coin task

All stimuli were in an arbitrary unit that defines the horizontal location of the left and right

edges of the screen as -0.5 and 0.5. Participants were instructed to view the screen as the sur-

face of a pond and to locate an unseen coin that a person had thrown into the water (Fig 1A).

At the beginning of each trial, participants saw five dots (diameter = 0.01) which represent the

“splashes” caused by a coin dropping to the pond. The horizontal positions of these five dots

were drawn from a Gaussian “likelihood” distribution with a mean of the horizontal coin posi-

tion in that trial and a standard deviation assigned from one of the three values, (σL = 0.0024,

0.06 and 0.15). In each trial, the horizontal location of the coin was drawn from a Gaussian

“prior” distribution which centres at the middle of the screen (mean = 0) and has a standard

deviation σp of either 0.025 or 0.085 (Fig 1B). Participants’ task was to catch the coin by mov-

ing a vertical blue bar (the “net”, width l = 0.02) to their estimated hidden coin position and

then click on the “space” button to indicate the answer. As the height of the bar equalled the

height of the screen, vertical locations of splashes and coin made no difference to participants.

There was no temporal deadline, so participants had all the time they needed to submit their

response. After responding, participants received feedback information for one second before

the next trial started automatically. There were two phases: learning and transfer phases, in the

coin tasks (see more information about the two phases in Methods - Experiment specific

details). Feedback information of the two phases differed as follows (Fig 1A lower panel). In

the learning phase, participants received trial-by-trial coin location feedback, which was dis-

played as one yellow dot (diameter d = 0.01) along with splashes. If there was an overlap

between the net and the coin, this trial was deemed a correct trial and participants’ scores

increased by one point. Coin location feedback was given in every trial and for every successful

trial the accumulative score was displayed along with it. In the transfer phase, only scores but

not coin positions were given. There were minor differences in how the scores were shown

between the discovery and validation study during the transfer phase. In the discovery set,

scores were shown in all corrective trials. In the validation set, participants received a summary

of their total correct trials every 15 trials during the transfer phase. In both sets, at the begin-

ning of the transfer phase, we informed participants about this change of feedback. However,

we also reminded participants that throughout the experiment the goal was to be as accurate as

possible in locating the coin, irrespective of feedback.

Likelihood-only task

We also administered a likelihood-only task to measure how good participants were at locating

the centroids of dot clouds at each level of likelihood uncertainty (σL = 0.0024, 0.06 and 0.15)

in the absence of prior information. In each trial, participants saw five “splashes” on the screen.
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They were instructed to move the “net” to where they thought the “centre” of the 5 dots on the

horizontal axis (x-axis) was. After responding, the true horizontal location of the “centre” was

revealed by an orange vertical bar (Fig 1A left lower panel) which had a height equalling the

height of the screen and a width of.006. Previously [43] it was found that estimations of splash

centres were biased by priors when people undertook the likelihood-only task after the coin

task. Therefore, we administered the likelihood-only task before the coin task in the

experiments.

Visual memory task

In both experiments, a Corsi block-tapping test [44] was used to assess participants’ working

memory before they started the likelihood-only task. The task began by flashing several blocks

on the screen. Participants were required to respond by tapping the block either in the forward

or backward order of flashing. The test started with three flashes, the number of flashes

increased by one after a participant gave one correct answer and decreased by one after a par-

ticipant gave two successive incorrect answers. There were 16 working-memory trials in total,

eight in a block of serial order followed by eight trials in a block of reverse-serial order. We

used this task as a screening task. Participants who failed to correctly respond to 3 flashes were

excluded from further analysis.

Experiment 1 specific details (Fig 1C)

Participants were randomly assigned to a serial or parallel learning group. The two groups

only differed in the presentation order of trial types (prior-likelihood pairs) in the learning

phase. Both groups completed the likelihood-only task, followed by the learning, and then

transfer phase of the coin task. The likelihood-only task constituted of total 80 trials, inter-

spersing 40 of each likelihood distribution (narrow σLn = 0.06 and wide σLw = 0.15). The learn-

ing phase of the coin task constituted of 400 trials, 200 trials of two sets of prior (narrow σPn =

0.025 and wide σPw = 0.085) and likelihood (narrow σLn = 0.06 or wide σLw = 0.15) combina-

tions. Overall, there were four possible prior-likelihood combinations, i.e. PnLn, PnLw, PwLn
and PwLw. For each participant, the combinations were always orthogonalized such that one

likelihood only paired with one prior but not the other during learning. Prior-likelihood com-

binations were counterbalanced across participants. For the serial learning group, participants

learned one combination in trial 1–200 (4 blocks of 50 trials) and then the other in trial 201–

400. For the parallel learning group, the two prior-likelihood pairs were interleaved through-

out the leaning phase. We used a graph instruction to inform participants that there are two

throwers with different levels of accuracy hitting a coin at every block beginning. During a

trial, throwers were represented by two splash colours–green and blue, with the colour and

prior pairing counterbalanced across participants. In the transfer phase, both groups experi-

enced 180 trials interspersing 90 of each likelihood distribution paring with one prior.

