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Abstract: An educational augmented reality auscultation system (EARS) is proposed to enhance the 

reality of auscultation training using a simulated patient. The conventional EARS cannot accurately 

reproduce breath sounds according to the breathing of a simulated patient because the system 

instructs the breathing rhythm. In this study, we propose breath measurement methods that can be 

integrated into the chest piece of a stethoscope. We investigate methods using the thoracic variations 

and frequency characteristics of breath sounds. An accelerometer, a magnetic sensor, a gyro sensor, 

a pressure sensor, and a microphone were selected as the sensors. For measurement with the 

magnetic sensor, we proposed a method by detecting the breathing waveform in terms of changes 

in the magnetic field accompanying the surface deformation of the stethoscope based on thoracic 

variations using a magnet. During breath sound measurement, the frequency spectra of the breath 

sounds acquired by the built-in microphone were calculated. The breathing waveforms were 

obtained from the difference in characteristics between the breath sounds during exhalation and 

inhalation. The result showed the average value of the correlation coefficient with the reference 

value reached 0.45, indicating the effectiveness of this method as a breath measurement method. 

And the evaluations suggest more accurate breathing waveforms can be obtained by selecting the 

measurement method according to breathing method and measurement point. 

Keywords: wearable device; thoracic variation; inertial sensor; breathing parameters; digital  

filtering; auscultation training simulation 

 

1. Introduction 

Auscultation of breath and heart sounds constitutes one of the clinical skills in 

physical examination; auscultation is a medical technique used to listen to lung airflow 

and heart sounds to obtain biological information noninvasively and quickly [1]. Since 

these sounds vary greatly depending on the auscultation position and presence of 
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diseases, auscultation requires sufficient training for clinical practice [2]. Recent studies 

have demonstrated a decline in auscultation skills in clinical practice, and there is growing 

interest among practitioners to improve auscultation training [3–6]. Against this 

backdrop, current medical educational institutions conduct the objective structured 

clinical examination (OSCE) before students advance to clinical practice [7,8]. This 

examination aims to evaluate the proficiency of clinical skills such as “basic examination 

skills” and “communication skills with patients,” which are difficult to evaluate by paper tests. 

In current auscultation training and OSCE, medical interviews and auscultation 

techniques are performed on a simulated or standardized patient (SP) who reproduces 

the physical findings of the disease. Since the SP is healthy, the numbers of breath and 

heart sounds that can be reproduced are limited. Hence, many medical education 

institutions use a method that combines medical interviews with auscultation procedures 

on a mannequin-type auscultation simulator [9,10]. Simulators have been shown to 

enhance physical examination skills of learners, and learners have also been shown to 

value simulation-based teaching very highly [11,12]. However, this method requires the 

trainees to turn around and face the simulator when shifting from the medical interview 

to the auscultation procedure, which may reduce the reality and training efficiency. In 

addition, the simulator is very expensive and requires ample space for storage and use, 

making it difficult to implement in facilities that are not large. 

To overcome these problems, Nakaguchi et al. [13] proposed a virtual auscultation 

simulator for auscultation training on an SP and showed its effectiveness in reproducing 

training by comparison with a mannequin-type simulator. In addition, Sekiguchi et al. 

[14,15] proposed the educational augmented reality auscultation system (EARS), an 

augmented-reality-based auscultation training system, using deep learning; this system 

reproduces the breath and heart sounds of various diseases on a healthy SP and enables 

medical interviews as well as auscultation procedures to be performed on the SP. The 

trainee performs auscultation on the SP using a special stethoscope, similar to a regular 

medical examination; this stethoscope is divided into the chest piece and camera unit parts 

(Figure 1). The chest piece part has a built-in contact sensor that determines whether the 

patient is being auscultated by the presence or absence of contact with the body. The 

camera in the camera unit part acquires the positions of the chest piece during 

auscultation along with those of the SP’s head, shoulders, and hips during non-

auscultation to calculate the auscultation position on the SP’s body based on the position 

information. EARS also plays the sounds of selected diseases according to the calculated 

auscultation positions. 

