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ABSTRACT 
 

There is a critical need for energy diversification due to over depended on fossil fuel and its 
daunting challenges. These impediments linked with fossil fuels have stirred the search for another 
energy sources and biodiesel is one of the potential alternatives. Biodiesel is renewable, non-toxic, 
environmental-friendly and an economically viable choice to solve the diminishing fossil fuels and its 
harmful environmental effect. It can be made from seeds oil plant, vegetable oils, animal fats, waste 
oils and algae. Here are various means for the production of the biodiesel oil which comprises; 
mechanical, chemical/solvent and enzymatic oil extraction methods etc. Report from the open 
literatures revealed that, all the extraction methods have its own advantages and disadvantages but 
in all, oil expeller machine which is based on mechanical means of extracting oil from the common 
wastage seeds oil plant prove to be efficient especially for large scale extraction. Thus, for efficient 
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oil extraction from wastage seeds oil plant, oil expeller machine is appropriate. This research seeks 
to discuss an improve ways of maximum oil yield with an expeller machine from the wastage seeds 
oil plant commonly available in our environment. 
 

 

Keywords: biodiesel production process; oil extraction methods; seeds oil; screw press oil expeller. 
 

1. INTRODUCTION 
 

Generally, energy is an essential element of 
industrialization and socio-economic 
development of any country. The petroleum 
deposits in certain regions of the world are fast 
diminishing on daily basis and at the current 
usage rate, these sources will soon be 
exhausted. Recently, due to the shortage of 
fossil fuels throughout the world, crude oil price 
increase and impact of these fuels in polluting 
the environment, biodiesel is attracting 
increasing attention as a potential substitute and 
renewable fuel for diesel engines worldwide [1].  
 

The choice of biodiesel as an alternative fuel has 
been getting a lot of attention throughout the 
world owing to its renewable, biodegradable as 
well as its environmentally friendly nature. It 
produces lower pollutant emissions, possesses a 
high flash point, better qualities of lubrication and 
high cetane number with very close physical and 
chemical characteristics to those of conventional 
diesel fuel. This allows its use either as pure 
biodiesel (B100) or mixed with petroleum-based 
diesel fuel at a ratio of between 5 – 20%, (B5–
B20) with very few technical adjustments or no 
modifications. Burning of biodiesel fuel does not 
contribute to a rise in the level of carbon dioxide 
in the atmosphere and does not pose a danger to 
the ozone layer [2].  
 

The biodiesel produced from renewable 
resources could help to minimize the fossil fuel 
burning and CO2 production. Biofuels and bio 
products produced from plant biomass mitigate 
global warming. This is as a result of the CO2 
released during combustion being equal to the 
CO2 tied up by the plant during photosynthesis 
and does not add up to the net CO2 in the 
atmosphere [3]. Therefore, an increase in 
biodiesel production by trans-esterification may 
lead to an excess of glycerol production as a by-
product. The glycerol is mostly used in medical, 
pharmaceutical and personal care applications 
[4].  
 

Over the years, several review articles have 
been published by many researchers on the 
extraction of oil for biodiesel production [5]. 
However, in this research we shall discuss 

efficient ways of maximum oil yield with an 
expeller machine from the oil seeds. The review 
paper seeks to present; first, the various ways of 
oil extraction for biodiesel production. It goes 
further to compare oil extraction process of 
automatic screw press oil expeller and the 
manual oil expeller process. The problem 
associated with each oil extraction processes 
were identified and their respective appropriate 
remedies were proffered in the course of this 
review. It further considered an overview of 
biodiesel focusing on the production methods of 
the biodiesel.  
 