Experiment 2 specific details

Participants completed the likelihood-only task, followed by the learning, and then transfer

phases of the coin task. In the likelihood-only task, there were 90 trials with 30 trials of each

likelihood distribution (narrow σLn = 0.024, medium σLm = 0.06, and wide σLw = 0.15) inter-

spersing over three 30-trial blocks. Only one prior (σPw = 0.085) was used for experiment 2.

Participants were randomly assigned to an “interpolation” or “extrapolation” group for the

coin task (Fig 1D). For the interpolation group, participants were presented with 100 PwLn
and 100 PwLw trials in the learning phase. For the extrapolation group, participants experi-

enced 100 PwLn and 100 PwLm trials in the learning phase (Fig 1D). During the transfer
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phase, all participants encountered PwLn, PwLm and PwLw trials pseudorandomly (225 trials,

75 trials for each prior/likelihood pair). Therefore, for the interpolation group the new combi-

nation in the transfer task was PwLm while for the extrapolation group was PwLw trials.

Data analysis

All the data analyses were performed using R studio (R 4.1.1) and Matlab (Mathworks release

2021b). We used a median absolute deviation (MAD) to identify and exclude outliers in trials

and individual participants [45]. It would exclude any data points that were 3 MAD away from

the median of a participant’s data. Details of specific outlier exclusion criteria for slopes, inter-

nal estimations of priors, predicted slopes and transfer scores and participant numbers for all

the analyses are detailed in S1 Text and S2 Table.

Estimating likelihood reliance (slope) using Bayesian theory

According to the Bayes rule, an optimal estimation of the coin location (Xest) is:

Xest ¼
s2

L

s2
p þ s

2
L

mP þ
s2

p

s2
p þ s

2
L

mL ð1Þ

That is, an optimal estimated position is a weighted average of prior mean μP and likelihood

mean μL and the weighting is based on the relative precision (= the inverse of variance σ2), with

s2
p being the prior variance and σL

2 being the variance associated with the likelihood, which can

be estimated by σL
2 = likelihood variance/number of dots (5 in our case). We can compare a

participant’s likelihood weight against this optimal decision to learn if behaviours are optimal.

Similar to [35], for each prior/likelihood combination in each participant, we used the polyfit.m

function in Matlab to fit chosen net locations xnet a linear function of cue centre positions Xnet
= intercept+β�μL. We discarded the first 50 trials (experiment 1)/25 trials (experiment 2) of

every prior/likelihood pair (based on ref [35] and the findings of S1 Fig) to minimize the effect

of the initial learning phase. The slope of the regression line (= β) indicates how much partici-

pants relied on likelihood, i.e. sensory weight (Fig 2A), and is expected to equal (
s2

p
s2

pþs
2
L
) for a

Bayesian optimal observer. The closer the slope is to one, the more a participant relies on the

likelihood. The closer the slope is to zero, the more a participant relies on the prior.

In our data, fitted linear functions had minuscule non-zero intercepts (mean±std 0.0027

±0.0078, see S1 Table for group means of each prior/likelihood combinations). Similar findings

have been found [25] and these previous works showed small biases had no effects on Bayesian

slopes. To ensure our results were unaffected by the bias, we computed transfer scores using slopes

acquired when forcing the regression line intercept to zero (supplementary S3 Fig). We confirmed

that transfer behaviours in both experiments were not affected by non-zero intercepts.

Predicted slope in the transfer phase based on proxies for subject-specific

prior and likelihood variances

Numerous studies using the coin task and similar paradigms [25,35,43,46–48] consistently

demonstrated that people integrate prior and likelihood information in a qualitatively Bayes-

ian fashion. However, empirical slope values are often different from optimal Bayesian values.