 

Figure 1. Conventional stethoscope used in EARS. 
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However, when using the conventional system, the SP must breathe according to the 

timing shown on the breath indicator mounted on the camera unit of the stethoscope to 

match the rhythm of thoracic variations and breath sounds played. This burdens the SP 

heavily and makes it impossible to respond to deep breaths and breath holding. To solve 

this, it is necessary to measure the breathing of the SP during auscultation training. 

Breath measurement methods can be broadly classified into contact and noncontact 

types. As a contact-type breath measurement method, a belt with an inertial or a 

piezoelectric sensor is a�ached to the chest [16,17]. This method measures the thoracic 

variations caused by breathing using sensors built into the belt. Another contact-type 

method involves a�aching a microphone to the chest and investigating the exhalation and 

inhalation sounds of breathing to estimate respiration [18]. The disadvantage of such 

contact-type methods is the increased preparation time required for a�aching the sensor. 

As a noncontact breath measurement method, the movements of the thorax are acquired 

using a depth camera and an ultrasonic proximity sensor [19,20]. This method involves 

monitoring breathing motions by measuring the distance to the thorax from the camera 

or sensor. However, the main disadvantages of this method are that the accuracy of 

acquisition depends on the positional relationship between the SP and camera or sensor, 

which requires time to setup, and that the accuracies of the breath measurements depend 

on the movements of the SP and wrinkles in the clothing accompanying the movements. 

There is also a method to measure breathing based on temperature changes around the 

nasal cavity of the SP using a thermal imaging camera [21,22]; however, this method has 

the disadvantage that it can only be applied when the SP is facing the front of the camera. 

These noncontact types have the disadvantage of requiring unique cameras, and when 

mounted, the EARS device becomes expensive. 

In the present study, we propose a method to measure breathing by contact during 

auscultation training to realize the reproduction of breath sounds based on the breathing 

of the SP in EARS. To reduce the time and effort required to a�ach the sensor to the SP, 

which is a drawback of contact-type breath measurement, a method that can be integrated 

into the chest piece of a stethoscope is investigated. We propose a new principle for real-

time acquisition of breathing waveforms, then evaluate the method and discuss how it can 

be used in a system. The remainder of this manuscript is organized as follows. Section 2 

describes the proposed breath measurement methods. Section 3 presents the experimental 

setup and measurement accuracy of each method. Section 4 presents analyses of the 

measurement accuracies and discusses their prospects. Finally, Section 5 presents the 

conclusions of this study. 

2. Materials and Methods 

In this study, we investigate two methods for measuring breathing using thoracic 

variations and breathing sounds. For measurement devices, we developed ones that can 

be measured using only a chest piece and that are close to the size and weight of an actual 

chest piece to maintain the realism of the actual auscultation procedure. 

2.1. Breath Measurement Using Thoracic Variations 

Humans breathe by taking oxygen into and expelling carbon dioxide from the 

alveoli. Breathing is mainly achieved by the diaphragm and external intercostal muscles, 

which expand and contract the lungs. The movements of the diaphragm and external 

intercostal muscles cause thoracic variations [23]. During inhalation, the diaphragm and 

external intercostal muscles contract. When the diaphragm contracts and descends, the 

contraction of the external intercostal muscles expands the thorax back and forth so that 

the lungs expand, resulting in inhalation. During exhalation, the diaphragm and external 

intercostal muscles relax. The diaphragm returns to its original position, while the thorax 

narrows and lungs contract by elastic contraction. In this study, we propose a method to 

measure breathing motions using such movements of the thorax. 
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2.1.1. Thoracic Variability Measurement Device Design and Data Collection 

A stethoscope-type measurement device was fabricated using a 3D printer to 

measure the thoracic variations; this device is shown in Figure 2. With this device, breath 

measurements can be performed by placing the device on the SP’s chest as in the actual 

auscultation technique. The side and bell parts of the chest piece are made of polylactic 

acid resin, and the diaphragm surface is made of a deformable thermoplastic 

polyurethane resin. A pressure sensor FSR402 (Interlink Electronics Inc., Camarillo, CA, 

USA), an indenter, and a magnet are placed on the diaphragm surface and are connected 

to a breadboard and a 9-axis inertial sensor Adafruit Precision NXP 9-DOF Breakout 

Board—FXOS8700 + FXAS21002 (Adafruit Industries, New York City, NY, USA). The 9-

axis inertial sensor includes an accelerometer, a gyro sensor, and a magnetic sensor. The 

characteristics of these sensors are shown in Tables 1 and 2. Arduino UNO (Arduino 

Holding, Ivrea, Italy) was used to interface the sensors with the PC. 

