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Abstract: In this paper, we present an innovative inertial navigation system (INS)/celestial navigation
system (CNS)/scene-matching navigation (SMN) adaptive integrated navigation algorithm designed
to achieve prolonged and highly precise navigation in sea areas. The algorithm establishes the
structure of the INS/CNS/SMN integrated navigation system. To ensure the availability of CNS in
the Nanhai Sea (South China Sea) area, a cloud and fog model is meticulously constructed. Three
distinct types of sea area landmarks are defined, and an automated classification model for sea area
landmarks, employing support vector machines (SVM), is developed. Corresponding matching
methods and strategies for these landmarks are also delineated. Concurrently, the observable
probability of each landmark is computed to generate a probability cloud, representing the usability
of sea area landmarks. The proposed INS/CNS/SMN adaptive integrated navigation algorithm is
simulated and validated across varied altitudes and trajectories in the sea area. The results show that
CNS and SMN can dynamically assist INS in achieving prolonged and highly precise navigation.

Keywords: integrated navigation; cloud and fog model; sea area landmarks; automatic classification
model; usability evaluation

1. Introduction

The inertial navigation system (INS) is an autonomous navigation system that operates
independently of external information, offering the advantages of discreet operation and
robust anti-interference capabilities. However, a notable drawback of INS is the rapid
accumulation of errors over time, making it challenging to rely on for prolonged and
highly precise navigation [1–5]. Typically, supplementary navigation devices such as the
celestial navigation system (CNS) [6–10] and scene-matching navigation (SMN) [11–17] are
employed to assist INS in forming an integrated navigation system that aligns with the
demands of long-term, high-precision navigation.

Currently, the INS/CNS/SMN integrated navigation system is extensively utilized [18–23].
This system leverages measurements provided by CNS and SMN to mitigate the accumula-
tion of errors in INS over time.

CNS determines navigation information, such as position, by utilizing the altitude
and azimuth angle of observed navigation satellites. This approach offers benefits of
strong autonomy, high accuracy, and mitigated cumulative errors. However, a limitation
of CNS lies in its discontinuous output information, susceptible to disruption by cloud
cover and fog during flight operations. SMN ascertains the aircraft’s position by matching
a prepared landmark image with real-time images, offering advantages of compact size,
cost-effectiveness, autonomous operation, and precise positioning. Nonetheless, in the
sea flight zones, the scarcity of available landmarks and the limited richness of their
features pose challenges. Additionally, discerning color, texture, and distinguishing features
among various islands presents difficulty, rendering the traditional method of landmark
selection impractical.

Reference [24] delineates the requisite feature indicators pivotal in the landmark selec-
tion process and delves into the analysis of matching regions, algorithms, and performance
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assessment within SMN. References [25–31] predominantly scrutinize the automated selec-
tion methodology for landmarks, the performance of landmarks amidst varying blur sizes,
and the model for measuring errors in scene matching. These methodologies predominantly
concentrate on land-based SMN research, characterized by an abundance of landmarks
and diverse features. However, in the sea areas, landmarks primarily comprise natural
islands that have undergone screening, presenting a limited count and lacking conspicuous
image features. Consequently, the above approach for landmark selection is inadequately
applicable. Moreover, due to the scarcity and uneven distribution of landmarks across
sea areas, aircraft might not consistently observe landmarks throughout extended flight
durations. SMN can only aid INS when the flight trajectory intersects these landmarks.
Consequently, assessing landmark usability across the global flight range after preparatory
measures and leveraging this information for route planning holds substantial significance
in ensuring long-term, high-precision INS navigation.

The support vector machine (SVM) is recognized as one of the potent supervised
machine learning techniques for both classification and regression [32,33]. SVM has been
widely used by researchers to address diverse practical applications. In recent years, re-
searchers have proposed several nonparallel hyperplane SVM classifiers to tackle the binary
classification issues [34,35], which have shown distinct advantages in solving nonlinear,
small sample, and high-dimensional pattern recognition problems. Based on this, the
study delves into the exploration of SVM multi-classifiers and applies it to the automatic
multi-classification of sea area landmarks, which provides important technical support for
aircraft sea area SMN based on landmarks.

In addressing the above issues, this paper develops a model for cloud and fog dynam-
ics within the Nanhai Sea (South China Sea) area and verifies the availability of CNS in
different heights and different flight areas. Three types of sea area landmarks are defined
based on the distribution and distinctive characteristics of natural islands in the Nanhai Sea
area. We establish an automatic classification methodology utilizing SVM and formulate
a corresponding scene-matching algorithm for these identified landmarks. Concurrently,
we scrutinize multi-mode matching strategies for these three landmark types, considering
variations in noise and flight altitudes. Subsequently, we propose an algorithm for eval-
uating landmark usability, serving as a foundational tool for trajectory planning within
flight areas. Finally, we simulate and validate the INS/CNS/SMN adaptive integrated
navigation algorithm in the Nanhai Sea area under diverse altitudes and trajectories. The
results show that the INS/CNS/SMN adaptive integrated navigation algorithm for sea
area proposed in this paper exhibits remarkable robustness and accuracy. Leveraging CNS
and SMN measurements, the algorithm assists INS, achieving high-precision and long-
term navigation. The algorithm introduces innovative approaches for aircraft integrated
navigation, particularly addressing challenges posed by GPS signal interference in the sea
flight areas.