This difference increases the measurement noise of slope values in the transfer phase. There-

fore, a slope value which deviates from Bayes optimal during transfer may either be a manifes-

tation of suboptimal Bayesian behaviours [18], or a result of a non-Bayesian strategy. Simply

measuring slopes cannot discriminate the two, so it is an ineffective way of determining
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transfer. Instead, we postulate a measure inferring knowledge transfer (as defined in Eq 5 in

the next section: transfer score) that relies on proxies for subject-specific prior and likelihood

variances as described below.

Studies have shown that instead of estimating coin locations based on experimenter-

imposed prior and likelihood variability, people’s judgments of the coin location are more

likely weighted by the participants’ estimated variability of likelihood and prior (i.e. perceived

errors to them) [27,43]. To express this concept mathematically, we changed (Eq 1) to

_Xest ¼
s2

Li

s2
Pi þ s

2
Li

mP þ
s2

Pi

s2
Pi þ s

2
Li

mL ð2Þ

, which shows that a participant’s estimated position _Xest is again a weighted average of prior

mean μP and likelihood mean μL. However, in contrast to Eq 1, weights are based on estimated

subject-specific behavioural precision for the prior and likelihood. Specifically, s2
Pi evaluates

how precisely participants can locate a hidden coin in the absence of splashes and s2
Li, a proxy

for subject-specific likelihood, evaluates the participants’ precision of estimated centres of like-

lihood. Importantly, we can approximate s2
Pi and s2

Li from individuals’ likelihood-only task

and learning phase data to predict transfer-phase slopes and then compare against real data in

the transfer phase. In the following, we explain how we did so step-by-step.

Firstly, we calculated s2
Li, the variance of estimates of the mean (μLest) relative to the true

mean of the splashes (μL) in the likelihood-only task [43,49,50]

s2

Li ¼

P
ðmLest � mLÞ

2

nTrials
ð3Þ

The number of trials (nTrials) for each likelihood condition was 40 in the experiment 1 and

30 in the experiment 2. Note that s2
Li not only represents sensory precision but also captures a

combination of errors of perception (dot-location-measurement), computation (centroid-

computation), and action (response/motor). Importantly, this proxy for subjective likelihood

variance has been shown to explain slope data better than using experimenter-imposed (by

design) likelihood variance [27]. Secondly, s2
Pi is computed as a combination of s2

Li and sensory

weight, which is derived by rearranging the equation (slope ¼ s2
Pi

s2
Piþs

2
Li
) as follows [43,49,50]

s2

Pi ¼
s2

Li∗slope
ð1 � slopeÞ

ð4Þ

Thirdly, assuming s2
Pi and s2

Li were stable between learning and transfer phases, for each

participant the s2
Pi and s2

Li of transfer-new trials were then plugged back into the equation

(slope ¼ s2
Pi

s2
Piþs

2
Li
) to acquire a predicted transfer-phase slope.

Transfer score (Fig 2B)

Expanding on the predicted transfer-phase slope, we developed a measure, called the transfer

score, to quantify how well people generalize knowledge about prior uncertainty that they

acquired in the learning phase into the transfer phase. A transfer score (ts) is defined as fol-

lows:

ts ¼
measured slope change
predicted slope change

¼
ðmeasured slopetransfer � slopelearnedÞ

ðpredicted slopetransfer � slopelearnedÞ
ð5Þ
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The transfer score compares the measured “change” of slopes against a predicted change of

slopes. In experiment 2, for each participant we would have acquired two measured slope

changes using the two prior/likelihood combinations during the learning phase. We took their

mean to calculate the transfer score of each participant. Note that transfer performance peaks

at the value of one, (i.e. “Bayesian optimal” transfer score = 1). A score equal to or smaller than

zero means no transfer, and a score between zero and one indicates suboptimal transfer. Cru-

cially a transfer score systematically larger than one is, from the Bayesian point of view, a devia-

tion from optimum, not a “supra-optimal” transfer (e.g., excessive slope adjustments,

examples can be seen in supplementary S4 Fig). In our study there were also cases where even

Bayesian computational strategies could show larger than 1 transfer score because of arbitrarily

big subject-specific prior estimates (supplementary S2 Fig). These undesirable artefacts were

caused by noise introduced by the fitting procedure or measurement noise. We specifically

devoted sections in the supplementary information (S1 Text supplementary methods: ‘han-

dling arbitrarily large slopes’ & ‘outlier participant exclusion criteria’) to explain how we mini-

mised their effects on our data.