 

Figure 2. Thoracic variability measurement device. 

Table 1. Pressure sensor specifications. 

Thickness 0.20–1.25 mm 

Pressure sensitive range 0.2–10.0 N 

Minimum sensitivity 20–100 g 

Table 2. Specifications of the 9-axis inertial sensor. 

FXOS8700  

3-axis accelerometer 

Resolution 14 bit 

Detection range −2 to 2 g 

FXOS8700  

3-axis magnetic Sensor 

Resolution 16 bit 

Detection range −1200 to 1200 µT 

FXAS21002  

3-axis gyro sensor 

Resolution 16 bit 

Detection range −250 to 250 degree/s 

2.1.2. Measurement by Parallel Shift Movement 

An accelerometer was used to measure the movements of the thorax in terms of the 

amount of parallel shift. In addition, a measurement mechanism using a magnetic sensor 

and a magnet was developed to measure the amount of movement of the stethoscope 

surface caused by the thoracic movements. In this mechanism, a small permanent magnet 

is placed on the stethoscope surface, which is the contact surface, and the magnetic sensor 

measures the slight variations in the magnet due to deformation of the surface from 

changes in the magnetic field. The measurement principle is shown in Figure 3. A lowpass 

filter was then applied to each sensor output and processed high-frequency noise by the 

circuitry and unstable signal components. 
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Figure 3. Principle of measurement by the magnetic sensor. When the surface of the stethoscope is 

indented due to thoracic variations, the magnetic field emi�ed by the magnet shifts and changes the 

value of the magnetic sensor. 

2.1.3. Measurement by Angular Displacement 

Accelerometer and gyro sensors were used to measure the movements of the thorax 

as rotational motions. The sensor values were corrected using a lowpass filter and a 

Kalman filter. 

2.1.4. Pressure Measurement 

A pressure sensor was used to measure the pressure on the stethoscope’s chest piece 

in contact with the measurement surface caused by the back-and-forth movements of the 

thorax due to breathing motions. The pressure sensor used here is the one described in 

Section 2.1.1. Here, an indenter for noise reduction was created with a 3D printer and 

placed on the back of the pressure sensor, as shown in Figure 2. 

2.2. Breath Measurements Using Breath Sounds 

The overall sounds produced by breathing are called lung sounds, which are 

classified into two categories as breath sounds (airflow sounds during ventilation of the 

airways and alveoli) and sub-noise (abnormal sounds generated in pathological 

conditions) [24]. In this study, we focus mainly on the breathing sounds. Three types of 

breath sounds can be heard under normal conditions: bronchial, bronchoalveolar, and 

alveolar. Bronchial breath sounds are louder than those heard from the other parts of the 

body and are particularly louder during exhalation than inhalation, with a clear pause 

between inhalation and exhalation. The frequency components of the sound are around 

600 Hz for inhalation and 400 Hz for exhalation. Bronchoalveolar breath sounds can be 

heard more clearly than alveolar breath sounds during both inhalation and exhalation. 

The loudness of the breath sounds is the same for inhalation and exhalation, or slightly 

louder for inhalation, and the frequency components are the same as those for bronchial 

breath sounds, which are around 600 Hz for inhalation and around 400 Hz for exhalation. 

Alveolar breath sounds are clearly audible upon inhalation, but the exhalation sounds are 

quiet and difficult to hear. The ratio of inhalation to exhalation time is approximately 1:2. 

The frequency components of the inhalation sounds are around 400 Hz and those of the 

exhalation sounds are around 200 Hz [25,26]. We propose a method to measure the 

breathing phase using these differences between the exhalation and inhalation sounds. 

