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ABSTRACT 
 

Anthrax, a globally significant disease, poses substantial threats to both livestock and human 
populations. Timely identification of anthrax outbreaks is paramount to mitigate its impact on animal 
health, human health, and public safety. This study aims to construct a predictive model for 
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livestock anthrax disease occurrence. By leveraging the potential of advanced Machine-Learning 
techniques, we projected the likelihood of anthrax outbreaks across India, through incorporating a 
diverse set of meteorological, and remote sensing parameters. The ultimate goal is to establish a 
spatial risk map that can serve as an early warning system, aiding in the anticipation and 
management of future anthrax outbreaks in India's livestock population. Our analysis revealed 
elevated risk zones for anthrax outbreaks in the southern and north-eastern regions of India, 
contrasting with medium to low-risk areas in the central parts. Notably, Enhanced Vegetation Index 
(EVI), Normalized Difference Vegetation Index (NDVI), rainfall, soil moisture, and wind speed 
emerged as pivotal variables driving the model's predictive accuracy. Among the employed models, 
the random forest, adaptive boosting, and classification tree analysis approaches showcased 
superior performance in livestock anthrax risk assessment. The risk map was generated using 
significant variables by exploiting best fitted models. These findings hold profound implications for 
policymakers, guiding the targeted deployment of control strategies against anthrax outbreaks. The 
dynamic risk maps generated through this study enhance public awareness, equipping decision-
makers with vital insights for informed action. By spotlighting risk management endeavours, these 
maps further enhance governance and risk mitigation efforts. 
 

 
Keywords:  Anthrax; livestock; machine learning; meteorological variables; remote sensing factors; 

risk assessment; risk management. 
 

1. INTRODUCTION  
 
Anthrax, a zoonotic disease caused by the 
spore-forming bacterium Bacillus anthracis, has 
been a longstanding concern due to its impact on 
livestock, wildlife, and human populations [1,2].  
Its capacity to persist in the environment for 
extended periods presents a distinctive challenge 
to global public health, veterinary medicine, and 
livestock industries. Despite extensive research, 
there still exists a complex interaction between 
ecological conditions, climatic factors, and the 
epidemiology of anthrax, especially in regions 
where it is endemic. 
 
Anthrax transmission dynamics involve intricate 
interactions between the bacterium, hosts, and 
the environment. Human exposure to anthrax 
occurs through contact with contaminated animal 
products, while livestock and wildlife can be 
affected through various routes such as 
ingestion, inhalation, and percutaneous exposure 
[3]. This zoonotic disease has marked its 
presence across geographies, manifesting a 
particular burden in regions like Central Asia and 
West Africa, where livestock management 
practices often contribute to its spread. Despite 
its potential as a bioterrorism agent, anthrax 
remains categorized as a neglected disease by 
global health authorities, leading to 
underreporting and insufficient attention to its 
true impact [4]. 
 

Many endemic diseases worldwide, including 
anthrax, are particularly sensitive to long-term 
climate shifts. Incorporating ecological data into 

disease studies not only demonstrates the 
relationship between disease and the 
environment but also aids in identifying potential 
risk factors for disease outbreaks [5,6]. The 
spread of anthrax across geographical regions is 
influenced by a combination of diverse climatic 
and environmental elements [7,8]. The causative 
agent of anthrax B. anthracis, has the capability 
to endure for extended periods in the 
environment, potentially lasting for years under 
congenial ecological conditions [1,6]. There is 
ongoing debate regarding whether anthrax 
exclusively occurs during specific periods of the 
year or not. The presence of anthrax in a specific 
area can be attributed to the favorable conditions 
of temperature, precipitation, soil quality, 
vegetation, as well as the occurrence of drought. 
Nevertheless, the literature indicates that the 
factors influencing epidemics differ significantly 
from one region to another [1,8]. Despite the 
effectiveness of routine anthrax vaccination and 
proper outbreak response in controlling the 
disease, underreporting frequently distorts its 
true burden and geographical distribution, 
making the implementation of adequate 
vaccination campaigns challenging [1].  
 
