Asian Research Journal of Mathematics

Volume 20, Issue 1, Page 49-61, 2024; Article no.ARJOM.113136 ISSN: 2456-477X

Minimum Injective Eccentric Dominating Energy of Graphs

Riyaz Ur Rehman A.^{a*} and A. Mohamed Ismayil ^a

^a PG and Research Department of Mathematics, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli-620020, Tamil Nadu, India.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARJOM/2024/v20i1780

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/113136

Original Research Article

Received: 09/12/2023 Accepted: 13/02/2024 Published: 17/02/2024

Abstract

The minimum injective eccentric dominating energy of a graph is defined. The minimum injective eccentric dominating energy for star, complete and cocktail party graphs are computed. Inspired by McClelland's bounds for energy of a graph, the upper and lower bounds of minimum injective eccentric dominating energy for star, complete and cocktail party graphs are discussed. Properties of eigenvalues of minimum injective eccentric dominating matrix for star, complete and cocktail party graphs are discussed.

Keywords: Domination; eccentric domination; injective eccentric dominating eigenvalues; minimum injective eccentric dominating set; minimum injective eccentric dominating energy.

1 Introduction

Ore [1] and Berge [2] introduced domination in graphs. In 1978 Ivan Gutman [3] introduced "the concept energy of a graph. Inspired by Ivan Gutman many authors have explored different types of energy in graph

Asian Res. J. Math., vol. 20, no. 1, pp. 49-61, 2024

^{*}Corresponding author: Email: fouzanriyaz@gmail.com;

theory". "The concept of minimum dominating energy of a graph was introduced" by M.R. Rajesh Kanna et al. [4-6]. "The concept of eccentric domination was introduced" by T. N. Janakiraman et al. [7] in 2010. "The concept of minimum eccentric dominating energy of graphs was introduced" by Tejaskumar R, A Mohamed Ismayil and Ivan Gutman [8]. Anwar Alwardi et al. [9] introduced "injective domination of graphs". Riyaz Ur Rehman A et al. [10] introduced injective eccentric domination in graphs. Inspired by Tejaskumar et al. [8] "minimum injective eccentric dominating energy $\mathbb{E}_{ined}(G)$ of graphs is introduced".

2 Preliminaries

Definition 2.1: Haynes et al. [11] A subset D of V is said to be a dominating set, if every vertex not in D is adjacent to at least one vertex in D.

Definition 2.2: Janakiraman et al. [7] The eccentricity e(v) of v is the distance to a vertex farthest from v. Thus $e(v) = \max \{d(u, v) : u \in V\}$. For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex. Eccentric set of a vertex v is defined as $E(v) = \{u \in V(G) : d(u, v) = e(v)\}$.

Definition 2.3: Janakiraman et al. [7] A set $S \subseteq V(G)$ is an eccentric dominating set (ED set) if S is a dominating set of G and for every vertex $v \in V - D$, there exists at least one eccentric vertex of v in S.

Definition 2.4: Riyaz and Ismayil [10] An eccentric dominating set (ED set) *S* is called an injective eccentric dominating set (INED set) if for every vertex $v \in V - S$ there exists a vertex $u \in S$ such that $|\Gamma(v, u)| \ge 1$ where $\Gamma(v, u)$ is the set of vertices different from v and u, that are adjacent to both v and u.

Definition 2.5: Kanna et al. [4] For G = (V, E), let $\mathbb{M} = (m_{ij})$ be a minimum dominating matrix defined by

$$(m_{ij}) = \begin{cases} 1, & \text{if } v_i v_j \in E, \\ 1, & \text{if } i = j \text{ and } v_i \in D, \\ 0, & \text{otherwise} \end{cases}$$

and $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of M. The minimum dominating energy $\mathbb{E}_D = \sum_{i=1}^n |\lambda_i|$.

3 The Minimum Injective Eccentric Dominating Energy

In this section the minimum injective eccentric dominating energy is introduced. The minimum injective eccentric dominating energy for star, complete and cocktail party graphs are computed. Properties, upper and lower bounds of minimum injective eccentric dominating energy for some class of graphs are discussed. The eccentricity and eccentric vertices of antenna graph are tabulated in Table 1. The minimum injective eccentric dominating energy for some class of graphs are discussed. The minimum injective eccentric dominating energy of various standard graphs along with their characteristic equation, eigenvalues and minimum injective eccentric dominating energy have been tabulated in Table 2. For definitions regarding standard graphs refer the textbook 'Graph Classes- A Survey' [12,13].

Definition 3.1: For G = (V, E), let *D* be a minimum injective eccentric dominating set (INED set) of *G* then the minimum injective eccentric dominating (INED) matrix of *G* is a $n \times n$ defined by $\mathbb{M}_{ined}(G) = (m_{ij})$, where

$$(m_{ij}) = \begin{cases} 1, & \text{if } |\Gamma(v_i, v_j)| \ge 1 \text{ and either } v_i \in E(v_j) \text{ or } v_j \in E(v_i), \\ 1, & \text{if } i = j \text{ and } v_i \in D, \\ 0, & \text{otherwise} \end{cases}$$

Definition 3.2: The characteristic polynomial of the minimum INED matrix $\mathbb{M}_{ined}(G)$ is denoted by $\mathcal{F}_n(G, \wp) = \det(\mathbb{M}_{ined}(G) - \wp I)$, where *I* is the identity matrix.