Optimality index (Fig 2C)

We wanted to understand whether people’s weighting of likelihood changed in the absence of

feedback on the coin position during the transfer phase. For transfer-old trials, we wanted to

confirm that the performance level did not drop right after the disappearance of feedback. For

transfer-new trials, we wanted to show that there were no significant changes (improvement

or decline) of performance between the beginning and the end of the transfer phase. In this

context, the multiple prior-likelihood combinations within and between participants became

confounding factors, we therefore adopted a general measure of performance: the “optimality

index”, that is applicable beyond the same prior-likelihood combinations from [26]. The ratio-

nale of optimality index is as follows. For every horizontal position on the screen x, we can cal-

culate the probability of hitting the true coin location phit given a participant placing the net on

x. The analytical solution of phit based on the mean μ and standard deviation of σ of the true

Gaussian posterior for each prior and likelihood combination is

phit ¼
1

s∗
ffiffiffiffiffiffi
2p
p

Z xþ L
2ð Þ

x� L
2ð Þ

e�
ðx� mÞ
2s2

2

dx ð6Þ

L equals the width of the net l plus the diameter of the coin d. phit is visualised in the Fig 2C

as the area under the probability density function curve. The hitting probability is maximal (=

max(phit), illustrated as the yellow area in the Fig 2C) when x equals μ. The optimality index

allows us to track performance on a trial-by-trial basis and it is defined as phit(xnet)/max(phit).
For our purpose, we compared the average of the last 10 learning phase trials and the first 10

transfer-old-trials as well as the first and last 10 of transfer-new trials.

Models

We examined how well non-Bayesian strategy models fit transfer behaviours as compared to

an ideal Bayesian model. Here we described the non-Bayesian models. Model comparison was

conducted using the Bayesian Information Criterion (BIC).

Linear regression models. Rather than computing slopes using the Bayesian decision

model, people can utilise a strategy of linearly mapping between estimated slopes and prior

and likelihood reliability (= inverse of variance). The linear mapping can be expressed as the

following equation: slope ¼ b0 þ b1 �
1

s2
Pi
þ b2 �

1

s2
Li
. For each participant, we first evaluated the
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coefficients {β0, β1, β2} using the learning phase data. We then plugged prior and likelihood

variances in the transfer phase into the parametrised equation to predict transfer-phase slopes.

In a special case of β1 = 0, the model only accounts for a linear mapping between slope and

likelihood reliability and we called it a likelihood-only model. Transfer scores predicted by

these linear models are shown in the S1 Text supplementary results and S4 Fig. BIC was used

to compare the fitness between Bayesian and linear models.

Exemplar model. We created an exemplar model of the coin task based on [51,52]. Let us

assume participants acquire the total past observed trials of coin locations during the learning

phase as an exemplar set X*. This means that priors are represented as exemplar memory

instead of a probability distributions p(x). Upon seeing the splashes in a trial i., N samples of

exemplar x*are drawn from X*. Each drawn sample is then weighted by the splash distribution

(i.e. likelihood distribution p (mLi; s
2
L) where μLi is the centre of the splashes and s2

L is the likeli-

hood variance in trial i). We then take the normalised weighted sum of the values of sampled

exemplars to get the posterior estimate _xi of the true coin location xi. This exemplar model can

be expressed as the equation below. Here f ðx∗j ;X
∗Þ is simply a function describing how samples

are drawn from the exemplar set.

_xi ¼

Pn
j¼1

f ðx∗j ;X
∗Þpðx∗j jmi; sLÞ

Pn
j¼1

pðx∗j jmL; sLÞ
ð7Þ

In the coin task, we assumed samples were randomly drawn from all coin positions dis-

played in the learning phase. We implemented the model when the number of sampled exem-

plars size is small (N = 5) and moderate (N = 20). Modelled data of slope and transfer score are

shown in the S1 Text supplementary results and S5 Fig.

Statistical analysis

We used the Kolmogorov-Smirnov test to evaluate the normality of data. Parametric tests

including mixed-design ANOVA and t-test were used for normally distributed data. For data

which violated the assumption of normality we used fitlme.m in Matlab to perform a linear

mixed effects analysis and Wilcoxon tests to compare the medians. The significance level of all

tests was 0.05. Where appropriate, Bayes factors were also reported in support of evidence for

the null hypothesis.

Supporting information

S1 Text. Supplementary Methods. Analysing sensory weights learning across time in the

learning phase. Handling arbitrarily large slopes: removal of larger than 1 slope values or logis-

tic transformed slope. Outlier participant exclusion criteria. Supplementary results. Untrans-

formed versus logistic transformed subject-specific prior values. Linear regression and

likelihood-only modelled transfer scores. Simulated responses using the exemplar model. Sup-

plementary references.