2.2.1. Related Research 

Li et al. [27] proposed a breath sound analysis algorithm for real-time whistle sound 

detection; this algorithm extracts the characteristics of breath sounds in both time and 

frequency domains and classifies normal breath sounds and whistle sounds by taking 

advantage of the frequency range of the whistle sounds (250–800 Hz). 
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The steps in this method are as follows: 

1. The breath sounds are bandpass filtered in a passband of 150–1000 Hz. This step is 

used to remove heart sounds and signals from muscle interference [28]. 

2. The data are subjected to a Fourier transform using a Hanning window (short-time 

Fourier transform). Spectral integration (SI) and normalized spectral integration 

(NSI) are then calculated to obtain the characteristics of the breath sounds in the 

frequency domain. The NSI is the ratio of the value of each SI when the sum of the 

calculated SI is set to 1. 

3. The NSI values are used to classify normal breath sounds from whistle sounds using 

Fisher linear discriminant analysis. 

2.2.2. Proposed Methodology for this Study 

In this study, we propose a breathing waveform acquisition method using the ratio 

of SIs as well as the SI and NSI described above, as outlined in Figure 4. First, the breath 

sounds are denoised using a moving average filter of size 10 samples, and a short-time 

Fourier transform is then performed using a Hanning window. The window width is set 

to 4096 points and overlapped so that the frameshift is 50 ms. The ratio of spectral integrals 

is then calculated from the obtained spectra. As shown in Figure 5, in this study, the ratio 

of SIs in the range of 500–800 Hz out of those in the range of 100–1000 Hz, which is the 

frequency range of breath sounds, is calculated as the values of the breathing waveform. 

The calculated values are then multiplied with a moving average filter of size 10 samples 

and used as the final breathing waveform acquired by this method. 

 

Figure 4. Flowchart for breathing waveform acquisition using breath sounds. 
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Figure 5. Spectral integral ratio range of breath sounds calculated using the proposed method. 

2.2.3. Breath Sound Sampling Device Design and Data Collection 

A stethoscope-type breath sound sampling device with a microphone inserted into 

the stethoscope tube was fabricated to measure the breath sounds. The fabricated device 

is shown in Figure 6. The stethoscope used was a Flare Phonet No. 137II (KENZMEDICO 

CO. LTD., Saitama, Japan), and the microphone used was ECM-PC60 (Sony Group 

Corporation, Tokyo, Japan). The microphone characteristics are shown in Table 3; the 

microphone was connected to a laptop computer via a conversion adapter, and its 

sampling rate was 44.1 kHz. 

The chest piece has two types of listening surfaces, namely the diaphragm and bell 

surfaces. In this experiment, the diaphragm surface was used to measure the breath 

sounds. 

 

Figure 6. Breath sounds sampling device. 

Table 3. Microphone specifications. 

Directivity Omnidirectional 

Frequency response 50–15,000 Hz 

Frontal sensitivity −38 ± 3.5 dB 

3. Results 

3.1. Experimental Procedures 

A total of 14 subjects (7 females and 7 males) in their early 20s without any health 

problems were recruited for the study. Since auscultation is performed on healthy subjects 

in the EARS system, we selected healthy subjects for this breath measurement. Informed 

consent was obtained from all subjects involved in the study. Based on actual EARS use, 

measurements were obtained while the subjects were wearing clothing. Five 

measurement points (four in the front and one in the back) were selected from the basic 

auscultation positions for the breath sounds (Figure 7). In this study, measurements were 

taken only on the right side of the body, which is less affected by the heartbeat. To 

reproduce an actual medical interview, each subject was instructed to take either normal 
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or deep breaths for each of the measurements. The amount of movement of the chest and 

abdomen varies depending on the breathing method, which may result in differences in 

accuracy depending on the measurement point and method [29]. Three 20-s 

measurements were acquired per subject at each measurement position and for each 

breathing method. All subjects wore the same co�on T-shirt to minimize any influence 

from clothing. The experiments were conducted in a si�ing position to simulate a medical 

interview. 