2. Methodology
2.1. INS/CNS/SMN Adaptive Integrated Navigation Structure

The schematic representation of the INS/CNS/SMN adaptive integrated navigation
system is depicted in Figure 1. The INS primarily generates continuous data on attitude, ve-
locity, and position. The CNS seamlessly integrates with INS in scenarios where a sufficient
number of navigation satellites are unimpeded by cloud and fog interference. Simulta-
neously, the SMN collaborates with INS when a landmark is observable. In achieving
the realization of INS/CNS/SMN adaptive integrated navigation, this paper contributes
significantly through the following key aspects:

1. The development of the INS/CNS/SMN adaptive integrated navigation system,
encompassing the formulation of the INS state equation, as well as the CNS and SMN
measurement equations;

2. Establishment of a cloud and fog model, serving as a foundational framework to
determine the availability of CNS;
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3. Definition of three distinct types of sea area landmarks, accompanied by the introduc-
tion of an automatic classification model based on SVM. Additionally, the design of
corresponding matching methods and strategies for these landmarks is presented.
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2.1.1. State Equation of INS

The state equation of INS is

•
X(t) =F(t)X(t) + G(t)W(t) (1)

here F(t) is the system state transition matrix, G(t) is the control matrix, and W(t) is the
system noise term.

The state vector is

X= [ϕE, ϕN , ϕU , δE, δN , δU , δL, δλ, δh, εx, εy, εz,∇x,∇y,∇z
]T (2)

where ϕE, ϕN , ϕU are the error angle of the three platforms, δE, δN , δU are the velocity
error of east, north, and vertical directions, δL, δλ, δh are the error of latitude, longitude,
and height, εx, εy, εz are the zero offsets of the three-axis gyro constant along the carrier
coordinate system, and ∇x,∇y,∇z are the three axis accelerometer constant offset values
along the carrier coordinate system.

2.1.2. Measurement Equation of CNS and SMN

1. Measurement equation of CNS

The coordinate transfer matrixes caused by INS error are

Cn
c =

 1 δλ sin L −δλ cos L
−δλ sin L 1 −δL
δλ cos L δL 1

 (3)

Cp
n =

 1 ϕU −ϕN
−ϕU 1 ϕE
ϕN −ϕE 1

 (4)
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where Cn
c represents the coordinate transfer matrix from the calculated geographic hori-

zontal coordinate (c-frame) to the navigation coordinate (n-frame), while Cp
n denotes the

coordinate transfer matrix from the navigation coordinate (n-frame) to the local geographic
coordinate (p-frame). Additionally, L signifies latitude, δL and δλ represent the errors
in latitude and longitude, respectively, and ϕE, ϕN , ϕU stand for the error angles of the
three platforms.

The transformation of the starlight unit vector between the local geographic coordinate
and the calculated computational geographic horizontal coordinate is described as follows

Xp = Cp
nCn

c Xc (5)

Xp =
[
cos Hp sin Ap cos Hp cos Ap sin Hp

]T (6)

Xc = [cos Hc sin Ac cos Hc cos Ac sin Hc]
T (7)

where Hc and Ac are the altitude and azimuth angle in the calculated geographic horizontal co-
ordinate, and Hp and Ap are the altitude and azimuth angle in the local geographic coordinate.

We define the CNS measurement ∆A = Ap − Ac and ∆H = Hp − Hc, and the final
measurement of the CNS is

ZCNS = HCNSX + VCNS =

[
∆A
∆H

]
=

[
tan Hc × sin Ac tan Hc × cos Ac

cos Ac − sin Ac

1
0
, 02×3,

− tan Hc sin Ac tan Hc cos Ac cos Lc − sin Lc
− cos Ac − sin Ac cos Lc

, 02×7

]
X + VCNS

(8)

where HCNS is the CNS measurement matrix and VCNS is the measurement noise of
the CNS.

2. Measurement Equation of SMN

Defining the SMN measurement by the position difference between SMN and INS, the
measurement of SMN is

ZSMN = HSMN X + VSMN =

[
LINS − LSMN
λINS − λSMN

]
=

[
02×6,

1 0
0 1

, 02×7

]
X + VSMN (9)

where HSMN is the SMN measurement matrix and VSMN is the measurement noise of SMN.

2.1.3. Design of Kalman Filter

Due to the linear measurement information of both CNS and SMN, a Kalman filter can
be used for integrated navigation. The state equation of the integrated navigation system is
shown in Equation (1), and the measurement equation is

Z(k) = H(k)X(k) + V(k) (10)

here Z(k) =
[
ZT

CNS(k) ZT
SMN(k)

]T, V(k) =
[
VT

CNS(k) VT
SMN(k)

]T, H(k) =
[
HT

CNS(k) HT
SMN(k)

]T.
For discrete linear measurement equations, the Kalman filtering method is used for

computational processing, and the filtering recursive equation is ultimately obtained

Xk|k−1 = ΦkXk−1

Pk|k−1 = ΦkPk−1ΦT
k + Qk−1

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1

Xk = Xk|k−1 + Kk

(
Zk − HkXk|k−1

)
Pk = (I − Kk Hk)Pk|k−1

(11)
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where Xk|k−1 is the one-step prediction of the state, Pk|k−1 is the one-step prediction error
variance matrix, Qk−1 is the system noise variance matrix at time k − 1, Rk is measurement
noise variance matrix at time k, Kk is the filtering gain matrix at time k, Pk is the state
estimation error variance matrix at time k, and Xk is state estimation at time k. Addi-
tionally, Φk = I + F(k)T denotes the state transfer function at time k and T signifies the
sampling time.