(DOCX)

S1 Fig. Time course of slopes in the learning phase. The instantaneous slope of each trial was

calculated by regressing the following ten trials (including the current trial), except in trial

192–195 for experiment 1 and trial 92–95 for experiment 2 slope was computed by regressing

the following six trials. The last 5 trials of each condition were not shown as to avoid biased

slope presentations due to scarce data points. Coloured lines are group means and shades rep-

resent standard errors. The vertical line in each plot separates trials that were excluded

(before)/included (after) for learning phase slope calculation in the main analysis. A discovery
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experiment 1 B validation experiment 1 C validation experiment 2 D validation experiment 2.

(TIF)

S2 Fig. Subject-specific prior uncertainty (variance and standard deviation) A Scatter plots

of prior estimates, experiment 1 discovery set. Left panel: serial learning group; right panel:

parallel learning group. The X-axis represents untransformed prior and the Y-axis represents

logistic-transformed prior. The order of estimates among the same experimenter designed

prior categories are largely maintained after transformation but the distributions of values are

compressed, as expected. B Bar figures to compare the group means of un-transformed (left

panel) and transformed (right panel) subject-specific priors of experiment 1, discovery set.

Error bars are standard errors. Dash lines are the experimenter designed standard deviations

of narrow (= 0.025) and wide (= 0.085) priors. Figures show that the order of different priors

only maintained in the untransformed estimations. They also show that the numerical values

are generally smaller than the experimenter designed values. C Bar figures to compare the

group means of un-transformed subject-specific priors of the experiment 2. Dash lines are the

experimenter designed standard deviations of the prior (= 0.025). Overestimations were

observed, especially in the extrapolation group. Left panel: discovery set; right panel: validation

set.

(TIF)

S3 Fig. related to Figs 3 and 4 Transfer scores computed using slopes acquired when forc-

ing the regression line intercept zero. Violin plots show the distributions of transfer scores in

A experiment 1 discovery set, B experiment 1 validation set, C experiment 2 discovery set, and

D experiment 2 validation set. For A & B (experiment 1), the central black line is the mean of

each group, and the vertical bar is the standard error. They closely resemble Fig 3C and 3D in

the manuscript, showing that transfer scores largely locate between 0 and 1 and present no sig-

nificant difference between serial and parallel groups. S3C and S3D Fig (experiment 2). The

central green line is the median of each group, and the vertical bar is the interquartile range.

They are also highly similar to Fig 4C and 4D in the manuscript, with the interpolation group

showing higher transfer scores than the extrapolation group. Insets present predicted slope

(grey bar) along with measured slope (olive bar) in the transfer-new trials. Note that for both

discovery and validation sets, significant difference was only found in the extrapolation group.

*p< = .05; ** p< = .01; ***p< = .001; n.s. non-significant.

(TIF)

S4 Fig. related to Fig 6 Simulated transfer scores of linear regression and likelihood-only

models. A (experiment 1 discovery set) & B (experiment 1 validation set) show modelled

transfer scores. The central green line is the median of each group, and the vertical bar is the

interquartile range. Transfer scores are larger than 1 for both discovery and validation sets. C

(experiment 2 discovery set) & D (experiment 2 validation set) show modelled transfer scores

and insets compare slopes predicted by Bayesian model (grey bar) along with linearly modelled

slopes (olive bar) of the transfer-new trials. Two important features are found: (1) transfer

scores of the interpolation group are higher than those of the extrapolation group and (2)

transfer scores of the extrapolation group are not significantly different from 0. *p< = .05,

**p< = .01, ***p< = .001; n.s. non-significant.

(TIF)

S5 Fig. related to Fig 6 Exemplar modelled data of the experiment 2 discovery set. A (sam-

pled exemplar size N = 5) & B (sampled exemplar size N = 20) show the distributions of mod-

elled sensory weights and C (N = 5) & D (N = 20) show modelled transfer scores. Insets of C &

D show predicted slope (grey bar) along with exemplar modelled slope (olive bar) of the
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transfer-new trials. ***p< = .001; n.s. non-significant.

(TIF)

S1 Table. Intercept values of each prior/likelihood condition.

(PDF)

S2 Table. Participant numbers after the removal of outliers for grouped analyses of each

measures including slope, predicted slope in the transfer phase and transfer score. Num-

bers in brackets are outliers who were excluded based on the criteria described in the supple-

mentary methods.

(PDF)
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