2. FEEDSTOCK PREPARATION 
 

 The initial phase of oil extraction commences 
with seed preparation. This process involves 
removing the outer layers of the fruit to expose 
the kernels or seeds, followed by drying to 
reduce moisture content [6]. The seeds are then 
separated from the fruits, and for those fruits that 
do not naturally split open, manual cracking is 
employed. To achieve the ideal moisture content 
for optimal oil extraction, the kernels or seeds are 
predominantly dried either in the sun or in an 
oven, depending on the prevailing weather 
conditions. Following the drying process, the 
separated seeds or kernels undergo sieving, 
cleaning, and are subsequently stored at room 
temperature in preparation for the extraction of 
their oil content, as documented in various 
literature sources [7-9]. 
 

2.1 Oil Extraction from Seeds 
 

One crucial element in biodiesel production is the 
extraction of oil, and various methods and 
techniques for oil extraction have been 
documented in studies such as [10-13]. These 
methods encompass mechanical, 
chemical/solvent, enzymatic oil extraction, as 
well as microwave-assisted extraction, 
supercritical fluid extraction, and accelerated 
solvent extraction. This article focuses on the 
mechanical method, specifically comparing the 
manual oil extraction machine process with the 
automatic oil extraction process. Additionally, 
improvements to the machinery will be explored 
to address and enhance the oil production 
process. 
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2.2 Oil Extraction Methods 
 
This section provides an overview of the 
prevalent oil extraction techniques. These 
methods encompass chemical/solvent extraction, 
enzymatic extraction, microwave-assisted 
extraction, supercritical fluid extraction, 
accelerated solvent extraction, and mechanical 
extraction. 
 
2.2.1 chemical/solvent 
 
Solvent extraction, also known as leaching, is the 
procedure through which oil is separated from a 
solid using a liquid solvent, as documented in 
studies [7,14]. Various factors influence the 
chemical leaching process, including particle size, 
the type of liquid solvent employed, temperature, 
and the mixing speed of the system. In order to 
increase the interfacial area between the 
feedstock and the solvent, a tiny particle size is 
desired. For unrestricted circulation, the solvent 
should have a low viscosity. Temperature plays 
an important role as it makes the oil more soluble, 
which influences the rate of extraction. According 
to Yusuf et al [15], mixing speed is another 
crucial component that affects the process by 
increasing the rate of diffusion, which 
subsequently facilitates material transfer from the 
particle surface. 
 
It's interesting to note that the solvent extraction 
method has its own set of advantages and 
disadvantages. While it has been proven to be a 
highly effective process with a high yield and 
consistent performance, it does come with a 
relatively higher production cost compared to 
mechanical press methods due to the expense 
associated with the solvent, as highlighted by 
Muzenda et al [16]. 
 
2.2.2 Enzymatic extraction 
 
This approach involves the crushing of seeds 
followed by the utilization of enzymes for oil 
extraction [17]. There is also the potential to 
integrate aqueous enzymatic oil extraction with 
other methods for oil retrieval. Despite the 
promising aspects of this method, its practical 
application encounters challenges such as the 
requirement for de-emulsification in subsequent 
processing, extended incubation periods, and 
elevated enzyme expenses [18, 19]. Affinity 
chromatography and perfusion chromatography 
are two techniques that can simplify downstream 
processing, and the immobilization of enzymes 
helps in reducing overall costs and minimizing 

enzyme losses [20]. Nevertheless, the 
immobilization of enzymes may result in 
decreased reaction rates due to steric hindrance. 
Moreover, the utilization of solvents like n-
hexane not only amplifies wastewater generation 
and the emission of volatile organic compounds 
but also presents hazards owing to the 
flammability and toxicity of n-hexane [21]. To 
address these issues, an alternative extraction 
method, such as an aqueous enzymatic oil 
system coupled with ultra-sonication pre-
treatment, is recommended [18,22]. The principal 
merits of enzymatic oil extraction are its eco-
friendliness and the absence of volatile organic 
compounds. However, a notable drawback 
associated with this technique is the prolonged 
processing time, as highlighted by Mahanta and 
Shrivastava [17]. 
 