Due to the different sampling periods in CNS and SMN measurements, synchroniza-
tion is not achieved in observation and data collection. Consequently, a centralized filtering
structure is employed, with local measurement updates executed at suitable intervals
aligned with continuous time updates of the system.

2.2. SMN in Sea Area
2.2.1. Definition of Sea Area Landmarks

Due to the prevalence of ocean-dominated images in most sea areas, lacking distinct
features, and with landmarks sparsely distributed, alongside closely resembling image
attributes such as color and texture, this study addresses these challenges. It introduces a
methodology based on the relative position relationships among landmarks, categorizing
natural islands into three types as follows:

• Type I (isolated island): The proportion of landmark image pixels constitutes less
than 3% of the field of view. The edge is well-defined, with no adjacent islands. The
landmark solely retains the geographic information of the central point of the island;

• Type II (big island): The proportion of image pixels attributed to the landmark sur-
passes 3% in the field of view, exhibiting a clear shape. The landmark archives both
the grayscale information of the image and the geographical coordinates of the im-
age center;

• Type III (multi-island): There are more than two islands within the viewing field. The
landmark records the triangular “edge-edge-edge” information formed by the central
position of the base island and any other two islands.

The study captures three types of landmarks at 5000 m in the Nanhai Sea area using
ArcGIS satellite mapping. The typical images of these landmarks are illustrated in Figure 2.
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2.2.2. Automatic Classification Model of Sea Area Landmarks

To accurately and succinctly portray the suitability of the landmark image [24], we
employ a meticulous feature analysis of the sea area image. The HOG feature [36] is chosen
to delineate the landmark’s significance, while the LBP [37] and projection features are
utilized to characterize the landmark’s stability and richness. Additionally, we employ
the peak sharpness of the normalized cross-correlation algorithm [38] to elucidate the
uniqueness of Type I and Type II landmarks. For Type III landmarks, which exhibit
an evident topological structure, a probability parameter for triangle matching [39] is
constructed to articulate their uniqueness.

Subsequently, the uniqueness, LBP, HOG, and projection features of landmarks are
extracted as learning vectors. Simultaneously, manually assigned landmark labels are fed
into the SVM multi-classifier [40–42] for training purposes. This process culminates in the
development of an automatic classification model for sea area landmarks, as illustrated in
Figure 3.
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2.2.3. Multi–Mode Matching Strategies of Sea Area Landmarks

Different matching methods are employed for distinct categories of sea area landmarks,
and the multi-mode matching strategies are outlined below:

• Type I Landmarks: These landmarks, comprised of isolated islands without adjacent
counterparts in the field of view, ensure the uniqueness of each landmark, obviating
the need for matching. The detection of islands can be efficiently achieved through
an image segmentation method [43]. Subsequently, the centroid of the island can be
extracted using centroid extraction techniques [44], facilitating the determination of
the aircraft’s current position;

• Type II Landmarks: Utilizing a variable step template matching algorithm [45], the
matching position between the landmark and real-time image is derived through
the analysis of gray information. This approach is employed to calculate the current
position of the aircraft;

• Type III Landmarks: Introducing a consideration of the relative position relationship
among islands, an “edge-edge-edge” information structure is formed by connecting
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the centroids of the three islands. This information is then employed for triangle
matching [39,46], revealing the matching position between the landmark and real-time
image, subsequently allowing for the computation of the aircraft’s current position.

The matching strategies for the three types of landmarks are shown in Figure 4.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 4. Matching strategies of the three types of landmarks. 

2.2.4. Usability Evaluation Algorithm of Sea Area Landmarks 
1. Algorithm framework 

The schematic representation of the landmark usability evaluation can be observed 
in Figure 5. When the aircraft is in the sea area flight zone at a certain position ( ),i jx y  as 
the initial flight point, the landmark database is preprepared to include the positions and 
sizes of all landmarks in the sea area flight zone. Given that the aircraft typically travels 
along a uniform straight path while seeking landmarks during flight, it can be approxi-
mated that the aircraft moves uniformly in a straight line within a horizontal projection 
plane at a designated flight altitude H  and speed V . To ensure the observation of land-
marks within a specified flight duration, denoted as flight time T , the likelihood of the 
aircraft sighting landmarks within this timeframe at the current position is defined as 

( ),i jP x y . For the entirety of the sea area map, the probability of sighting landmarks at 

each position can be delineated by ( ), , 1,2,... , 1,2,...,i jP x y i u j v= =  , enabling the con-

struction of a probability cloud map model ( ) ( ), , 1,2,..., , 1,2,...,uv i jP i, j P x y i u j v= = =  
encompassing all positions within the sea area flight zone. This model serves as a founda-
tional element for evaluating the usability of landmarks within the sea area. 

Figure 4. Matching strategies of the three types of landmarks.