Definition 3.3: The eigenvalues of $\mathbb{M}_{ined}(G)$ is defined by the minimum INED eigenvalues of G.

Remark 3.1: Since $\mathbb{M}_{ined}(G)$ is symmetric, the eigenvalues are real. We label the eigenvalues in non-increasing order $\wp_1 \ge \wp_2 \ge \cdots \ge \wp_n$.

Definition 3.4: The minimum INED energy of G is defined by $\mathbb{E}_{ined}(G) = \sum_{i=1}^{n} |\mathcal{D}_i|$, where \mathcal{D}_i is the eigenvalues of $\mathbb{E}_{ined}(G)$.

Remark 3.2: The trace of $\mathbb{M}_{ined}(G)$ = Injective eccentric domination number.

Example 3.1: In Fig. 1 antenna graph has 6 vertices and 7 edges.

Table 1. Eccentricity and eccentric vertices of antenna graph

Vertex	Eccentricity $e(v)$	Eccentric vertex $E(v)$
v_1	3	$\{v_5, v_6\}$
v_2	2	$\{v_5, v_6\}$
v_3	2	$\{v_1, v_6\}$
v_4	2	$\{v_1, v_5\}$
v_5	3	$\{v_1\}$
v ₆	3	$\{v_1\}$

The minimum INED sets of an antenna graph given in Fig. 1 are $D_1 = \{v_1, v_2, v_5\}, D_2 = \{v_1, v_2, v_6\}, D_3 = \{v_1, v_3, v_5\}, D_4 = \{v_1, v_4, v_6\}$ and $D_5 = \{v_1, v_5, v_6\}$.

1. $D_1 = \{v_1, v_2, v_5\},\$

$$\mathbb{M}_{ined}(G) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

The characteristic polynomial $\mathcal{F}_n(G, \wp) = \wp^6 - 3\wp^5 - 3\wp^4 + 11\wp^3 + 2\wp^2 - 8\wp - 2$.

Minimum injective eccentric dominating eigenvalues are $\wp_1 \approx 2.6129$, $\wp_2 \approx 1.808$, $\wp_3 \approx 1.2582$, $\wp_4 \approx -0.2582$, $\wp_5 \approx -0.808$, $\wp_6 \approx -1.6129$.

Minimum injective eccentric dominating energy $\mathbb{E}_{ined}(G) \approx 8.3582$.

2.
$$D_2 = \{v_1, v_2, v_6\},\$$

$$\mathbb{M}_{ined}(G) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

The characteristic polynomial $\mathcal{F}_n(G, \wp) = \wp^6 - 3\wp^5 - 3\wp^4 + 11\wp^3 + 2\wp^2 - 8\wp - 2$.

Minimum injective eccentric dominating eigenvalues are $\wp_1 \approx 2.6129$, $\wp_2 \approx 1.808$, $\wp_3 \approx 1.2582$, $\wp_4 \approx -0.2582$, $\wp_5 \approx -0.808$, $\wp_6 \approx -1.6129$.

Minimum injective eccentric dominating energy $\mathbb{E}_{ined}(G) \approx 8.3582$.

3.
$$D_3 = \{v_1, v_3, v_5\},\$$

$$\mathbb{M}_{ined}(G) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

The characteristic polynomial $\mathcal{F}_n(G,\wp) = \wp^6 - 3\wp^5 - 3\wp^4 + 11\wp^3 + 2\wp^2 - 8\wp - 2$.

Minimum injective eccentric dominating eigenvalues are $\wp_1 \approx 2.6129$, $\wp_2 \approx 1.808$, $\wp_3 \approx 1.2582$, $\wp_4 \approx -0.2582$, $\wp_5 \approx -0.808$, $\wp_6 \approx -1.6129$.

Minimum injective eccentric dominating energy $\mathbb{E}_{ined}(G) \approx 8.3582$.

4.
$$D_4 = \{v_1, v_4, v_6\},\$$

$$\mathbb{M}_{ined}(G) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

The characteristic polynomial $\mathcal{F}_n(G, \wp) = \wp^6 - 3\wp^5 - 3\wp^4 + 11\wp^3 + 2\wp^2 - 8\wp - 2$.

Minimum injective eccentric dominating eigenvalues are $\wp_1 \approx 2.6129$, $\wp_2 \approx 1.808$, $\wp_3 \approx 1.2582$, $\wp_4 \approx -0.2582$, $\wp_5 \approx -0.808$, $\wp_6 \approx -1.6129$.

Minimum injective eccentric dominating energy $\mathbb{E}_{ined}(G) \approx 8.3582$.

5.
$$D_5 = \{v_1, v_5, v_6\},\$$

$$\mathbb{M}_{ined}(G) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

The characteristic polynomial $\mathcal{F}_n(G, \wp) = \wp^6 - 3\wp^5 - 3\wp^4 + 11\wp^3 + 3\wp^2 - 9\wp - 4$.

Minimum injective eccentric dominating eigenvalues are $\wp_1 \approx 2.5616$, $\wp_2 \approx 1.618$, $\wp_3 \approx 1.618$, $\wp_4 \approx -0.618$, $\wp_5 \approx -0.618$, $\wp_6 \approx -1.5616$.

Minimum injective eccentric dominating energy $\mathbb{E}_{ined}(G) \approx 8.5952$.