 

Figure 7. Areas in red were measured using the proposed method, and areas in blue were measured 

with the Go Direct Respiration Belt for the reference value. 

The signal from the Go Direct Respiration Belt (Vernier Science Education, Beaverton, 

OR, USA) was used as the reference for the breathing waveform. The specifications of the 

sensor are shown in Table 4. The sensor was placed above the subject’s dovetail (blue circle 

in Figure 7). From now on, the signals obtained with this respiration measurement belt 

are referred to as the biometric sensor signals. 

Table 4. Go Direct Respiration Belt specifications. 

Detection range 0–50 N 

Resolution 0.01 N 

Sampling rate 20 Hz 

3.2. Evaluation Method 

The normalized cross-correlation function was used as the evaluation index. The 

equation of the cross-correlation � for two time-series waveforms (�,�) and number of 

data � is shown below. 

�(∆�) =
1

� − ∆�
� �(�)

��∆�

���

�(� + ∆�) (1)

After normalizing the reference biometric sensor signal and breathing waveform 

signals from the data acquired by the thoracic variation measurement device and breath 

sound sampling device, cross-correlation analysis was performed to obtain the correlation 

coefficient of the waveform with the reference signal. Then, an analysis of variance was 

performed on the obtained correlation coefficients to test the differences in accuracies of 

acquiring breathing waveforms by different measurement methods. For the analysis of 

variance, anovakun ver4.8.6—a script for analysis of variance on the statistical software 

R—was used. The version of the statistical software R used was 4.0.0. 

3.3. Experimental Results 

Figure 8 shows the breathing waveforms obtained for each measurement method, 

and Figure 9 compares the cross-correlation coefficients among the measurement 

methods. It was confirmed that the average value of the correlation coefficient for each 

measurement method was more than 0.4, which is considered to be correlated. However, 
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the final target value for the correlation coefficient is 0.7, which is considered a strong 

correlation, so the results indicate that we have not yet reached that level. 

 

Figure 8. Breathing waveform for each measurement method. 

 

Figure 9. Comparison of breathing waveform acquisition accuracies by measurement method. The 

area shown in red color indicates where the correlations are considered to exist (>0.4). 

A three-factor analysis of variance for mixed designs was conducted for the number 

of interrelationships based on the breathing method (within-participant items: 2 levels), 

measurement position (within-participant items: 5 levels), and measurement technique 

(within-participant items: 5 levels). These results are shown in Table 5; the results show 

that the second-order interactions were insignificant. However, significant differences 

were obtained in the first-order interactions between the breathing and measurement 

method factors and also in the first-order interactions between the measurement position 

and measurement method factors. Table 6 shows the means and standard deviations for 

the corresponding breathing method and measurement technique factors. Table 7 shows 

the means and standard deviations for the measurement position and technique factors. 

Table 8 shows the result of simple main effects for each interaction, and Table 9 shows the 

results of Bonferroni’s multiple comparisons for those factors for which the main effects 
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were significant. In the table, SS represents the sum of squares, Df represents degrees of 

freedom, and MS means mean squares. 

Table 5. Analysis of variance table within three-factor participants (A: breathing method, B: 

measurement point, C: measurement method, SS: sum of squares, Df: degrees of freedom, MS: mean 

square), ns: not significant, * p < 0.05, ** p < 0.01. 

Variable Name SS Df MS F Value p-Value  Partial �� 

A 0.968 1.00 0.968 27.703 0.000 ** 0.681 

B 0.874 4.00 0.219 6.218 0.000 ** 0.324 

C 0.648 2.13 0.304 7.066 0.003 ** 0.352 

A × B 0.012 4.00 0.003 0.072 0.990 ns 0.006 

A × C 0.485 2.53 0.192 8.471 0.000 ** 0.395 

B × C 0.545 16.00 0.034 2.012 0.014 * 0.134 

A × B × C 0.262 16.00 0.016 1.146 0.315 ns 0.081 

Table 6. Mean values and standard deviations of correlation coefficients for the breathing method 

and measurement method factors under each condition (A: breathing method, A1: normal breath, 

A2: deep breath, C: measurement method, C1: pressure sensor, C2: accelerometer, C3: magnetic 

sensor, C4: accelerometer + gyro sensor, C5: microphone). 