2.2.4. Usability Evaluation Algorithm of Sea Area Landmarks

1. Algorithm framework

The schematic representation of the landmark usability evaluation can be observed in
Figure 5. When the aircraft is in the sea area flight zone at a certain position

(
xi, yj

)
as the

initial flight point, the landmark database is preprepared to include the positions and sizes
of all landmarks in the sea area flight zone. Given that the aircraft typically travels along
a uniform straight path while seeking landmarks during flight, it can be approximated
that the aircraft moves uniformly in a straight line within a horizontal projection plane at a
designated flight altitude H and speed V. To ensure the observation of landmarks within
a specified flight duration, denoted as flight time T, the likelihood of the aircraft sighting
landmarks within this timeframe at the current position is defined as P

(
xi, yj

)
. For the

entirety of the sea area map, the probability of sighting landmarks at each position can be
delineated by P

(
xi, yj

)
, i = 1, 2, . . . u, j = 1, 2, . . . , v, enabling the construction of a proba-

bility cloud map model Puv(i, j) = P
(
xi, yj

)
, i = 1, 2, . . . , u, j = 1, 2, . . . , v encompassing

all positions within the sea area flight zone. This model serves as a foundational element
for evaluating the usability of landmarks within the sea area.
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2. Calculation of landmark visible range

The visual range captured by the aircraft’s camera is depicted in Figure 6a, correlating
with the aircraft’s flight altitude of H. Assuming a square-shaped field of view for the
camera, the angle of the field of view measures FOV = FOVx = FOVy, and the side length
R of the square field of view range is

R = 2H · tan(FOV/2) (12)

Given an assumed flying altitude of the aircraft, denoted as H ≥ 5000 m, and a camera
resolution size of Rp × Rp pixel2, the landmarks stored within the database are assumed
to be square-shaped, comprising rp × rp pixel2 and are prepared at the specific height
H = 5000 m; the corresponding resolution of these landmarks is p = (2 · 5000 · tan FOV/2)/Rp,
as shown in Figure 6b.
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The geographical size of the landmark is r × r, here

r = rp · (2 · 5000 · tan FOV/2)/Rp (13)

The matching probability between the landmark and real-time image is pl
r, where

l = 1, 2, 3 is the category of the landmark. As the aircraft flies at different altitudes,
symbolized by H, the corresponding ground resolution p is different. The relationship is
expressed in Equation (14).

p = 2H · tan(FOV/2)/Rp (14)

Due to the preparation of the landmark image at H = 5000 m, when the flight altitude
H exceeds 5000 m, as shown in Equation (14), the resolution of the real-time image experi-
ences a decline. Consequently, it becomes imperative to proportionally scale the landmark
image to ensure its resolution aligns with that of the real-time image. Subsequently, the
scaled landmark is matched with the real-time image. As shown in Equation (12), the
geographic size R × R of the real-time image is solely dependent on the flight altitude H
and the field of view angle FOV, while the geographic size r × r of the landmark remains
constant as shown in Equation (13). The reduction in the ground resolution of the landmark
image is a direct consequence of the scaling process. When the flight altitude H surpasses
5000 m, the matching probability between the landmark and the real-time image is lower
than that of H = 5000 m.

The visible range of the landmark is illustrated in Figure 7, with a radius denoted as D.
The green square with size r × r represents the geographical range of the landmark and is
accompanied by a green triangle signifying its central position. The red square represents
the aircraft’s field of view, with a red dot pinpointing its center. The size of the field of view
is notated as R × R. Additionally, the blue dot corresponds to the position designated by
the INS, and δt denotes the INS’s drift error size. This drift error is contingent upon the
hourly drift size δ of INS and the duration of time t required for the aircraft to approach
the landmark.

δt = δ · t (15)

The radius D of the visible range of the landmark is calculated as follows

D =
R
2
− r

2
− δt (16)
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3. Calculation of landmark observable probability

From the above section, the radius defining the observation range concerning a specific
landmark Lk is denoted as Dk. Figure 8 illustrates the relative correlation between a
particular spatial position and the observable area of the landmark.
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Here, the red circle
(
xi, yj

)
denotes a specific initial spatial position of the aircraft,

while the green triangle represents the center position of landmark Lk. The green circle
delineates the observable range of landmark Lk, V is the flight speed, T is the longest flight
time, and S = V · T corresponds to the furthest distance covered during this period, with its
scope indicated by the red circle. θk denotes the observable angular range of the landmark
Lk. It is assumed that the aircraft can traverse landmark Lk within the time T when the
aircraft’s heading angle falls within the interval of θk. The probability of successfully
navigating through landmark Lk is given by

P
{(

xi, yj
)∣∣k} =

pl
rkθk

2π
(17)

where θk represents the angular range wherein the aircraft enters into the observable range
of landmark Lk within the time T, and pl

rk signifies the matching probability of the landmark
Lk. The variable θk is related to the Euclidean distance dk between a spatial point

(
xi, yj

)
and landmark Lk, the flight limit distance T of the aircraft over time T, and the observable
range radius Dk corresponding to each landmark Lk, which can be succinctly expressed
as follows