2.2.3 Microwave-Assisted  
 
Microwave-assisted extraction, also referred to 
as microwave extraction in accordance with Hao 
et al [23], represents a novel extraction method 
that combines traditional solvent extraction with 
microwave technology. This technique is 
acclaimed for its numerous advantages 
compared to alternative extraction methods. 
These advantages encompass reduced 
extraction costs, expedited processing times, 
diminished solvent usage, heightened extraction 
efficiency, improved product quality at a reduced 
expense, decreased energy consumption, and 
lower CO2 emissions [24]. The literature 
showcases numerous instances where 
successful applications of microwave-assisted 
extraction, documented by various researchers, 
have substantiated these advantages [25-28]. 
However, as noted by Uquiche et al [29], a 
drawback of microwave-assisted extraction is 
that certain plants may not be suitable due to the 
potentially damaging effects of high microwave 
energy levels on plant structures. 
 
2.2.4 Supercritical fluid extraction 
 
The supercritical fluid extraction method is 
employed to eliminate the reliance on organic 
solvents and to enhance the speed of extraction. 
According to the literature [30], supercritical fluid 
extraction using CO2 offers numerous 
advantages over solvent extraction. This           
method utilizes CO2 as a solvent, which is            
non-toxic, cost-effective, nonflammable, and 
environmentally friendly, enabling the extraction 
of almost 100% oil [31]. Nevertheless, the 
primary drawback of supercritical fluid extraction 
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lies in the high production costs. This is attributed 
not only to the use of high-pressure equipment 
but also to the necessity of freeze-drying raw 
materials to reduce moisture to values below 
20%, as a high concentration of water in the fluid 
phase adversely affects oil yield [32, 33]. 

 
2.2.5 Accelerated solvent extraction  

 
Accelerated solvent extraction, also known as 
pressurized solvent extraction, represents a 
contemporary method for oil extraction utilizing 
organic or aqueous solvents under elevated 
temperatures and pressures [10]. It has been 
noted that higher temperatures expedite the 
extraction rate, while increased pressure 
prevents boiling beyond the normal boiling point 
of the solvent. 

 
In accelerated solvent extraction, both time and 
solvent consumption are significantly reduced 
compared to other solvent extraction methods 
[34]. This efficiency is evident in the extraction of 
various materials, including wheat germ and 
flaxseed hulls, as indicated in the literature [35]. 

 
However, accelerated solvent extraction comes 
with its own set of drawbacks, including a very 
high initial cost, extensive preparation 
requirements, the need for specialized 
equipment and skills, the potential for solvent 
contamination, and the limitation to processing 
only kernels, as reported in Sarip et al [36], Ali 
and Watson [37]. 

 
2.3 Mechanical Screw Press Oil 

Extraction 
 
The traditional and widely used technique for 
large-scale oil extraction is mechanical screw 
press oil extraction. As outlined in the research 
conducted by Ketan et al [38], this method can 
be carried out through the utilization of either a 
manual press or an engine-driven screw press. 

 
2.3.1 Manual oil expeller 

 
Manual oil expeller involves the extraction of oil 
through manual effort, utilizing human energy. 
This stands in contrast to the automatic oil 
expeller process, where oil is pressed out of 
plant seeds with the assistance of an oil expeller 
machine. In the manual expeller method, the raw 
materials (seeds, nuts, and fruits) are crushed 
into a powder either by manually pounding the 
feedstock with a mortar and pestle or by using a 

grinding machine. Subsequently, water is 
sprinkled on the powder. The resulting paste is 
preheated in an oven to facilitate the oil flow from 
the cake. Following preheating, the paste is 
placed into a sleeve bag and subjected to a 
hydraulic press to enhance the extraction of oil 
from the cake. However, this oil extraction 
process is recognized as a labor-intensive and 
cumbersome method. 