Observation 3.1: The energy of antenna graph G given in the Example 1 varies for different minimum INED sets.

For the set D_1 , D_2 , D_3 , D_4 , $\mathbb{E}_{ined}(G) \approx 8.3582$,

For the set D_5 , $\mathbb{E}_{ined}(G) \approx 8.5952$.

Remark 3.3: The minimum INED energy depends on the different minimum INED set. The examples can be seen in Table 2.

Theorem 3.1: For a star graph S_n where n > 2 the minimum INED energy of star $\mathbb{E}_{ined}(S_n) = 1 + (n-3) + \left|\frac{(n-2)+\sqrt{(n-2)^2+4}}{2}\right| + \left|\frac{(n-2)-\sqrt{(n-2)^2+4}}{2}\right|.$

Proof: Consider a star graph S_n with the vertex set $V = \{v_1, v_2, ..., v_k, ..., v_n\}$ where v_k is the central vertex. The minimum INED set is $D = \{v_1, v_k\}$ then

Characteristic polynomial is $\mathcal{F}_n(S_n, \wp) = \det(\mathbb{M}_{ined}(S_n) - \wp I).$

	1-1	1		1		••	0			1	1	1	
	1	-8	0	1	•	••	0			1	1	1	
	1	1	-	-60		••	0			1	1	1	
	:	÷	÷		÷		÷		÷	:	:	÷	
=	0	0	0		•••	1	- 8	9	•••	0	0	0	
	:	÷	÷		÷		÷		÷	:	:	÷	
	1	1	1		•	••	0	•••		$-\wp$	1		1
	1	1	1		•	••	0	•••		1	$-\wp$		1
	l 1	1	1		•	••	0	•••		1	1	-	-Ю

The characteristic polynomial $\mathcal{F}_n(S_n, \wp) = (-1)^n (\wp - 1)(\wp + 1)^{n-3} (\wp^2 - (n-2)\wp - 1).$

The minimum injective eccentric dominating eigenvalues are

$$\begin{split} \wp &= 1, \\ \wp &= -1 \; ((n-3) \; times), \\ \wp &= \frac{(n-2) + \sqrt{(n-2)^2 + 4}}{2}, \\ \wp &= \frac{(n-2) - \sqrt{(n-2)^2 + 4}}{2}. \end{split}$$

The minimum INED energy of the star S_n is given by

$$\mathbb{E}_{ined}(S_n) = 1 + |(-1)|(n-3) + \left|\frac{(n-2) + \sqrt{(n-2)^2 + 4}}{2}\right| + \left|\frac{(n-2) - \sqrt{(n-2)^2 + 4}}{2}\right|$$
$$\mathbb{E}_{ined}(S_n) = 1 + (n-3) + \left|\frac{(n-2) + \sqrt{(n-2)^2 + 4}}{2}\right| + \left|\frac{(n-2) - \sqrt{(n-2)^2 + 4}}{2}\right|.$$

Remark 3.4: The number of pairs of vertices where the common neighbourhood exists in a star graph S_n is given by (n-1)(n-2).

Theorem 3.2: For a graph K_n where n > 2 the minimum INED energy of complete graph $\mathbb{E}_{ined}(K_n) = (n-2) + \left| \frac{(n-1) + \sqrt{(n-1)^2 + 4}}{2} \right| + \left| \frac{(n-1) - \sqrt{(n-1)^2 + 4}}{2} \right|.$

Proof: Let $V = \{v_1, v_2, ..., v_n\}$ be the vertex set of a complete graph K_n . The minimum INED set is $D = \{v_1\}$ then

$$\mathbb{M}_{ined}(K_n) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 1 & 1 \\ 1 & 1 & 0 & & 1 & 1 & 1 \\ \vdots & \ddots & & \vdots & \vdots \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 0 & 1 \\ 1 & 1 & 1 & & 1 & 1 & 0 \end{pmatrix}_{n \times n}$$

Characteristic polynomial is $\mathcal{F}_n(K_n, \wp) = \det(\mathbb{M}_{ined}(K_n) - \wp I)$.

	1 – Ø	1	L	1		1	1	1
	1	_	Ð	1		1	1	1
	1	1	L	-60		1	1	1
=		:			۰.		:	
	1	1	1			$-\wp$	1	1
	1	1	1		•••	1	-60	1
	1	1	1			1	1	-60

The characteristic polynomial $\mathcal{F}_n(K_n, \wp) = (-1)^{n-2}(\wp + 1)^{n-2}(\wp^2 - (n-1)\wp - 1).$

The minimum INED eigenvalues are

$$\begin{split} \wp &= -1 \; ((n-2) \; times), \\ \wp &= \frac{(n-1) + \sqrt{(n-1)^2 + 4}}{2}, \\ \wp &= \frac{(n-1) - \sqrt{(n-1)^2 + 4}}{2}. \end{split}$$

The minimum INED energy of the complete graph K_n is given by

$$\mathbb{E}_{ined}(K_n) = |(-1)|(n-2) + \left|\frac{(n-1) + \sqrt{(n-1)^2 + 4}}{2}\right| + \left|\frac{(n-1) - \sqrt{(n-1)^2 + 4}}{2}\right|.$$
$$\mathbb{E}_{ined}(K_n) = (n-2) + \left|\frac{(n-1) + \sqrt{(n-1)^2 + 4}}{2}\right| + \left|\frac{(n-1) - \sqrt{(n-1)^2 + 4}}{2}\right|.$$

Theorem 3.3: For a cocktail party graph *G* where $n \ge 4$ the minimum INED energy of cocktail party graph $\mathbb{E}_{ined}(G) = \left[\left| \frac{1+\sqrt{5}}{2} \right| + \left| \frac{1-\sqrt{5}}{2} \right| \right] \frac{n}{2}$.