θk =



2π, dk < Dk

2arcsin
Dk
dk

, Dk ≤ dk <
√

D2
k + S2

2arccos
d2

k + (S)2 − Dk
2

2dkS
,
√

D2
k + S2 ≤ dk < Dk + S

0, dk ≥ Dk + S

(18)
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Given that the observable angle range θk of multiple landmarks may intersect, for
instance, the overlapping range of area θ3 and θ4 in Figure 8 is θ34, it becomes imperative to
account for the correlation between landmarks. Consequently, the probability of a spatial
point

(
xi, yj

)
traversing any observable landmark can be expressed as follows

P
(
xi, yj

)
=

N
∑

n=1
λn

2π
(19)

where λn represents the likelihood of the aircraft descending within the N angular intervals
(ϕn, n = 1, 2, . . . N, N ≥ K) of the local standard observation range at time T. When the
angle interval is a single set (ϕn ∈ θk), as shown in region I in Figure 8, the likelihood can
be defined as

λn = pl
rkθk (20)

When the angle interval is the intersection of multiple sets (ϕn ∈ θ1, θ2, . . . , θm), as
shown in area II in Figure 8, the likelihood can be expressed as

λn = pl
rkθk (21)

where m denotes the count of visual landmarks encompassed within the angular interval ϕn.
From Equations (19)–(21), we traverse each position in the sea space, calculate the

probability of observable landmarks in time T, and finally prepare the probability cloud
map Pz

uv
Pz

uv(i, j) = P
(
xi, yj

)
, i = 1, 2, . . . , u, j = 1, 2, . . . , v (22)

Here

z =


1, Type I landmarks

2, Type II landmarks

3, Type III landmarks

All, All landmarks

(23)

2.3. Cloud and Fog Model

In this section, we construct a cloud and fog model to assess their impact on CNS
during flight. The Nanhai Sea covers an approximate area of 2,000,000 km2. The data
influencing cloud variation are derived from the monthly average observations recorded
throughout the entire year in the Nanhai Sea.

2.3.1. Area and Size Model of the Cloud and Fog Area

The classification of clouds is based on 130 related parameters, such as cloud cover,
cloud top pressure, cloud optical thickness, etc. The clouds can be divided into three types
by the cloud top pressure: low cloud above 680 HPA, middle cloud between 680 HPA and
440 HPA, and high cloud below 440 HPA. According to the data [47], the height of the low
cloud top is 3 km, the height of the middle cloud top is 7 km, and the height of the high
cloud top is 12 km, which are regarded as random distribution. The thickness of the low
cloud is 1 km, the thickness of the middle cloud is 3 km, and the thickness of the high cloud
is 6 km. Each of the three types of clouds takes 50 sample points to scatter, and the sample
points are regarded as a cuboid model, regardless of cloud overlap. The radius of cloud
area is reckoned by the average value of cloud cover in different seasons.

It is assumed that the radius of cloud sample points follows the normal distribution
N(µ1, σ2

1 ), set σ1 = 10 km. The cloud regional radius model is truncated according to the
Pauta criterion, and the distribution of cloud radius with seasonal variation at different
heights is obtained, as shown in Table 1.
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Table 1. Distribution of cloud radius in different seasons.

Month Season Low Cloud
Radius (km)

Middle Cloud
Radius (km)

High Cloud
Radius (km)

3–5 spring [74, 134] [62, 122] [65, 125]
6–8 summer [60, 120] [69.5, 130] [93.7, 154]

9–11 autumn [66, 126] [67, 127] [84, 144]
12–2 winter [76, 136] [68, 128] [61, 121]

It is assumed that the height of fog is uniformly distributed in the range of 240 m–530 m.
The Nanhai Sea fog area is 200,000 km2 according to the data [48]. We take 100 sample
points to scatter randomly, and the sample points are regarded as a cuboid model. It is
assumed that the radius of fog sample points follows a normal distribution N(µ2, σ2

2 ), set
σ2 = 5 km. The fog regional radius model is truncated according to the Pauta criterion, and
the distribution of cloud radius is in [29.72 km, 59.72 km].

2.3.2. Moving Model of Cloud and Fog Area with Time

It is assumed that the area of the cloud and fog remains unchanged during the moving
process, and the cloud and fog moving can be regarded as a point moving. The point
is located at the center of the cloud and fog cuboid model, and the model movement is
replaced by the movement of the model center. After the movement of the model center, the
cloud and fog cuboid model is constructed at the next position. The moving direction of the
model is at the local geographic coordinate and α is the angle between the cloud movement
vector and the east direction. The direction of the angle α is calculated counterclockwise
from east direction.

The moving speed and direction of cloud and fog are affected by the sea breeze.
According to the statistics of seasonal characteristics of sea surface wind field in the Nanhai
Sea in the last 10 years, the moving speed and direction of the cloud and fog are obtained,
as shown in Table 2.

Table 2. Moving speed and direction of cloud and fog in different seasons.

Month Season Low Cloud
Speed (m/s)

Middle Cloud
Speed (m/s)

High Cloud
Speed (m/s)

Fog Speed
(m/s)

Moving
Direction α (◦)

3–5 spring [4, 16] [14, 26] [24, 36] [1, 7] east 0
6–8 summer [9, 21] [14, 26] [39, 51] [3, 9] southwest 225

9–11 autumn [11.8, 23.8] [31.5, 43.5] [50.3, 62.3] [4.5, 10.5] northeast 45
12–2 winter [14, 26] [34, 46] [34, 46] [5, 11] northeast 45

2.3.3. Design of Weather Simulation Model

The weather setting simulation program function module is mainly composed of two
parts. The first part is the data generation module, the input parameters are the season (1 is
spring; 2 is summer; 3 is autumn; 4 is winter) and timeout (field of view output interval).