 
2.3.2 Automatic screw press oil expeller 

 
The screw press oil expeller stands out as a 
more efficient method of oil extraction compared 
to all other techniques. Seeds are introduced 
through a hopper, crushed, and conveyed by a 
rotating screw within a press barrel. The 
continuous movement of the screw shaft 
transports the feedstock, causing pressure to rise 
to the necessary level. This heightened pressure 
increases friction inside the screw press, 
generating heat that reduces the viscosity of the 
oil in the crushed seeds, thereby enhancing the 
oil flow rate. The oil and cake are typically 
collected at the oil outlet and press cake exit. 

 
Mechanical extraction, specifically through the 
use of automatic screw press oil expellers, offers 
several advantages over alternative extraction 
methods, as emphasized in studies [7, 39]. 
These advantages are particularly evident in the 
form of low operating costs and the production of 
high-quality, light-colored oil with a low 
concentration of free fatty acids (FFAs), as 
documented in Carr [40]. Correspondingly, 
research findings indicate that powered screw 
presses can extract between 68 and 80 percent 
of the oil from seed oils [41]. However, it does 
exhibit a comparatively lower oil yield when 
compared to solvent extraction, as demonstrated 
in Buenrostro et al [42], leaving some oil in the 
cake after the extraction process. 

 
Furthermore, a prior investigation [43] revealed 
that chemical/solvent approaches result in 
increased oil yield, albeit with associated 
drawbacks of higher costs and environmental 
issues due to the use of hazardous and 
flammable solvents, restricting its applicability. 
Hence, there is a necessity for research aimed at 
refining and bolstering the screw press oil 
extraction method, given its aforementioned 
merits over alternative extraction techniques, as 
outlined in Table 1. This research is crucial to 
enhance its effective utilization in the biodiesel 
production sector. 
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2.4 Summary 
 
2.4.1 Based on analysis above, the following 

improvement are available 

 
The production of biodiesel oil from seeds can be 
achieved through either an automatic or manual 
method. When using the automatic method, the 
friction inside the screw press generates heat 
which reduces the viscosity of the oil, increasing 
the oil flow rate. However, this method lacks a 
preheater, resulting in lower oil yield and some 
oil remaining in the cake, which leads to 
wastage. On the other hand, the manual method 
involves crushing the feedstock into a powder, 
sprinkling water to create a paste, and 
preheating it in an oven for around an hour to 
reduce the paste's viscosity. After preheating, the 
paste is taken to a presser to extract oil from the 
cake. Despite being labor-intensive, the manual 
method yields more oil compared to the 
automatic process. 

This research aims to bridge the gap between 
automatic and manual methods by incorporating 
a heater or heating element in the crushing 
chamber of the automatic machine. This 
integration is intended to reduce the viscosity of 
the paste, resulting in increased oil production, 
reduced processing time, and a more 
streamlined oil. 
 

3. OVERVIEW AND HISTORY OF THE 
USE OF BIODIESEL FUELS 

 

Biodiesel, as per the definition provided by 
Marchetti [44], refers to the mono-alkyl ester of 
long-chain fatty acids obtained from renewable 
lipid sources, such as vegetable oils or animal 
fats. This fuel is characterized as non-toxic, 
biodegradable, and renewable, with the capacity 
to be produced from various organic sources, 
including both fresh and waste vegetable oils, 
animal fats, and oilseed plants [45]. The 
biodiesel formation process, as outlined by Azad 
et al [46], Krishna et al [47], is as follows: 

 

 
 

Table 1. Merits and demerits of oil extraction methods [10,6, 43] 
 

Method of Oil 
Extraction 

Merits Demerits 

Mechanical  ✓ No environmental problem        
regarding 

✓ the use of mechanical method  
✓ No potential for solvent  contamination  
✓ Relatively inexpensive after initial  

capital costs 
✓ Minor consumable costs  

• Relatively dirty process 

• Oil not completely extracted from the cake 

• Filtration or degumming process of oil is 
required 

• Operators require experience to achieve best 
results 

 

chemical/solvent ✓ Repeatable and reproducible results 
and process 

✓ High oil yields 
✓ Relatively simple and quick 
✓  Hexane can be recovered and reused, 

reducing cost significantly 

• Less sought after than virgin oil 

• Potential for solvent contamination 

• Safety issues and environmental concerns 
regarding the use of hexane 

• Very costly if the hexane cannot be recovered 

enzymatic  ✓ No negative effect on the environment. 
✓ The method is sustainable 

• Requires high cost of enzyme and incubation 
time. 