Proof: Let $V = \{v_1, v_2, ..., v_n\}$ be the vertex set of cocktail party graph. The minimum INED set is $D = \{v_1, v_2, ..., v_{n/2}\}, |D| = n/2$ then

$$\mathbb{M}_{ined}(G) = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & \dots & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 & 1 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \end{pmatrix}_{n \times n}$$

Characteristic polynomial is $\mathcal{F}_n(G, \mathcal{D}) = \det (\mathbb{M}_{ined}(G) - \mathcal{D}I).$

	$ 1 - \wp $		0		0	0		0	0	1	0	
	0	1	- &	9	0	0		0	0	0	1	
	0		0		$1 - \wp$	0		1	0	0	0	
		0	0	0		$1 - \wp$	·	0	1	0	0	
=		÷	÷	÷		:	:	:	:	÷	:	
		0	0	1		0		$-\wp$	0	0	0	
		0	0	0		1		0	$-\wp$	0	0	
		1	0	0		0		0	0	-Ю	0	
	I	0	1	0		0		0	0	0	-60	I

The characteristic polynomial $\mathcal{F}_n(G, \wp) = (\wp^2 - \wp - 1)^{\frac{n}{2}}$.

The minimum injective eccentric dominating eigenvalues are

$$\begin{split} \wp &= \frac{1+\sqrt{5}}{2} \left(\left(\frac{n}{2} \right) \ times \right), \\ \wp &= \frac{1-\sqrt{5}}{2} \left(\left(\frac{n}{2} \right) \ times \right). \end{split}$$

The minimum INED energy of the cocktail party graph G is given by

$$\mathbb{E}_{ined}(G) = \left[\left| \frac{1+\sqrt{5}}{2} \right| + \left| \frac{1-\sqrt{5}}{2} \right| \right] \frac{n}{2}.$$

Table 2.	Eigenvalues and	l energy of minimu	m iniective eccentric	• dominating matrix (of various graphs
I dole I	Eigen values and	chergy of mining	m mjeen ve eeeenn n	a a a a a a a a a a a a a a a a a a a	or various graphs

Graph	Figure	Minimum INED set	Characteristic equation $\mathcal{F}_n(G, \wp)$	Roots $\mathscr{D}(G)$	Energy E _{ined} (G)
Dart graph	$v_2 \bullet \qquad v_3 \\ v_5 \\ v_5 \\ v_1 \\ v_4 \\ v_5 \\ v_5 \\ v_5 \\ v_6 \\ v_$	$\{v_2, v_3\},$	$-\wp^5 + 2\wp^4 + 6\wp^3 - 4\wp^2 - 5\wp + 2.$	$\wp_1 = 3.3234,$ $\wp_2 = 1,$ $\wp_3 = 0.3579,$ $\wp_4 = -1,$ $\wp_5 = -1.6813.$	7.3626
		$\{v_2, v_4\}.$	$-\wp^{5} + 2\wp^{4} + 6\wp^{3} - 5\wp^{2} - 5\wp + 3.$	$\wp_1 = 3.2534,$ $\wp_2 = 1,$ $\wp_3 = 0.52,$ $\wp_4 = -1,$ $\wp_5 = -1.7734.$	7.5468
Paw graph	v_1 v_2 v_3	$\{v_1, v_3\},$		$\wp_1 = 2.618,$ $\wp_2 = 0.618,$ $\wp_3 = 0.382,$ $\wp_4 = -1.618.$	5.236