Climate change with its profound influence on 
ecosystems and the environment is recognized 
as a key player in shaping the epidemiology of 
various diseases, including anthrax. Changes in 
temperature, precipitation patterns, and habitat 
alterations can impact the occurrence and 
distribution of anthrax outbreaks. However, the 
exact relationship between climatic factors, 
ecological conditions, and the dynamics of 
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anthrax outbreaks remains intricate and region-
specific. Despite its historical prominence, the 
spatial ecology of B. anthracis, the causative 
agent of anthrax, remains relatively enigmatic. 
Specific geographical and environmental 
conditions that facilitate the prolonged survival of 
anthrax are still not well understood [9,10]. The 
prevailing literature emphasizes B. anthracis 
ubiquitous presence as a soil-borne bacterium, 
its resilience bolstered by higher calcium levels, 
elevated temperatures, increased humidity, a 
slightly alkaline pH, and higher levels of 
decomposed organic matter. Additionally, the 
organism's capability to thrive in harsh 
environments contributes to the extended 
persistence of its spores in soil [9,11,12]. 
Consequently, certain regions experience more 
frequent anthrax outbreaks than others. Notably, 
in anthrax-endemic areas with warm climates, 
such as Turkey, Ethiopia, and South Africa, 
significant outbreaks tend to occur during dry and 
warm periods following heavy precipitation [13]. 
Remarkably, anthrax can also endure in colder 
regions. The extensive geographical spread of 
anthrax, along with its potential recurrence after 
years or even decades, can be attributed to the 
robust resistance of spores to unfavourable 
conditions and their capacity for efficient 
multiplication [14]. 
 
In this study, we address the gap in 
understanding the influence of climatic factors on 
anthrax outbreaks and geographical distribution 
in India. By harnessing the power of machine 
learning, we aim to develop a predictive model 
that integrates meteorological data, remote 
sensing information, livestock population 
dynamics, and historical anthrax outbreak 
statistics. The results of this investigation hold 
promise for informing animal health authorities 
and policymakers in devising effective control 
strategies to mitigate the impact of anthrax on 
livestock and human populations in India. 
 

2. MATERIALS AND METHODS  
 
2.1 Study Area 
 
The anthrax is a disease of utmost zoonotic 
importance and sporadic cases of anthrax 
continue to be reported from many parts of the 
world. From India, both sporadic cases and 
outbreaks are being reported regularly. Most of 
the anthrax outbreak reports are from southern, 
central and north-eastern states of India like, 
Andhra Pradesh, Assam, Chhattisgarh, 
Jharkhand, Karnataka, Kerala, Madhya Pradesh, 

Odisha, Puducherry, Tamil Nadu, Telangana, 
and West Bengal. The initiation of this specific 
study was prompted by non-availability of data in 
other states of India and data availability of 
anthrax outbreak situation in the above-
mentioned states during 2000-2022 emphasized 
to commence this particular study. In an                      
effort to mitigate the likelihood of false              
positive predictions, we deliberately excluded 
regions lacking sufficient data points from our 
study. 
 

2.2 Disease Data 
 
In India, anthrax is considered a notifiable 
disease, necessitating the obligatory reporting of 
all observed and verified instances of anthrax 
outbreaks in both animals and humans. The 
confirmation process relies on clinical indicators 
and the microscopic analysis of blood smears, 
and bacterial culture growth analysis. The 
outbreak and attacks data were retrieved from 
the respective State Department of Animal 
Husbandry and Veterinary Services. This 
information covers the time span from 2000 to 
2022 and was supplemented by data from 
existing literature. The outbreak details were 
organized in terms of spatial and temporal 
references, with careful verification of 
coordinates (X, Y), species, district codes, and 
occurrence month.  
 

2.3 Livestock Data 
 
India possesses a significant livestock 
population, consisting of a collective count of 
approximately 535.78 million animals. Within this 
group, cattle make up 192.49 million, while exotic 
and crossbred animals contribute 50.42 million. 
“Of particular note, the nation accommodates 
109.85 million buffaloes, 9.06 million pigs, 148.88 
million goats, 74.26 million sheep, and 0.44 
million Mithun and yaks, (Department of Animal 
Husbandry and Dairying-DAHD-20th livestock 
census of India). The livestock population data 
throughout study region in five major animal 
species, i.e., cattle, buffalo, sheep, and goats, 
were collected from the 20th livestock census of 
India at the village level” [15,16]. 
 