• Requires de-emulsification during down-stream 
operations. 
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Method of Oil 
Extraction 

Merits Demerits 

microwave-
assisted 

✓ It eliminates the emission of carbon 
dioxide (CO2). 

✓ Only a fraction of the energy is needed 
in comparison to traditional heating 
methods. 

• Not suitable for cases where the solvent or 
desired compound is non-polar or possesses 
volatility. 

supercritical 
fluid extraction 

✓ Supercritical conditions result in 
increased extraction due to improved 
solubility with the solvent. 

✓ Employing CO2 as a solvent renders 
the process more cost-effective, given 
the readily available and non-flammable 
nature of CO2. 

• The elevated temperature and pressure 
necessary for the supercritical technique 
contribute to an overall increase in costs. 

accelerated 
solvent 
extraction 

✓ Both time and solvent usage are 
substantially decreased in comparison 
to alternative solvent extraction 
methods. 

• The initial cost is exceptionally high, and 
extensive preparation is necessary. 

• Specialized equipment and expertise are 
necessary. 

• There is a risk of contamination from solvents. 
 

Transesterification reaction for biodiesel 
production [46,47] 
 

The utilization of biologically derived fuels, such 
as vegetable oil, traces back to Rudolf Diesel in 
1896, who initially employed peanut oil in an 
Internal Combustion Engine. Another early 
proponent of biofuels was Henry Ford, a pioneer 
in automobile manufacturing, who designed his 
first car model to run on ethanol. Despite the 
visionary expectations of these inventors that 
their innovations would be sustained by plant-
derived fuels, petroleum gained preference due 
to its economic advantages and widespread 
availability. However, the oil crisis of the 1970s, 
coupled with environmental concerns, reignited 
interest in biofuels [48]. 
 

From the 1980s onward, there was significant 
discourse on the use of vegetable oil as a                  
fuel [49]. Bartholomew introduced the idea of 
utilizing food crops for fuel, asserting                           
that petroleum should be viewed as the 
"alternative" fuel, with vegetable oil and alcohol 
serving as viable alternatives. He emphasized 
the necessity for some form of renewable  
energy to replace non-renewable resources             
[50]. 
 

Vegetable oil, obtained from diverse plants, can 
be categorized as either suitable for 
consumption or non-consumable. The 
exploration of non-edible plant sources is driven 
by the intention to avoid contributing to the 
rising costs of edible oils. The conversion of 
biodiesel from edible seeds has the potential to 
worsen their scarcity and lead to increased 
prices, given their dual utilization as both food 
and fuel. Non-edible plants are notably 
appealing due to their abundant availability in 

various regions and their cost-effectiveness in 
specific countries [51]. An overview of biodiesel 
production from non-edible raw materials is 
outlined in Table 2.  
 

3.1 Methods of Biodiesel Production 
Process 

 

Numerous researchers have exerted 
considerable effort to advance biodiesel 
production methods, with ongoing studies aimed 
at enhancing product yields, refining fuel 
properties, and reducing production costs [57-
59]. The use of straight vegetable oils in engines 
presents challenges such as fuel filter clogging, 
poor atomization, and incomplete combustion 
due to their high viscosity, density, and 
inadequate volatility. The conversion of 
vegetable oils into biodiesel can be achieved 
through four methods: heating/pyrolysis, 
dilution/blending, micro-emulsion, and 
transesterification. Among these approaches, 
transesterification stands out as an extensive, 
convenient, and highly promising method for 
mitigating the issues associated with straight 
vegetable oils, such as viscosity and density. 
However, it introduces additional processing 
costs due to the chemical reactions and process 
heat inputs involved in the transesterification 
process [60]. 
 