Graph	Figure	Minimum INED set	Characteristic equation $\mathcal{F}_n(G, \wp)$	Roots $\wp(G)$	Energy E _{ined} (G)
		$\{v_2, v_3\},$	$ \begin{array}{c} \wp^4 - 2\wp^3 - \\ 3\wp^2 + 4\wp. \end{array} $	$\wp_1 = 2.5616,$ $\wp_2 = 1,$	5.1232
				$\wp_3 = 0,$ $\wp_4 = -1.5616.$	
		$\{v_3, v_4\}.$		$\wp_1 = 2.618,$ $\wp_2 = 0.618,$ $\wp_3 = 0.382,$ $\wp_4 = -1.618.$	5.236
Banner graph	$v_1 \bullet v_2$ $v_3 \bullet v_4$ $v_5 \bullet$	$\{v_2, v_5\}.$	$ \begin{array}{r} -\wp^{5} + 2\wp^{4} + \\ 3\wp^{3} - 3\wp^{2} - \\ 4\wp - 1. \end{array} $	$\wp_1 = 2.4142,$ $\wp_2 = 1.618,$ $\wp_3 = 1,$ $\wp_4 = -0.4142,$ $\wp_2 = 0.618$	6.0644
Claw graph	$v_1 \bullet$ $v_2 \bullet v_3$	$\{v_1, v_3\},$	$\wp^4 - 2\wp^3 - 2\wp^2 + 2\wp + 1.$	$\wp_1 = 1,$ $\wp_2 = -1,$ $\wp_3 = 2.4142,$ $\wp_4 = -0.4142.$	4.8284
	v_4 •	$\{v_2, v_3\},$	$ \wp^4 - 2\wp^3 - 2\wp^2 + 2\wp + 1. $	$\begin{split} \wp_1 &= 1, \\ \wp_2 &= -1, \\ \wp_3 &= 2.4142, \\ \wp_4 &= -0.4142. \end{split}$	4.8284
		$\{v_3, v_4\}.$	$\wp^4 - 2\wp^3 - 2\wp^2 + 2\wp + 1.$	$\wp_1 = 1,$ $\wp_2 = -1,$ $\wp_3 = 2.4142,$ $\wp_4 = -0.4142.$	4.8284
(3,2) Tadpole graph	v_1 v_2 v_3 v_4 v_5	$\{v_1, v_4\},$	$-\wp^5 + 2\wp^4 + 2\wp^3 - 4\wp^2 - \wp + 1.$	$\begin{split} \wp_1 &= 1.8019, \\ \wp_2 &= 1.618, \\ \wp_3 &= 0.445, \\ \wp_4 &= -0.618, \\ \wp_5 &= -1.247. \end{split}$	5.7299
		$\{v_4, v_5\}.$	$-\wp^{5} + 2\wp^{4} + 2\wp^{3} - 4\wp^{2} - \wp + 1.$	$\wp_1 = 1.8019,$ $\wp_2 = 1.618,$ $\wp_3 = 0.445,$ $\wp_4 = -0.618,$ $\wp_5 = -1.247.$	5.7299
Cricket graph	v_1 v_2 v_2 v_3 v_4 v_5	$\{v_3, v_4\},$	$-\wp^{5} + 2\wp^{4} + 6\wp^{3} - 5\wp^{2} - 4\wp.$	$\wp_1 = 3.2554,$ $\wp_2 = 1.198,$ $\wp_3 = 0,$ $\wp_4 = -0.5345,$ $\wp_5 = -1.9188.$	6.9067
		{ <i>v</i> ₄ , <i>v</i> ₅ }.	$-\wp^5 + 2\wp^4 + 6\wp^3 - 5\wp^2 - 4\wp.$	$\begin{split} \wp_1 &= 3.2554, \\ \wp_2 &= 1.198, \\ \wp_3 &= 0, \\ \wp_4 &= -0.5345, \\ \wp_5 &= -1.9188. \end{split}$	6.9067

Rehman and Ismayil; Asian Res. J. Math., vol. 20, no. 1, pp. 49-61, 2024; Article no.ARJOM.113136

Graph	Figure	Minimum INFD set	Characteristic	Roots $\mathscr{D}(G)$	Energy
House graph	v_2 v_3	$\{v_2, v_4\},\$	$\frac{-\wp^{5} + 2\wp^{4} + 3\wp^{3} - 5\wp^{2} - 2\wp + 1.$	$\wp_1 = 2.1701,$ $\wp_2 = 1.618,$ $\wp_3 = 0.3111,$ $\wp_4 = -0.618,$ $\wp_5 = -1.4812.$	<u>Eined</u> (U) 6.1984
	$v_4 \bullet v_5$	{ <i>v</i> ₃ , <i>v</i> ₅ }.	$-\wp^{5} + 2\wp^{4} + 3\wp^{3} - 5\wp^{2} - 2\wp + 1.$	$\wp_1 = 2.1701,$ $\wp_2 = 1.618,$ $\wp_3 = 0.3111,$ $\wp_4 = -0.618,$ $\wp_5 = -1.4812.$	6.1984
Gem graph	v_3 v_2 v_4 v_5	$\{v_1, v_2\},$	$-\wp^5 + 2\wp^4 + 6\wp^3 - 4\wp^2 - 8\wp.$	$\begin{split} \wp_1 &= 3.2361, \\ \wp_2 &= 1.4142, \\ \wp_3 &= 0, \\ \wp_4 &= -1.2361, \\ \wp_5 &= -1.4142. \end{split}$	7.3006
		$\{v_3, v_4\}.$	$-\wp^5 + 2\wp^4 + 6\wp^3 - 2\wp^2 - 5\wp.$	$\begin{split} \wp_1 &= 3.4495, \\ \wp_2 &= 1, \\ \wp_3 &= 0, \\ \wp_4 &= -1, \\ \wp_5 &= -1.4495. \end{split}$	6.899
Fish graph	v_3 v_4 v_2 v_2 v_4 v_5	$\{v_2, v_3\},$	$ \wp^6 - 2\wp^5 - 5\wp^4 + 5\wp^3 + 8\wp^2 - \wp - 2. $	$\begin{split} \wp_1 &= 2.8136, \\ \wp_2 &= 1.618, \\ \wp_3 &= 0.5293, \\ \wp_4 &= -0.618, \\ \wp_5 &= -1, \\ \wp_6 &= -1.3429. \end{split}$	7.9218
		{ <i>v</i> ₃ , <i>v</i> ₅ }.		$\begin{split} \wp_1 &= 2.8136, \\ \wp_2 &= 1.618, \\ \wp_3 &= 0.5293, \\ \wp_4 &= -0.618, \\ \wp_5 &= -1, \\ \wp_6 &= -1.3429. \end{split}$	7.9218
A graph	$v_1 v_2$ $v_3 v_4$ $v_5 v_6$	$\{v_1, v_5, v_6\},$	$\wp^{6} - 3\wp^{5} - \wp^{4} + 8\wp^{3} - 2\wp^{2} - 5\wp + 2.$	$\wp_1 = 2,$ $\wp_2 = 1.8019,$ $\wp_3 = 0.445,$ $\wp_4 = 1,$ $\wp_5 = -1,$ $\wp_6 = -1.247.$	7.4939
	~3 ~0	$\{v_2, v_5, v_6\}.$	$ \wp^{6} - 3\wp^{5} - \wp^{4} + 8\wp^{3} - 2\wp^{2} - 5\wp + 2. $	$\begin{split} \wp_1 &= 2, \\ \wp_2 &= 1.8019, \\ \wp_3 &= 0.445, \\ \wp_4 &= 1, \\ \wp_5 &= -1, \\ \wp_6 &= -1.247. \end{split}$	7.4939