2.4 Risk Factors Data 
 
2.4.1 Meteorological data 
 

“The Meteorological parameters such as soil 
moisture (kg/m2), potential evaporation rate 
(w/m2), specific humidity (kg/kg), rainfall 
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(kg/m2/s), air temperature (k), wind speed (m/s), 
and surface pressure (pa) were extracted from 
the Global Land Data Assimilation System 
(GLDAS-2)” [17]. “GLDAS-2 deploys advanced 
land modelling and data integration methods to 
capture satellite and ground-based observed 
data with a spatial resolution of 0.25◦ × 0.25◦ and 
a temporal resolution retrieved in network 
common data format (netCDF). This includes 
metadata as well as data that have a 
multidimensional array and data dimensions. The 
data were restored using the ‘ncdf4’ package in 
the R tool”. [15,16]. 
 
2.4.2 Remote sensing data 
 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) satellite was employed as a source of 
remote sensing variables [18]. Widely used 
remote sensing parameters like the enhanced 
vegetation index (EVI, 16-day interval), potential 
evapotranspiration (PET, 16-day interval, 500 m), 
land surface temperature (LST, 8-day interval, 1 
km), normalized difference vegetation index 
(NDVI, 16-day interval, 500 m), potential leaf 
area index (LAI, 16-day interval, 500 m), and 
were extracted with image products such as 
MOD16A2, MOD11A2, MOD13A1, and 
MOD15A2H. These products are available in 
HDF format at various spatial and temporal 
resolutions. The R packages “gdalutils” and 
“modis” were used to extract data in HDF files 
and refine them into GeoTIFF files. Through the 
R package “raster” all the variables were 
organized in raster (grid) type files and each 
predictor must be a raster layer reflecting a 
variable of the concern. 
 

2.5 Data Pre-Processing and Feature 
Engineering 

 
Data collection from different sources could be 
internal and /or external to satisfy the objectives 
of forewarning requirements, data can be in any 
format, CSV, XML, JSON, etc. In this process of 
data and feature engineering, we focus mainly on 
understanding the given data set and cleaning 
up the dataset, better understanding of             
features and their relationships, extracting 
essential variables, handling missing values and 
human error, identifying outliers, transforming             
features if there are outliers, so that either 
truncate a data above threshold or transform            
the data using log or any other transformation, 
scaling the features extracted. This                     
process would be maximizing the insights into a 
dataset. 

2.6 Spatio-Temporal Endemicity 
 
The annual occurrence of anthrax attacks was 
examined to gain insights into the spatial and 
temporal patterns of disease prevalence. The 
analysis aimed to identify possible shifts in the 
distribution of reported disease cases over both 
geographical and time dimensions. The 
cumulative instances of anthrax cases reported 
in India for each year spanning from 2000-2022 
were visualized by creating a map that illustrates 
the incidence rate at the district level. 
 

2.7 Space-Time Cluster Analysis 
 
“SaTScan software version 9.6 was used to 
develop Poisson-based clustering models based 
on space-time scan statistics in order to identify 
the temporal, geographical, and space-time 
clusters of anthrax in the study area. In case of 
SaTScan, to detect spatial clusters across a 
study area, a series of moving windows with 
varying diameters were used, likewise, temporal 
clusters are detected and it places ellipses or 
circles of constantly varying sizes over a three-
dimensional study area” [15,16]. The circles with 
observed values that were higher than expected 
values reported as clusters. For the SaTScan 
analyses, village wise latitude and longitude 
coordinates were considered to perform cluster 
analysis on dataset where each parameter has a 
disease status (case vs control), as well as 
spatial and temporal attributes. Using the total 
number of cases in a given year per epi unit 
(village), the model was ran on each year's case 
dataset while accounting for the underlying 
population of each epi unit. For all SaTScan 
clusters, the p-value cutoff for statistical 
significance was established at 0.05. 
 