3.1.1 Pyrolysis  
 

"Pyrolysis" denotes a chemical process involving 
the application of thermal energy in the absence 
of nitrogen or air. Diesel fuels closely resemble 
the liquid residues resulting from the thermal 
decomposition of vegetable oils. The pyrolysis 
product shares calorific values akin to diesel fuel 
but exhibits lower viscosity, flash point, and pour 
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Table 2. Non-edible feedstock for biodiesel synthesis 
 

Feedstock Catalyst Temperature 
(0C) 

Time (Min) Oil to Alcohol 
Ratio 

Yield 
(%) 

References  

Mahua Oil  KOH - - 6:1 98 [52] 
Mahua Oil  KOH 60 30 4:1 - [53] 
Karanja oil  NaOH 50 70 - 84 [54] 
Jatropha oil  KOH 55 60 9:1 90-95 [45] 
Jatropha oil  H2 SO4 60 120 9:1 80 [45] 
Canola oil  KOH 50 60 9:1 90-95 [45] 
Rubberseed oil  NaOH - - 9:1 80 [55] 
Honne oil  KOH 45-65 30-150 4:1 89 [56] 

 

point. However, the pyrolyzate possesses a 
diminished cetane number. Although pyrolyzed 
vegetable oils contain satisfactory levels of 
water, sedimentation, and sulfur, their ash 
content, carbon residual, and pour point fall short 
of desired standards [61]. The pyrolysis 
procedure can be categorized into three 
subtypes depending on the operating conditions: 
flash pyrolysis (1050 - 1300 K), fast pyrolysis 
(850 - 1250 K), and conventional pyrolysis (550 - 
900 K) [62-64]. Due to its energy-intensive nature 
and associated drawbacks, researchers need to 
explore more pragmatic and cost-effective 
approaches for biodiesel production. 
 

3.1.2 Micro-emulsification  
 

The creation of micro-emulsions emerges as a 
potential remedy for addressing the challenges 
related to vegetable oil viscosity and certain 
atomization properties, as documented in the 
studies by Vivekpantidar et al [65], Yusuf et al 
[66]. Micro-emulsions exhibit characteristics of 
being transparent and thermodynamically stable 
colloidal dispersions, featuring droplet sizes 
within the range of 100 to 1000 nm. These 
emulsions may consist of vegetable oils, alcohol, 
a surfactant, a cetane improver, and/or an ester 
and a dispersant (co-solvent), with or without the 
addition of diesel fuel. Microemulsions involving 
hexanol, octanol, and butanol all meet the 
maximum viscosity standards for diesel fuel.  
 

Notably, 2-octanol has demonstrated 
effectiveness as an amphiphile for the micellar 
solubilization of methanol in triolein and soybean 
oil [67-70]. Conversely, research conducted by 
Parawira [71], May and Gazi [72] suggests that 
the use of micro-emulsified diesel in diesel 
engines may lead to common issues such as 
carbon deposits, nozzle failure, and incomplete 
combustion. 
 

3.1.3 Dilution  
 

Vegetable oils can be thinned by incorporating 
substances like ethanol, solvents, or diesel fuels, 

resulting in reduced density and viscosity. The 
addition of 4% ethanol to diesel fuel enhances 
brake power, torque, and thermal efficiency while 
requiring less fuel, specifically for braking. Due to 
its lower boiling point compared to diesel fuel, 
ethanol may aid combustion by generating an 
unburned mix spray [73]. A published study 
indicates successful blending of vegetable oils 
with diesel by researchers. During World War II 
in Europe, vegetable oil, either in its pure form or 
combined with diesel, was utilized as fuel [74]. In 
1980, Caterpillar Brazil Company achieved full 
power without modifying the engine by blending 
10% vegetable oil with diesel in the pre-
combustion chamber. Furthermore, positive 
results are documented when combining 
vegetable oil and diesel in a 20:80 ratios. In 
1982, a successful test of a diesel engine was 
conducted using a 5% diesel mixture consisting 
of 95% spent cooking oil [75]. As per a study 
[76], operating the engine with a 50% blend of 
Jatropha curcas oil (JCO) did not pose significant 
operational challenges. 
 