When selecting different seasons, corresponding to different cloud side lengths, mov-
ing speeds, and moving directions, when entering a certain flight time, the longitude and
latitude position and direction of each cloud will change every certain timeout, so the data
output is

1. Center position of cloud and fog;
2. Side length, moving speed and direction of cloud and fog.

At the same time, we access the second part of the program, that is, the field of view
generation module. First, we input the following parameters

1. Camera parameters: latitude, longitude, and altitude of the camera, the distance from
the camera to the field of view;
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2. Parameters of cloud and fog: longitude and latitude of cloud and fog center, type of
cloud and fog, and side length of cloud and fog.

We analyze individual cloud and fog entities and process the input longitude and
latitude information for both cloud and fog, as well as camera coordinates. We convert
the relative longitude and latitude of the cloud and fog positions and camera position into
relative distance (unit: m), utilizing camera coordinates as the origin. Subsequently, we
assess whether the cloud is positioned above or below the camera, taking into account
the cloud type and the camera’s elevation. Additionally, we evaluate the relative distance
between the cloud and the camera to ascertain whether the cloud and fog obstruct the
camera view. If affirmative, document the intersection of the cloud and fog with the camera
view and incorporate this information into the image. Therefore, the output is

1. The intersection matrix between the camera field of view and the cloud and fog;
2. The two composite images obtained by overlaying clouds and fog onto the upper and

lower field of view of the camera;
3. Matrix describing the cloud and fog coverage (parameter 00 represents no coverage

of the camera by clouds and fog, 01 represents full coverage of the camera’s upper
field of view by cloud and fog, 10 represents full coverage of the camera’s lower field
of view by cloud and fog, 21 represents partial coverage of the camera’s upper field of
view by cloud and fog and 22 represents partial coverage of the camera’s lower field
of view by cloud and fog).

According to the weather model, the influence of cloud and fog obstruction on the
aircraft’s field of view can be determined under different climatic conditions. This helps to
assess whether a sufficient number of navigation satellites can be observed to enable CNS.
When CNS is available, CNS measurements can be extracted based on the information
of observed navigation satellites, assisting INS in integrated navigation positioning, as
described in Section 2.1.

3. Results
3.1. Automatic Classification and Matching Algorithm of Three Types of Landmarks

1. Landmark automatic classification

The ArcGIS satellite image covering the Nanhai Sea area (specified by north latitude
2◦ ∼ 20◦, east longitude 108◦ ∼ 118◦) is utilized to establish the landmarks at the flight
altitude H = 5000 m. The image resolution is 19.11 m/pixel, and the landmark image size
is 750 pixel × 750 pixel. The landmark database includes 35 Type I landmarks, 369 Type
II landmarks, and 166 Type III landmarks. In total, 90% of them are selected as training
samples and the remaining 10% serve as prediction samples for algorithm validation. Ac-
cording to the automatic classification model of sea area landmarks designed in Section 3.2,
the samples for training include 3 Type I landmarks, 30 Type II landmarks, and 16 Type
III landmarks. A total of 49 images are put into the model for prediction. The results are
shown in Table 3.

Table 3. Prediction results of landmark classification model.

Predict
Number

Correct
Number

Wrong
Number

Prediction
Accuracy

Type I
landmark 3 3 0 100%

Type II
landmark 30 29 1 96.67%

Type III
landmark 16 15 1 93.75%

As shown in Table 3, the prediction accuracy for Type I landmarks is 100%, because the
Type I landmarks are mostly isolated islands, which can easily be distinguished compared to
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the Type II and Type III landmarks. The prediction accuracy for Type II landmarks slightly
surpasses that of Type III landmarks, with all of the accuracies registering above 90%.

2. Landmark matching algorithm

The image size of the real-time image is 1000 × 1000 pixel2, and the camera field of
view angle is FOV = 96◦. The flight altitude of the aircraft is set as H = 5000 m, H = 7500 m,
and H = 10,000 m. The landmark database is prepared by the above experiment, it is
assumed that the landmark image noise follows a normal distribution N(µ, σ2); we set
µ = 0, σ = 0.1, and set the threshold of matching accuracy to abs = 2 pixel. If the matching
error is less than the threshold, it is considered that the matching is successful. The matching
probability is the proportion of successful landmark matching to the total matching number.
We calculated the matching probabilities for 35 Type I landmarks, 369 Type II landmarks,
and 166 Type III landmarks at three different heights using different matching algorithms
proposed in Section 2.2.3. The results are shown in Table 4.

Table 4. The matching probability of three types of landmarks at different heights.