2.8 Linear Discriminant Analysis 
 
Linear Discriminant Analysis (LDA) is a machine 
learning algorithm rooted in Fisher's linear 
discriminant theory, utilized to distinguish 
between multiple classes. Through discriminant 
analysis, risk parameters have been thoroughly 
examined, establishing a linear relationship 
among them. This correlation forms a robust 
foundation for accurately understanding the 
attribute's impact on computation and 
assessment. SaTScan was employed to detect 
regions with both significant and non-significant 
space-time clusters, allowing for the identification 
of risk occurrences. LDA was then utilized to 
assess variations in risk factors within these 
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identified regions. The binary response (0 or 1) 
was assigned based on clustering status, with 1 
denoting clustered regions and 0 representing 
non-clustered ones. The LDA was performed 
using R, with a statistical significance level set at 
(p ≤ 0.05) for the 12 variables under 
consideration in this study. 
 

2.9 Risk Modelling and Mapping by 
Accomplishing Machine Learning 

  
Risk modelling and mapping were conducted 
using data spanning from 2000 to 2022, 
aggregated at the grid level. The severity of 
anthrax was forecasted by creating a risk map for 
the study area through climate-disease 
relationship modelling, which predicted the 
spatial occurrence of anthrax outbreaks. The 
dataset encompassing risk factors was collected, 
pre-processed, and annotated with disease 
conditions, as well as latitude and longitude 
information. Risk estimate was carried out using 
machine learning algorithms to identify the most 
accurate prediction model with improved 
performance. Disease modelling was executed 
with nine machine learning approaches, such as 
random forest (RF), generalized linear models 
(GLM), generalized additive models (GAM), 
flexible discriminant analysis (FDA), support 
vector machine (SVM), multiple adaptive 
regression splines (MARS), naive Bayes (NB), 
classification tree analysis (CT), and adaptive 
boosting (ADA).  
 
2.9.1 Hyper parameterization 
 
The ability of a model to provide accurate outputs 
for unseen input data, known as generalization, 
is a key objective in Machine Learning. A well-
generalized model strikes a balance between 
under fitting and over fitting. Training and testing 
data play pivotal roles in regulating model 
performance. The training data enables the 
algorithm to discern patterns, cross-validation 
ensures accuracy, and the test data assesses 
predictive capability with new information. Over 
fitting occurs when a model excessively learns 
noise in the training data, impairing its 
performance on new data. Non-parametric and 
non-linear models, while more flexible, are more 
susceptible to over fitting. Conversely, an under 
fit model cannot effectively model the training 
data or generalize to new data. Striking the right 
balance between memorization and 
generalization is a common challenge in machine 
learning algorithms. Regularization techniques 
are employed to mitigate over fitting. In this 

study, all models were assessed for over fitting 
or under fitting, and to optimize coefficient 
estimation, p-values, and R-Square values, the 
data was randomly split into a 70% training set 
and a 30% testing set. This approach ensures a 
robust evaluation of model performance in the 
present study.  
 
2.9.2  Model evaluation and ensemble 

techniques 
 
In this study, predictions based on various 
combinations of risk factors were generated 
using different model artefacts. Response graphs 
were developed to facilitate the interpretation and 
evaluation of these predicted results. A 
comprehensive set of evaluation metrics 
including the Receiving Operating Characteristic 
(ROC) curve, True Skill Statistics (TSS), Cohen's 
Kappa (Heidke Skill Score), Area Under the ROC 
Curve (AUC), F1 score, error rate, accuracy, and 
logistic loss (LOGLOSS) were employed to 
assess the discriminative capacity of the fitted 
models. These metrics were utilized to evaluate 
the accuracy of prediction models based on the 
presence (1) or absence (0) of data. In this study, 
the outcomes of separate forecasts from multiple 
model methods were aggregated using a Raster 
Stack approach [19]. Rather than relying on a 
single best model, it is recommended to combine 
predictions from different models, which provide 
scores ranging from 0 to 1. Averaging these 
scores yielded the most accurate prediction 
[20,21]. The average model score was derived 
by considering models that met the criteria of 
kappa > 0.60, ROC > 0.90, and TSS > 0.80 for 
further assessment of disease risk [22]. This 
approach ensures a robust evaluation and 
aggregation of predictions for a more accurate 
risk assessment. 
 