Condition A Condition C Number of Data Mean Value SD 

A1 C1 70 0.485 0.164 

A1 C2 70 0.396 0.159 

A1 C3 70 0.437 0.141 

A1 C4 70 0.391 0.156 

A1 C5 70 0.443 0.142 

A2 C1 70 0.533 0.154 

A2 C2 70 0.501 0.179 

A2 C3 70 0.562 0.156 

A2 C4 70 0.502 0.179 

A2 C5 70 0.426 0.113 

Table 7. Mean values and standard deviations of correlation coefficients for the position and method 

factors under each condition (B: measurement point, C: measurement method, C1: pressure sensor, 

C2: accelerometer, C3: magnetic sensor, C4: accelerometer + gyro sensor, C5: microphone). 

Condition B Condition C Number of Data Mean Value SD 

B1 C1 28 0.450 0.128 

B1 C2 28 0.411 0.192 

B1 C3 28 0.405 0.154 

B1 C4 28 0.406 0.187 

B1 C5 28 0.453 0.141 

B2 C1 28 0.511 0.176 

B2 C2 28 0.524 0.193 

B2 C3 28 0.549 0.152 

B2 C4 28 0.515 0.195 

B2 C5 28 0.433 0.151 

B3 C1 28 0.502 0.177 

B3 C2 28 0.389 0.162 

B3 C3 28 0.468 0.138 

B3 C4 28 0.394 0.169 

B3 C5 28 0.427 0.126 
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B4 C1 28 0.559 0.150 

B4 C2 28 0.481 0.170 

B4 C3 28 0.590 0.160 

B4 C4 28 0.492 0.170 

B4 C5 28 0.434 0.092 

B5 C1 28 0.523 0.157 

B5 C2 28 0.438 0.139 

B5 C3 28 0.485 0.142 

B5 C4 28 0.425 0.134 

B5 C5 28 0.425 0.132 

Table 8. Test results of the simple main effects for the interactions between the breathing and 

measurement method factors as well as for interactions between the measurement position and 

measurement method factors. (A: breathing method, A1: normal breath, A2: deep breath, B: 

measurement point, C: measurement method, C1: pressure sensor, C2: accelerometer, C3: magnetic 

sensor, C4: accelerometer + gyro sensor, C5: microphone, SS: sum of squares, Df: degrees of freedom, 

MS: mean square) ns: not significant, * p < 0.05 ** p < 0.01. 

Slice 
Variable 

Name 
SS Df MS F Value p-Value  

Partial 

 �� 

C = C1 A 0.081 1.000 0.081 4.032 0.066 ns 0.237 

C = C2 A 0.388 1.000 0.388 23.340 0.000 ** 0.642 

C = C3 A 0.546 1.000 0.546 34.927 0.000 ** 0.729 

C = C4 A 0.427 1.000 0.427 23.861 0.000 ** 0.647 

C = C5 A 0.010 1.000 0.010 0.463 0.508 ns 0.034 

A = A1 C 0.545 1.970 0.209 5.420 0.011 * 0.294 

A = A2 C 0.262 2.690 0.268 9.886 0.000 ** 0.432 

C = C1 B 0.176 4.000 0.044 1.833 0.136 ns 0.124 

C = C2 B 0.326 4.000 0.082 3.680 0.010 * 0.221 

C = C3 B 0.582 4.000 0.145 7.297 0.000 ** 0.360 

C = C4 B 0.321 4.000 0.080 3.869 0.008 ** 0.230 

C = C5 B 0.014 4.000 0.004 0.222 0.925 ns 0.017 

B = B1 C 0.066 1.960 0.034 0.753 0.479 ns 0.055 

B = B2 C 0.213 2.640 0.081 2.245 0.108 ns 0.147 

B = B3 C 0.261 2.160 0.121 3.846 0.031 * 0.228 

B = B4 C 0.441 1.540 0.287 7.600 0.006 ** 0.369 

B = B5 C 0.211 1.960 0.107 3.943 0.033 * 0.233 

Table 9. Results of multiple comparisons (Bonferroni method) (A: breathing method, A1: normal 

breath, A2: deep breath, B: measurement position, C: measurement method, C1: pressure sensor, 

C2: accelerometer, C3: magnetic sensor, C4: accelerometer + gyro sensor, C5: microphone, Df: 

degrees of freedom). 