Height

Matching Probability

Type I
Landmark

Type II
Landmark

Type III
Landmark

H = 5000 m 1 0.88 0.93
H = 7500 m 0.99 0.85 0.89

H = 10,000 m 0.96 0.81 0.83

As shown in Table 4, at H = 5000 m, the matching probability for the Type I landmarks
is 1, because of the uniqueness of the Type I landmarks by definition which only need
extraction of the centroid of the landmark image. The matching probability for the Type II
landmarks is 0.8826, and the Type III landmarks is 0.932. This discrepancy arises from
the fact that the matching algorithm for Type II landmarks utilizes gray information
from the image, which is more susceptible to noise. Conversely, the matching algorithm
for Type III landmarks relies on topology information from the islands in the image,
proving less affected by noise. Since all landmarks are prepared at the flight altitude of
H = 5000 m, when flying at an altitude of H = 7500 m or H = 10,000 m, it is necessary to
scale the landmarks to their corresponding scale and match them with the real-time image,
which will introduce additional scaling errors, leading to a reduced matching probability
compared to H = 5000 m.

3.2. Landmark Usability Evaluation

We let the aircraft fly at three different heights in the sea area within the range of
north latitude 2◦ ∼ 22◦ and east longitude 108◦ ∼ 118◦, setting V = 200 m/s, T = 3 h,
δ = 200 m/h, and FOV = 96◦. In total, 12 Type I landmarks, 143 Type II landmarks, and
77 Type III landmarks from the landmark database according to the matching probability
analyzed in Section 3.1 are selected to evaluate the usability in the Nanhai Sea area. The
positions of various types of landmarks are shown in Figure 9.

According to the matching probabilities of different types of landmarks at different
heights obtained in Section 3.1, the observable probabilities of landmarks are calculated
every 1000 m in the longitude and latitude directions. Finally, three different types and a
comprehensive cloud map of observable probabilities of landmarks are obtained, as shown
in Figures 10–12.
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As shown in Figures 10–12, the red-shaded area denotes a heightened probability of
observable landmarks, reaching a maximum of one, implying enhanced usability. Con-
versely, the blue-shaded area signifies a diminished probability of observable landmarks,
with a minimum of zero indicating reduced usability. Examining the extent of the red area
in Figures 10–12 reveals that the usability of Type II landmarks surpasses that of Type I
and III at different altitudes. This discrepancy is primarily attributed to variations in the
proportion and distribution of the three types of landmarks. Nevertheless, among the
three types of landmarks, areas with a higher landmark density exhibit superior usability,
while areas with sparse landmarks demonstrate a relatively lower usability. Moreover, a
comparative analysis of Figures 10d, 11d and 12d with Figures 10b, 11b and 12b in the same
figures reveals that, despite Type II landmarks having the highest proportion under various
height conditions, the usability significantly improves when incorporating Type I and
Type III landmarks. This suggests that supplementing other types of landmarks enhances
the overall availability for a single type of landmark. Comparing Figures 10d, 11d and 12d
reveals that with increasing flight altitude, despite a decrease in matching probability
of landmarks, there is an expansion in the field of view, resulting in an enlarged visible
range of landmarks, as shown in Equation (14). Consequently, the usability of landmarks
progressively improves across the global range.

3.3. CNS Availability

The Nanhai Sea area map was generated using Matlab, and the cloud and fog model
data are presented in Section 2.3. Using spring data as an example, we assumed an
eastward movement of the clouds, causing the clouds to shift every four hours to produce
a simulation map. In this representation, the color scheme distinguishes between different
atmospheric elements: blue denotes fog, yellow represents low clouds, red signifies middle
clouds, and green indicates high clouds. The fog, low clouds, middle clouds, and high
clouds are successively generated every 4 h, as shown in Figure 13a.

For the simulation involving visible satellites, the satellite positions are emulated, and
a visible satellite is incorporated when within the field of view. The occlusion of the visible
satellites can be ascertained through image analysis. A red area indicates that field of view
is covered, while a blue area indicates non-coverage. The red dots denotes the position
of visible satellites in the field of view. Consequently, the simulation diagram of visible
satellites is shown in Figure 13b.

As shown in Figure 13a, the four types of clouds exhibit gradual movement, aligning
with the assumption that the higher-altitude clouds demonstrate increased velocity, while
shorter cloud lengths correspond to higher speeds. Figure 13b reveals variations in satellite
occlusion caused by low, middle, and high clouds at specific positions, emphasizing the
necessity to assess satellite occlusion across all cloud types.
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The four trajectories at three altitudes of H = 8000 m–10,000 m, H = 2000 m–5000 m,
H = 5000 m–8000 m, and H = 2000 m–10,000 m are simulated in the Nanhai Sea area by
Matlab. For each trajectory, five consecutive hours were randomly selected for analysis. If
the cumulative time of more than three visible satellites exceeded 0.5 h within the five-hour
period, it is considered that CNS is available, otherwise, it is considered unavailable. The
effective probability of CNS is defined as the ratio of available time to total sampling time,
as detailed in Table 5.

Table 5. Simulation results of CNS effective probability in different altitude range.

Altitude Range (m) 8000–10,000 2000–5000 5000–8000 2000–10,000

CNS effective
probability 1 0.79 0.91 0.41

As shown in Table 5, the CNS effective probability at the height of 8000 m–10,000 m and
5000 m–8000 m is higher than the CNS effective probability at the height of 2000 m–5000 m,
because the flight height is higher, and there are more visible satellites. Furthermore, the
CNS effective probability is 0.41 at the height of 2000 m–10,000 m, which is irrelevant to the
other two results.