2.10 Basic Reproduction Number (R0) 
 
The estimated number of additional infectious 
disease cases that resulted from the initial 
incident in a community that is susceptible is 
known as the basic reproduction number (R0). If 
R0 > 1, the number of individuals affected will 
increase, additionally, if R0 < 1, the number will 
decline. R0 represents the disease transmission 
rate. In the current study, the R0 was estimated 
using a maximum likelihood estimation (ML) 
method (Mahmud and Patwari, 2020). A visible 
and comprehensive view of the possibility and 
impact of a disease in a certain location was 
obtained by superimposing the R0 on the risk 
map projected using the density of           
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livestock, meteorological, and remote sensing 
parameters. 
 

2.11 Statistical Software  
 
The statistical analyses, risk maps, and disease 
forecasts were carried out using R statistical 
software version 3.1.3 (version 3.4.3, Vienna, 
Austria: R Foundation for Statistical Computing). 
Using R as a comprehensive suite, data mining, 
computing, and graphical display were 
accomplished. With the assistance of R 
packages such as plyr, dplyr, rgdal, raster, 
data.table, openxlsx, tmap, sp, spdep, sf, BAMM 
tools, foreign, geosphere, MASS, biomod2, 
dsimo, mgcv, randomforest, mda, gbm, earth 
data extraction data alignment, annotation, 
analysis, model fitting, and validation were 
achieved. Risk mapping and hotspot analysis 
were performed using Getis ord’s Index and to 
acquire the geographical and temporal clusters in 
the relevant study area, SaTScan v9.6 was used. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Spatial Endemicity of Anthrax 
 

The dataset encompassing anthrax incidence 
within the study period (2000-2022) underwent 

comprehensive analysis to ascertain the 
endemicity status of the disease across the study 
regions. Fig. 1 provides a visual representation of 
the geographical distribution and endemicity 
levels of anthrax at the district level. Notably, 
Koraput district in Odisha and Murshidabad 
district in West Bengal reported a notably high 
incidence of anthrax, surpassing 401 cases. In 
contrast, Chamarajanagar and Kolar districts in 
Karnataka, Chittoor and Visakhapatnam districts 
in Andhra Pradesh, Bankura and Barddhaman 
districts in West Bengal, Simdega district in 
Jharkhand, and Sundargarh district in Odisha 
experienced a medium risk of anthrax, with 
reported cases ranging from 51 to 400. Similarly, 
numerous districts in various states such as 
Karnataka (including Bangalore Rural, Bellary, 
Chikkaballapura, Davanagere, Hasan, Kodagu, 
and Mysore), Andhra Pradesh (Anantapur and 
Vizianagaram), Odisha (Debagarh and 
Rayagada), Chhattisgarh (Durg), Tamil Nadu 
(Erode, Ramanathapuram, Tirunelveli, Vellore, 
and Viluppuram), Assam (Golaghat), Jharkhand 
(Gumla), West Bengal (Hugli, Jalpaiguri,                 
Koch Bihar, and Nadia), Telangana (Nalgonda), 
Puducherry (Puducherry), and Kerala 
(Thiruvananthapuram) reported a low                
incidence of anthrax, with cases ranging from 1 
to 50. 

 

 
 

Fig. 1. A map of India delineates the study counties, highlighting the district-wise cumulative 
occurrences of anthrax spanning from 2000 to 2022 
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3.2 Temporal Distribution of Anthrax 
 
The highest number of anthrax outbreaks was 
observed between 2012 and 2016. In the 
remaining years under study, the incidence of 
anthrax outbreaks remained relatively stable. 
However, a notable decrease in anthrax 

outbreaks was observed from 2020 onwards 
(Fig. 2). When examining the monthly distribution 
of anthrax outbreaks (Fig. 3), it becomes evident 
that the pre-monsoon and monsoon period, 
spanning from May to August, recorded the 
highest occurrences, with the peak observed in 
the month of May. 