Graph	Figure	Minimum INED set	Characteristic equation $\mathcal{F}_n(G, \wp)$	Roots $\mathscr{D}(G)$	Energy E _{ined} (G)
4 polynomial graph	v_1 v_2 v_3 v_4 v_5 v_6	{v ₃ , v ₄ }.	$ \beta^{6} - 2\wp^{5} - 4\wp^{4} + 6\wp^{3} + 5\wp^{2} - 2\wp - 1. $	$\begin{split} \wp_1 &= 2.247, \\ \wp_2 &= 1.8794, \\ \wp_3 &= 0.555, \\ \wp_4 &= -0.3473, \\ \wp_5 &= -0.8019, \\ \wp_6 &= -1.5321. \end{split}$	7.6627
Net graph	v_1 v_2 v_3 v_4 v_5 v_6	$\{v_1, v_2, v_6\}.$		$\wp_1 = 2.5616,$ $\wp_2 = 1.618,$ $\wp_3 = 1.618,$ $\wp_4 = -0.618,$ $\wp_5 = -0.618,$ $\wp_6 = -1.5616.$	8.5952
Kite graph	$v_2 \xrightarrow{v_1} v_3 \xrightarrow{v_4} v_4$	{v ₂ , v ₄ }.	$-\wp^5 + 2\wp^4 + 2\wp^3 - 3\wp^2 - 2\wp.$	$\wp_1 = 2,$ $\wp_2 = 1.618,$ $\wp_3 = 0,$ $\wp_4 = -0.618,$ $\wp_5 = -1.$	5.236
3 prism	v_1 v_2 v_3 v_4 v_5 v_6	$\{v_1, v_2\},$	$\wp^{6} - 2\wp^{5} - 5\wp^{4} + 8\wp^{3} + 7\wp^{2} - 6\wp - 3.$	$\begin{split} \wp_1 &= 2.4142, \\ \wp_2 &= 1.7321, \\ \wp_3 &= 1, \\ \wp_4 &= -0.4142, \\ \wp_5 &= -1, \\ \wp_6 &= -1.7321. \end{split}$	8.2926
		$\{v_3, v_4\},$	$\wp^{6} - 2\wp^{5} - 5\wp^{4} + 8\wp^{3} + 7\wp^{2} - 6\wp - 3.$	$\wp_1 = 2.4142,$ $\wp_2 = 1.7321,$ $\wp_3 = 1,$ $\wp_4 = -0.4142,$ $\wp_5 = -1,$	8.2926
		$\{v_4, v_6\}.$	$\wp^6 - 2\wp^5 - 5\wp^4 + 8\wp^3 + 7\wp^2 - 6\wp - 3.$	$\begin{array}{l} \wp_6 = -1.7321. \\ \wp_1 = 2.4142, \\ \wp_2 = 1.7321, \\ \wp_3 = 1, \\ \wp_4 = -0.4142, \\ \wp_5 = -1, \\ \wp_6 = -1.7321. \end{array}$	8.2926

4 Properties of Minimum Injective Eccentric Dominating Eigenvalues

Theorem 4.1: If D is the minimum INED set and $\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_n$ are the eigenvalues of minimum INED matrix $\mathbb{M}_{ined}(G)$ then

- 1. For any graph G, $\sum_{i=1}^{n} \mathscr{D}_{i} = |D|$, 2. For a star graph S_{n} , $\sum_{i=1}^{n} \mathscr{D}_{i}^{2} = |D| + (n-1)(n-2)$, 3. For a complete graph K_{n} , $\sum_{i=1}^{n} \mathscr{D}_{i}^{2} = |D| + (n)(n-1)$, 4. For a cocktail party graph G, $\sum_{i=1}^{n} \mathscr{D}_{i}^{2} = |D| + n$.

Proof:

1. The trace of $\mathbb{M}_{ined}(G)$ is the sum of eigenvalues of $\mathbb{M}_{ined}(G)$.

$$\sum_{i=1}^n \mathscr{D}_i = \sum_{i=1}^n m_{ii} = |D|.$$

2. For a star graph S_n , sum of the squares of eigenvalues of $\mathbb{M}_{ined}(G)$ is trace of $[\mathbb{M}_{ined}(G)]^2$

$$\sum_{i=1}^{n} \wp_{i}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} m_{ij} = \sum_{i=1}^{n} (m_{ii})^{2} + \sum_{i \neq j} m_{ij} m_{ij} = \sum_{i=1}^{n} (m_{ii})^{2} + 2 \sum_{i < j} (m_{ij})^{2}$$
$$\sum_{i=1}^{n} \wp_{i}^{2} = |D| + (n-1)(n-2)$$

Since for a star graph S_n , $2\sum_{i < j} (m_{ij})^2 = (n-1)(n-2)$.