Level Pair Terms Diff t-Value Df p-Value 

ADJUSTM

ENT p-

value 

Order 

C1–C4 A1 0.093 3.555 13.000 0.004 0.035 C1 > C4 

C1–C2 A1 0.089 3.432 13.000 0.005 0.035 C1 > C2 

C3–C5 A2 0.136 5.542 13.000 0.000 0.001 C3 > C5 

C1–C5 A2 0.107 4.519 13.000 0.001 0.004 C1 > C5 

B1–B4 C3 −0.185 5.088 13.000 0.000 0.002 B1 < B4 

B1–B2 C3 −0.144 4.053 13.000 0.001 0.008 B1 < B2 

B3–B4 C3 −0.122 3.143 13.000 0.008 0.047 B3 < B4 
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B2–B5 C4 0.089 3.542 13.000 0.004 0.036 B2 > B5 

B1–B2 C4 −0.108 3.313 13.000 0.006 0.036 B1 < B2 

C3–C5 B4 0.156 6.893 13.000 0.000 0.000 C3 > C5 

C1–C5 B4 0.125 5.144 13.000 0.000 0.001 C1 > C5 

4. Discussion 

The breathing method and measurement position are factors that change the thoracic 

variations and types of breath sounds. The analysis of variance showed that differences in 

the accuracy of acquiring breathing waveforms between the measurement methods based 

on thoracic variations were caused by differences in the breathing method and 

measurement position. 

In terms of the breathing method, deep breaths tended to be abdominal breathing, 

compared to normal breaths, and we considered a significant difference in the accuracy of 

breathing waveform acquisition [29]. Breathing can be broadly classified into two types: 

as costal and abdominal breathing. Costal breathing is a method in which mainly the 

thorax moves, and the muscles that work during inhalation are the external intercostals 

and respiratory accessory muscles, while the muscles working during exhalation are the 

internal intercostals. During inhalation, the external intercostals and several respiratory 

accessory muscles are strongly contracted to raise the thorax anteriorly and upward to 

assist inhalation. During exhalation, the internal intercostals contract to contract the 

thorax and assist in exhalation. Abdominal breathing is a method in which the movement 

of the diaphragm is the main component. The diaphragm is the muscle that works during 

inhalation, and the abdominal muscles work during exhalation. During inhalation, the 

diaphragm contracts strongly, expanding the thorax in a large vertical direction. During 

inhalation, the diaphragm contracts strongly, and the thorax expands vertically. Thus, the 

differences in the movements of the thorax depending on the breathing method are 

considered to be the reason for the significant differences among the three methods for 

detecting the movements of the thorax. The results of the analysis of variance showed that 

the interactions between the breathing and measurement methods were significant and 

that these effects were considerable. Considering this, we selected the pressure sensor for 

normal breath and magnetic sensor for deep breath as the measurement methods and 

analyzed the results again, as shown in Table 10. The accuracy of breath measurement was 

improved compared to the case where no method was selected, suggesting that the 

selection of the measurement method according to the breathing method is effective. 

Table 10. Average correlation coefficients by method selection. 