 

 
 
Fig. 2. Yearly incidence of livestock anthrax outbreaks within the designated study regions of 

India 
 

 
 

Fig. 3. Monthly frequency of livestock anthrax attacks across the selected study areas in India 
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3.3 Space-Time Cluster Analysis  
 

Utilizing space-time cluster analysis, disease 
clusters were identified in both the southern and 
north-eastern regions of India. In terms of spatial 
variation, six noteworthy clusters exhibiting high 
risk and one extensive cluster indicating low risk 
were discerned (Fig. 4). The village-level disease 
clustering was established over the period from 
2000 to 2022. Disease incidence is represented 
by red dots within significant red circles,  

denoting villages with a high risk of disease 
incidence. Conversely, blue dots within 
significant blue circles form clusters indicating 
villages with a low risk of disease incidence. 
These findings align with the spatial endemicity 
observations. Locations that experienced a 
higher frequency of outbreaks between 2000 and 
2022 were situated within high-risk clusters in 
southern India, while areas with fewer outbreaks 
formed a single cluster in the north-eastern 
region. 

 

 
 

Fig. 4. Space-Time cluster analysis of Anthrax for area under study on a map of India. Red 
spots represent high risk of disease incidence and blue spots represent incidence with 

negligible risk 
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3.4 Linear Discriminant Analysis 
 
Linear discriminant analysis (LDA) was employed 
to identify the key risk factors, including 
meteorological and remote sensing variables, 
contributing to the occurrence of anthrax. The 
results of the linear discriminant analysis are 
presented in Table 1. The findings indicate that 
EVI (0.016), LST (0.0004), NDVI (0.009), rainfall 
precipitation rate (0.002), soil moisture (0.001), 
and wind speed (0.00006) (p value < 0.05) 
emerged as significant risk factors associated 
with anthrax outbreaks.  Furthermore, this study 
revealed that regions characterized by specific 
environmental conditions, such as average EVI 
(0.269), LST (32.963), NDVI (0.416), rainfall 
precipitation rate (5.38 mm), soil moisture 
(24.531 kg/m²), and wind speed (2.224 m/s), 
were conducive for disease outbreaks. These 
primary significant risk metrics, positively 
influencing disease incidence, were further 
integrated into disease modelling and risk 
mapping efforts. These results are consistent 
with various literature reports, which highlight a 
higher incidence of anthrax during dry and warm 
periods following intensive precipitation                   
[13]. Moreover, our findings align with                       
previous studies that have identified LST,             

NDVI, and rainfall as significant factors 
associated with anthrax, with higher outbreaks 
occurring during the monsoon months of August, 
September, and October [23]. In another study, 
air temperature, wind speed, and potential 
evaporation rate were identified as potential risk 
indicators during El Nino years, whereas during 
La Nina years, air temperature, EVI, NDVI, 
specific humidity, and wind speed were found to 
be significant contributors to anthrax in the 
Karnataka region [24]. These observations 
further underscore the complexity of the interplay 
between environmental variables and anthrax 
dynamics. B. anthracis, an extracellular 
pathogen, exhibits rapid replication within the 
bloodstream, leading to the onset of disease. 
The survival of its spores is believed to be 
influenced by soil pH, organic calcium, 
potassium, and zinc concentrations [25]. 
Additionally, the dissemination of spores is 
facilitated by precipitation and wind speed [26]. 
Animals typically come into contact with these 
spores through behaviours such as grazing on 
low or scarce grass close to the surface, or by 
being herded into restricted areas during periods 
of water scarcity [1]. These interactions 
contribute significantly to the transmission 
dynamics of anthrax. 

 
Table 1. Results of Linear Discriminant Analysis (LDA) 

 

Parameter Mean 
(Presence) 

SD F-
Value 

p-Value 95 % CI 

Air Temperature (k) 24.496 3.305 0.494 0.483 24.06 to 
24.94 

Enhanced Vegetation Index (EVI) 0.269 0.130 5.839 0.016* 0.25 to 0.29 

Leaf area index (LAI) 0.163 0.469 0.099 0.754 0.10 to 0.23 

Land Surface Temperature (LST) 32.963 7.679 12.919 0.0004* 31.94 to 
33.99 

Normalized Difference Vegetative 
Index (NDVI) 