3. For a complete graph K_n sum of square of eigenvalues of $\mathbb{M}_{ined}(G)$ is trace of $[\mathbb{M}_{ined}(G)]^2$.

$$\sum_{i=1}^{n} \wp_{i}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} m_{ij} = \sum_{i=1}^{n} (m_{ii})^{2} + \sum_{i \neq j} m_{ij} m_{ij} = \sum_{i=1}^{n} (m_{ii})^{2} + 2 \sum_{i < j} (m_{ij})^{2}$$
$$\sum_{i=1}^{n} \wp_{i}^{2} = |D| + (n)(n-1)$$

Since for a complete graph K_n , $2\sum_{i < j} (m_{ij})^2 = (n)(n-1)$.

4. Similarly, for a cocktail graph G sum of square of eigenvalues of $\mathbb{M}_{ined}(G)$ is trace of $[\mathbb{M}_{ined}(G)]^2$.

$$\sum_{i=1}^{n} \wp_{i}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} m_{ij} = \sum_{i=1}^{n} (m_{ii})^{2} + \sum_{i \neq j} m_{ij} m_{ij} = \sum_{i=1}^{n} (m_{ii})^{2} + 2 \sum_{i < j} (m_{ij})^{2}$$
$$\sum_{i=1}^{n} \wp_{i}^{2} = |D| + n$$

Since for a cocktail graph G, $2\sum_{i < j} (m_{ij})^2 = n$.

Theorem 4.2: For a star graph S_n , where n > 3, if *D* be the minimum INED set and $W = |\det \mathbb{M}_{ined}(G)|$ then

$$\sqrt{|D| + (n-1)(n-2) + n(n-1)W^{\frac{2}{n}}} \le \mathbb{E}_{ined}(G) \le \sqrt{n((n-1)(n-2) + |D|)}$$

Proof: By Cauchy schwarz inequality $(\sum_{i=1}^{n} g_i h_i)^2 \leq (\sum_{i=1}^{n} g_i^2)(\sum_{i=1}^{n} h_i^2)$. If $g_i = 1$ and $h_i = \wp_i$ then

$$\begin{split} & \left(\sum_{i=1}^{n} |\mathscr{P}_i|\right)^2 \leq \left(\sum_{i=1}^{n} 1\right) \left(\sum_{i=1}^{n} \mathscr{P}_i^2\right) \\ & (\mathbb{E}_{ined}(G))^2 \leq n(|D| + (n-1)(n-2)) \\ & \Rightarrow \mathbb{E}_{ined}(G) \leq \sqrt{n(|D| + (n-1)(n-2))} \end{split}$$

Since the arithmetic mean is not smaller than geometric mean

$$\frac{1}{n(n-1)} \sum_{i \neq j} |\mathcal{D}_i| |\mathcal{D}_j| \ge \left[\prod_{i \neq j} |\mathcal{D}_i| |\mathcal{D}_j| \right]^{\frac{1}{n(n-1)}} = \left[\prod_{i=1}^n |\mathcal{D}_i|^{2(n-1)} \right]^{\frac{1}{n(n-1)}} = \left[\prod_{i=1}^n |\mathcal{D}_i| \right]^{\frac{2}{n}} = \left[\prod_{i=1}^n \mathcal{D}_i \right]^{\frac{2}{n}}$$

Rehman and Ismayil; Asian Res. J. Math., vol. 20, no. 1, pp. 49-61, 2024; Article no.ARJOM.113136

$$\frac{1}{n(n-1)} \sum_{i \neq j} |\mathcal{D}_i| |\mathcal{D}_j| = |\det \mathbb{M}_{ined}(S_n)|^{\frac{2}{n}} = W^{\frac{2}{n}}$$
$$\sum_{i \neq j} |\mathcal{D}_i| |\mathcal{D}_j| \ge n(n-1)W^{\frac{2}{n}}$$

Now consider

$$(\mathbb{E}_{ined}(S_n))^2 = \left(\sum_{i=1}^n |\mathcal{D}_i|\right)^2 = \left(\sum_{i=1}^n \mathcal{D}_i\right)^2 + \sum_{i\neq j} |\mathcal{D}_i| |\mathcal{D}_j|$$
$$(\mathbb{E}_{ined}(S_n))^2 = (|D| + (n-1)(n-2)) + n(n-1)W^{\frac{2}{n}}$$
$$\mathbb{E}_{ined}(S_n) \ge \sqrt{(|D| + (n-1)(n-2)) + n(n-1)W^{\frac{2}{n}}}$$

Theorem 4.3: For a complete graph K_n where n > 2, if D be the minimum INED set and $W = |\det M_{ined}(G)|$ then

$$\sqrt{|D| + n(n-1) + n(n-1)W^{\frac{2}{n}}} \le \mathbb{E}_{ined}(K_n) \le \sqrt{n(n(n-1) + |D|)}$$

Proof: The proof follows on the similar lines to Theorem 4.2.