Before method selection 0.46 ± 0.14 

After method selection 0.52 ± 0.14 

The correlation coefficients were significantly different at the measurement points 

due to differences in thoracic variations by position and breath sounds. The correlation 

coefficients for the magnetic sensor measurements were significantly higher at 

measurement points (4) and (2) than at the other points. This is likely because the 

measurement points are closer to the upper thorax and abdomen than the other points, 

and thorax variation is more significant in these points. In addition, the correlation 

coefficients were significantly higher at the measurement point (2) than at the other 

measurement points for the accelerometer and gyro sensor measurements. This is because 

the measurement point (2) is close to the top of the thorax, and the stethoscope is placed 

at an angle to the body compared to other points, so the thoracic variations are easily 

expressed as angular displacements. Thus, the accuracy of breathing waveform 

acquisition may change depending on the difference in thoracic variation depending on 

position. These results are used to select the most appropriate breath measurement 

method according to the measurement position. The correlation coefficient for breath 
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sounds was lower near measurement point (4) than at other points, but we consider that 

this was due to the fact that it was in the peripheral region of the bronchi. This is because 

the breath sounds are generated only in the bronchi from the oral cavity to the seventh to 

ninth branches, which are turbulent regions, and the breath sounds therefore tend to 

become lower than those in other regions as they get closer to the end region of the 

bronchi, being easily affected by noise such as clothing. In addition, in the peripheral 

region of the bronchi, the percentage of alveolar sounds is higher than bronchial sounds 

in the collected breath sounds. Therefore, as described in Section 2.2, the frequency range 

of exhalation and inhalation sounds tended to be lower than that of the bronchial sounds, 

making it difficult to obtain breathing waveforms in the frequency range selected for this 

experiment. In this work, the ratio of SI in the range of 500–800 Hz was acquired as the 

breathing waveform. However, if the ratio of SI in the range of 300–600 Hz was acquired 

as the breathing waveforms for the alveolar sounds, the results would be as shown in 

Table 11. Therefore, acquiring more accurate breathing waveforms for breath sounds is 

possible by changing the preprocessing according to the position as well as the frequency 

band of the exhalation–inhalation discrimination. 

Table 11. Breathing waveform calculations by changing the frequency band Mean value of 

correlation coefficient. 

Measurement point (1) 
300–600 Hz 0.40 ± 0.09 

500–800 Hz 0.43 ± 0.10 

Measurement point (2) 
300–600 Hz 0.42 ± 0.09 

500–800 Hz 0.48 ± 0.14 

Measurement point (3) 
300–600 Hz 0.44 ± 0.15 

500–800 Hz 0.45 ± 0.16 

Measurement point (4) 
300–600 Hz 0.47 ± 0.17 

500–800 Hz 0.43 ± 0.12 

Measurement point (5) 
300–600 Hz 0.42 ± 0.13 

500–800 Hz 0.47 ± 0.13 

One limitation of this research is that the quality of circuit design and component 

mounting needs to be improved because this research aims to confirm the principle of a 

new respiration sensing method. Collaborating with hardware design experts for future 

practical use is necessary. 

5. Conclusions 

In this study, we propose breath measurement methods for synchronized 

reproduction of breath sounds in a stethoscope-based training system. Two methods are 

proposed here, namely those based on thoracic variations and breath sounds. For the 

breath measurement method using thoracic variations, a pressure sensor, an 

accelerometer, a gyro sensor, and a magnetic sensor were selected for the measurements, 

and a stethoscope-type measurement device was created using a 3D printer. For the breath 

measurement method using breath sounds, a measurement device using a stethoscope 

and a microphone was created, and a method for acquiring breathing waveforms was 

proposed to discriminate exhalation and inhalation sounds using spectral integration and 

conversion to waveforms. 

The evaluation experiments showed correlations with the reference values of the 

breathing waveform, but strong correlations could not be obtained. For each method, the 

value of the correlation coefficient was higher when the measurement method with the 

highest correlation coefficient was selected, suggesting that the breath measurement 

performance can be improved by selecting an appropriate method. 

The contribution of this paper is that we devised a new principle that enables an 

effective and real-time acquisition of breathing, under the constraint that it can be built 
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into the chest piece, and evaluated its effectiveness. In the future, we intend to 

systematically study selection of the measurement method according to measurement 

conditions. We also aim to examine the optimal method of dealing with noise and signal 

preprocessing, which this study could not examine to obtain a stronger correlation with 

reference values. Finally, we would like to consider implementation of a breath sound 

synchronization reproduction method for auscultation training systems. 
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