0.416 0.178 6.925 0.009* 0.39 to 0.44 

Potential Evapotranspiration (PET) 1351.214 1289.485 2.144 0.144 1179.25 to 
1523.18 

Potential evaporation rate (w/m2) 218.266 76.211 0.115 0.735 208.10 to 
228.43 

Rainfall Precipitation rate (mm) 5.38 3.90 10.093 0.002* 4.86 to 5.90 

Soil moisture (kg/m-2) 24.531 6.204 12.206 0.001* 23.70 to 
25.36 

Specific Humidity (kg/kg) 0.015 0.002 2.829 0.094 0.014 to 
0.015 

Surface Pressure (pa) 93744.991 2676.907 0.033 0.856 93388.00 to 
94101.99 

Wind speed (m/s) 2.224 1.263 16.696 0.00006 2.06 to 2.39 
Where, SD= Standard deviation, CI= Confidence interval, and * 5 percent level of significance 
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3.5 Anthrax Risk Assessment and 
Estimation 

 
The significant ecological and environmental risk 
factors identified through LDA underwent 
climate-disease modelling. Maps were generated 
based on areas affected (cases) and unaffected 
(controls) by anthrax (Fig. 5). In the map (Fig. 
5A-C), case data is denoted by red circles, 
signifying locations with reported disease 
incidences at various thresholds, while control 
data is represented by blue dots, indicating 
places without anthrax incidence. 
 
The random forest machine learning model 
demonstrated superior performance over other 
models in predicting anthrax outbreaks. It 
exhibited satisfactory evaluation metrics, 
including Kappa (0.751), ROC (0.995), TSS 
(0.936), AUC (0.995), accuracy (0.973), F1 score 
(0.949), and lower error rate (0.027), as well as 
log loss (0.242). This was followed by adaptive 
boosting with Kappa (0.512), ROC (0.735), TSS 
(0.469), AUC (0.735), accuracy (0.795), F1 score 
(0.646), lower error rate (0.205), and log loss 
(7.093), and classification tree analysis with 
diminishing evaluation metrics: Kappa (0.476), 
ROC (0.820), TSS (0.467), AUC (0.820), 
accuracy (0.714), F1 score (0.609), lower error 
rate (0.286), and log loss (0.465) (Table 2). 
 
The most reliable predictions were achieved 
through the ensemble method, which involved 
averaging the scores from the random forest, 
adaptive boosting, and classification tree 
analysis models. These three models 

demonstrated superior performance compared to 
the others employed. Based on this ensemble 
approach, risk predictions for the study area 
were estimated at the district level. Previous 
disease prediction research predominantly relied 
on traditional statistical models, which exhibited 
varying degrees of prediction accuracy 
[23,27,28]. By incorporating Geographical 
Information Systems (GIS), epidemiologists are 
deploying machine learning techniques to 
examine drivers of animal and zoonotic diseases. 
In the present study ensembling of random 
forest, adaptive boosting, and classification tree 
analysis models was found to be highly efficient 
in prediction of anthrax with high accuracy.  B. 
anthracis considered to have a high dispersing 
capacity. High dispersion capacity enhances the 
likelihood of the species being reported in a 
location where adequate conditions do not exist 
[29]. This provides a difficulty to modelling 
because the models require presence records to 
locate areas with adequate conditions, which 
may lead to model mistakes. Furthermore, 
different genotypes of B. anthracis have been 
demonstrated to have varied requirements for 
soil factors such as pH and calcium content and 
environmental factors [9,10] therefore modelling 
based on the specific genotype(s) may improve 
model performance. In future there is need to 
focus these limiting factors for the development 
of effective predictive modelling for anthrax.  
Nevertheless, the use of machine learning 
algorithms in modelling in current study has 
resulted in delineating more detailed B. anthracis 
ecological niche and high-risk regions in the 
study sites of India. 