Theorem 4.4: For a cocktail graph G where $n \ge 4$, if D be the minimum INED set and $W = |\det \mathbb{M}_{ined}(G)|$ then

$$\sqrt{|D| + n + n(n-1)W^{\frac{2}{n}}} \le \mathbb{E}_{ined}(G) \le \sqrt{n(n+|D|)}$$

Proof: The proof follows on the similar lines to Theorem 4.2.

Theorem 4.5: If $\mathcal{P}_1(G)$ is the largest minimum INED eigenvalue of $\mathbb{M}_{ined}(G)$ then

- 1. For a star graph S_n , $\wp_1(S_n) \ge \frac{|D| + (n-1)(n-2)}{n}$ 2. For a complete graph K_n , $\wp_1(K_n) \ge \frac{|D| + n(n-1)}{n}$ 3. For a cocktail graph G, $\wp_1(G) \ge \frac{|D| + n}{n}$

Proof:

1. Let *Y* be a non-zero vector, then by Bapat [14], $\mathcal{D}_{1}(\mathbb{M}_{ined}(S_{n})) = \frac{\max_{Y \neq 0}}{Y} \frac{Y^{T} \mathbb{M}_{ined}(S_{n}) Y}{Y^{T} Y}$ $\mathcal{D}_{1}(\mathbb{M}_{ined}(S_{n})) \geq \frac{U^{T} \mathbb{M}_{ined}(S_{n}) U}{U^{T} U} = \frac{|D| + (n-1)(n-2)}{n} \text{ where } U \text{ is the unit matrix.}$ Analogously, $\mathcal{D}_{1}(\mathbb{M}_{ined}(K_{n})) \geq \frac{U^{T} \mathbb{M}_{ined}(K_{n}) U}{U^{T} U} = \frac{|D| + (n-1)(n-2)}{n}.$

2.
$$\mathscr{D}_1(\mathbb{M}_{ined}(K_n)) \ge \frac{U^T M_{ined}(K_n)}{U^T U} = \frac{|D| + (n-1)(n-2)}{n}$$

3. $\mathscr{D}_1(\mathbb{M}_{ined}(G)) \ge \frac{U^T \mathbb{M}_{ined}(G) U}{U^T U} = \frac{|D| + n}{n}.$

5 Conclusion

In this paper minimum injective eccentric dominating energy of graph is introduced. The injective eccentric dominating energy of some standard graphs are calculated. Results related to the upper and lower bound of the energy of standard graphs is stated and proved.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Ore O. Theory of graphs. Amer. Math. Soc. Colloq. Publ. 38, American Mathematical Society, Providence, RI; 1962.
- [2] Berge C. The theory of graphs and its applications. Methuen & Co, Ltd., London; 1962.
- [3] Ivan Gutman. The energy of a graph. Ber. Math-Statist. Sekt. Forschungsz. Graz. 1978;103:1-22. DOI: 10.12691/tjant-5-6-2
- [4] MR Rajesh Kanna, Dharmendra BN, Sridhara G. Minimum dominating energy of a graph. International Journal of Pure and Applied Mathematics. 2013;25(4):707-718. DOI: 10.12732/ijpam.v85i4.7
- [5] Bernard J McClelland. Properties of the latent roots of a matrix: the estimation of π-electron energies. The Journal of Chemical Physics. 1971;55(2):640-643. DOI: 10.1063/1.1674889
- [6] Tejaskumar R, Ismayil AM.. The minimum superior eccentric dominating energy of graphs. Asian Res. J. Math. 2023;19(9):233-241.
 DOI: 10.9734/ARJOM/2023/v19i9715
- Janakiraman TN, Bhanumathi M, Muthammai S. Eccentric domination in graphs. International Journal of Engineering Science, Computing and Bio-Technology. 2010;1(2):1-16. Available:https://www.ijesacbt.com/archive/Volume7issue1001.pdf
- [8] Tejaskumar R, Mohamed Ismayil A, Ivan Gutman. Minimum eccentric dominating energy of graphs. International Journal of Mathematics Trends and Technology. 2023;69(6):31-38. Available:https://doi.org/10.14445/22315373/IJMTT-V69I6P505
- [9] Anwar Alwardi, R Rangarajan, Akram Alqesmah. On the injective domination of graphs. Palestine Journal of Mathematics. 2018;7(1). Available:https://pjm.ppu.edu/sites/default/files/papers/PJM_October_2017_23.pdf
- [10] Riyaz Ur Rehman A, Ismayil AM.. Injective eccentric domination in graphs. Baghdad Sci. J; 2024. DOI: 10.21123/bsj.2024.9659
- [11] T.W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of domination in graphs. CRC press, 1998.
- [12] Andreas Brandstadt, Van Bang Le, Jeremy P Spinrad. Graph classes: A survey. SIAM; 1999.
- [13] Riyaz Ur Rehman A, Ismayil AM.. Minimum equitable eccentric dominating energy of graphs. International Journal of Mathematics Trends and Technology. 2023;69(7):8-16. Available:https://doi.org/10.14445/22315373/IJMTT-V69I7P502
- [14] Ravindra B Bapat. Graphs and matrices. 2010;27. DOI:10.1007/978-1-84882-981-7

^{© 2024} Rehman and Ismayil; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.