3.4. INS/CNS/SMN Adaptive Integrated Navigation

The trajectories at four distinct heights of H = 8000 m–10,000 m, H = 2000 m–5000 m,
H = 5000 m–8000 m, and H = 2000 m–10,000 m are simulated in the Nanhai Sea area using
Matlab. To simulate INS errors, the gyroscope constant bias is assumed to be 0.3◦/h and
the accelerometer constant bias is set to 50 µg. The astronomical angle observation error is
defined as 5◦, and the image matching error is fixed at 40 m. The Kalman filter operates
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with a time period of 1 s, and the simulation spans 24 h. The results of the integrated
filtering process are presented in Figures 14–17.
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Figures 14–17 present the simulation results of an INS/CNS/SMN adaptive integrated
navigation system at three distinct flight altitudes. Subfigures (a) to (c) depict the radial
position error, latitude error, and longitude error of the integrated navigation system,
respectively. Subfigures (d) and (e) respectively illustrate CNS availability identification
and the corresponding count of visible navigation satellites. In cases where the CNS is
available and the number of visible navigation satellites exceeds three, the associated CNS
measurement information become applicable to aid INS navigation. Subfigure (f) denotes
landmark availability identification and annotates the type of available landmarks in the
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figure. When a landmark is accessible, SMN measurement information can be computed
based on the type of observed landmarks, utilizing the corresponding matching algorithm
outlined in Section 2.2.3 to aid INS navigation.

As shown in Figure 14d,e, Figure 15d,e and Figure 16d,e, it can be seen that for
CNS, the higher the flight altitude, the more navigation satellites are available, resulting
in elevated CNS availability. Similarly, for SMN, as shown in Figures 14f, 15f and 16f,
an increase in flight altitude extends the observation time for landmarks, consequently
enhancing landmark availability. Figures 14a, 15a, 16a and 17a collectively demonstrate
that the position error of the INS/CNS/SMN adaptive integrated navigation remains below
500 m in 24 h.

4. Discussion

In summary, this paper proposes an automatic classification and matching algorithm
for sea area landmarks that leverages natural information from sea area islands, categorizing
them into three types. We introduce an automatic selection model for sea area landmarks
based on SVM and analyze corresponding matching methods for these three types of
landmarks at different heights. The algorithm exhibits heightened robustness in sea areas
compared to traditional land-based landmark selection algorithms. While initially designed
for the automatic selection of landmarks in the Nanhai Sea, its applicability extends to areas
with less distinct characteristics. Additionally, we present a usability evaluation algorithm
for sea area landmarks, serving as a foundation for aircraft route planning in this domain.
The algorithm remains applicable to any area with prominent landmarks for usability
evaluation, considering the constraint of the number of available landmarks in the Nanhai
Sea. Furthermore, this study delves into the size, type, moving direction, and speed of
clouds and fog in the Nanhai Sea across different seasons. We construct a dynamic model
for cloud and fog movement over time. Based on this, we analyze scenarios where satellites
may be obscured by clouds and fog, providing a theoretical framework for evaluating CNS
availability in the Nanhai Sea. This study is also applicable to the availability of CNS under
the influence of cloud and fog in other areas. In comparison to currently used algorithms,
the INS/CNS/SMN adaptive integrated navigation algorithm proposed in this paper,
is designed based on the climatic conditions and flight scenarios specific to the Nanhai
Sea area. While traditional INS/CNS/SMN integrated navigation algorithm is generally
land-based. In the absence of GPS signals, it assists INS and maintains high navigation
accuracy over extended navigation durations. This adaptive integrated navigation system
attains high-precision, long-endurance navigation in diverse climates and flight altitudes.
Furthermore, it can be applied to similar sea area flight regions.

5. Conclusions

In this paper, we propose an INS/CNS/SMN adaptive integrated navigation algorithm
for the sea area. The algorithm encompasses the definition of three distinct types of sea area
landmarks, the development of corresponding matching methods, and the implementation
of an automatic classification model for these landmarks using support vector machines
(SVM). Additionally, a database containing the geographic location information of the three
types of landmarks is established. Simultaneously, the visible range of each landmark
is determined based on the landmark database, aircraft flight position, flight altitude,
flight speed, camera field of view angle, and INS drift error. The calculation of observable
probabilities for landmarks at each position is facilitated by combining the matching
probabilities of different types of landmarks at varying flight altitudes. Subsequently,
probability cloud maps depicting the usability of sea landmarks at varying flight heights
are presented. A dynamic cloud and fog model is constructed to monitor the visibility of
satellites over time, enabling the determination of CNS availability based on this model.
The main conclusions are as follows: (1) The automatic classification model for the three
types of sea area landmarks achieves a precision exceeding 0.9, with matching probabilities
for these landmarks at different heights consistently surpassing 0.8. (2) The usability
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of the three types of landmarks generally exceeds 0.5 in most areas of the Nanhai Sea,
with usability higher than 0.8 in 1/5 of the Nanhai Sea. (3) The cloud and fog model
serves as a foundation for determining CNS availability, exhibiting varying effectiveness
probabilities at three different heights. (4) The positioning error of the INS/CNS/SMN
adaptive integrated navigation system is less than 500 m within a 24 h period with specific
SMN and CNS measurements. This system demonstrates a good adaptability and can
provide continuous assistance to the INS when CNS and SMN are unavailable.
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