 

 
 

Fig. 5. Anthrax outbreaks case-control data are depicted on a map of area under study 
(A) Case data: red-coloured circles denote locations where anthrax has been reported, (B) control data: blue-

coloured dots denote locations where anthrax has not been reported, and (C) case-control data: displays both the 
existence and absence of anthrax incidence 
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Table 2. Machine learning model’s evaluation metrices 
 

Models KAPPA ROC TSS AUC Accuracy ERROR 
RATE 

F1 
SCORE 

LOGLOSS 

GLM 0.222 0.656 0.267 0.656 0.607 0.393 0.192 0.615 
GAM 0.222 0.656 0.267 0.656 0.607 0.393 0.192 0.615 
RF 0.751 0.995 0.936 0.995 0.973 0.027 0.949 0.242 
MARS 0.347 0.746 0.389 0.746 0.679 0.321 0.523 0.558 
FDA 0.063 0.525 0.05 0.525 0.661 0.339 0.095 11.719 
CT 0.476 0.82 0.467 0.820 0.714 0.286 0.609 0.465 
SVM 0.412 0.785 0.458 0.785 0.723 0.277 0.182 0.846 
NB -0.035 0.48 0.064 0.480 0.527 0.473 0.496 0.922 
ADA 0.512 0.735 0.469 0.735 0.795 0.205 0.646 7.093 

 

3.6 Anthrax Risk Prediction and Mapping 
 
Risk maps provide an advanced digital platform 
for a comprehensive assessment of the 
likelihood and potential impact of diseases, 
enabling the development of synergistic 
strategies within a specific study area. In this 
study, an ensemble model consisting of the 
Random Forest and Classification Tree models, 
along with significant environmental risk factors 
identified through LDA analysis, was utilized for 
the generation of a risk map. The spatial 
prediction of the anthrax ecological niche in                
the study sites across India is depicted in Fig. 6. 

The predicted high-risk areas were 
predominantly concentrated in the southern 
regions of India, specifically in districts of 
Karnataka, Andhra Pradesh, Kerala, Tamil Nadu, 
and Maharashtra, exhibiting the most favorable 
conditions for the persistence of B. anthracis. 
Additionally, some areas with conducive 
environmental conditions for anthrax outbreaks 
were also identified in the northeastern regions of 
India. Conversely, in the central and northern 
parts of India, the conditions conducive for 
anthrax establishment and the risk of anthrax 
outbreaks were predicted to be very low or 
negligible. 

 

 
 

Fig. 6. Anthrax risk prediction map generated for area under study 
Red indicates areas with high risk of anthrax, while yellow and green indicate areas of medium and low suitability 

respectively 
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Fig. 7. Anthrax R0 values on risk prediction map 

 
3.7 Estimation of Basic Reproduction 

Number (R0) of Anthrax 
 
In this current study, the basic reproduction 
number (R0) was computed for the districts falling 
within the significantly clustered zones identified 
by the SaTScan analysis. The R0 values were 
calculated at the conclusion of the risk 
assessment and subsequently overlaid onto the 
risk map (Fig. 7). R0 values exceeding 1.00 
indicate areas or districts where the prevalence 
of the disease is increasing, while R0 values 
below 1.00 indicate areas or districts where the 
disease prevalence is decreasing. The R0 
values, as depicted in Fig. 7, ranged from 0.75 
(Thiruvananthapuram district of Kerala) to 5.37 
(Koraput district of Odisha). This indicates that 
districts in the southern regions and north-
eastern states are more likely to experience 
anthrax outbreaks, rendering them more 
vulnerable to anthrax. Moreover, regions with 
initially low R0 values may potentially transition to 
higher R0 values in the near future, potentially 
due to the migration of infected animals from one 
location to another. 
 

4. CONCLUSION  
 
In conclusion, our study advances the 
understanding of anthrax epidemiology in India 
by demonstrating the utility of environmental 
factors in assessing anthrax risk. By integrating 
advanced analytical techniques and 

environmental data, we provide valuable              
insights that can inform targeted control 
measures and enhance preparedness in             
regions vulnerable to anthrax outbreaks. These 
findings have practical implications for public 
health authorities and policymakers in the 
formulation of effective strategies for anthrax 
prevention and control. Increased surveillance 
measures are also recommended in identified 
probable regions with acceptable conditions 
where outbreaks have not been observed.         
These efforts, when combined with technological 
advancements and continued research, have        
the potential to significantly contribute to          
anthrax management and prevention strategies 
in India. 
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