In August 1982, a conference convened in 
Fargo, North Dakota, aiming to explore the 
development, methodology, and limitations 
associated with using vegetable oil as a fuel, 
notwithstanding ongoing research efforts [72, 
77]. Diesel fuels, being mobile and possessing 
high heat content (approximately 80%), are more 
suitable for dilution or mixing with liquids. The 
efficacy of blending is diminished for substances 
with elevated viscosity, low volatility, and a high 
unsaturated carbon chain. Running engines 
exclusively on vegetable oil leads to issues such 
as coking and trumpet formation, carbon 
deposition, oil ring sticking, thickening, and 
gelling of lubricating oil. Future considerations for 
alternative fuels will predominantly focus on the 
production of biodiesel while effectively 
addressing these challenges [75, 78]. 
 

3.1.4 Transesterification 
 

Transesterification stands out as one of the most 
convenient techniques for biodiesel production, 
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involving the conversion of vegetable oil or any 
triacylglycerol with alcohol in the presence of a 
catalyst. This process results in the formation of 
alkyl esters (biodiesel) and glycerol [79]. 
Numerous researchers have explored various 
biodiesel production methods and consistently 
identified transesterification as the most 
favorable one [80]. Biodiesel produced through 
this approach exhibits fuel properties that fall 
within the specifications of EN 14214 and ASTM 
D6751 standards. Transesterification has 
demonstrated fuel properties characterized by 
higher cetane numbers, reduced emissions, and 
enhanced combustion efficiency. However, the 
notable drawback of this method is the 
requirement for excess methanol [78]. The 
ongoing quest for optimal conditions for 
transesterification, along with the pursuit of cost-
effective and environmentally friendly catalysts, 
remains a significant concern for the industrial-
scale production of biodiesel. 
 

Transesterification method can be carried out by 
two ways according to literature [81]. 
 

a) Catalytic transesterification.  
b) Supercritical methanol transesterification. 

 

3.1.4.1 Catalytic transesterification  
 

The process known as "Catalytic 
Transesterification" involves the reaction of a 
triglyceride (fat/oil) with an alcohol in the 
presence of a catalyst, resulting in the formation 
of esters and glycerol. A triglyceride comprises a 
glycerin molecule as its base, with three long-
chain fatty acids attached. The properties of the 
oil or fat are dictated by the type of fatty acids 
linked to the glycerin, and, consequently, the 
characteristics of the biodiesel can be influenced 
by the nature of these fatty acids [60, 82-85]. 
3.1.4.2 Super critical transesterification  
 

The simple transesterification processes 
mentioned earlier face two challenges, namely, 
being relatively time-consuming and requiring the 
separation of the catalyst and saponified 
impurities from the biodiesel. The first issue 
arises from the phase separations within the 
vegetable oil/alcohol mixture, which can be 
addressed through vigorous stirring. These 
challenges are not encountered in the 
supercritical method of transesterification. This 
lack of issues may be attributed to the absence 
of a tendency for the two-phase formation of the 
vegetable oil/alcohol mixture, resulting in a single 
phase due to the reduction in the dielectric 
constant of alcohol in the supercritical state (at 

340°C and 43 MPa). Consequently, the reaction 
is completed in a remarkably short time, typically 
within 2-4 minutes. Moreover, since no catalyst is 
employed, the purification of biodiesel becomes 
much simpler, hassle-free, and environmentally 
friendly [86-90]. 
 

3.2 Effect of Reaction Parameters on 
Transesterification 

 

The production efficiency of biodiesel through the 
transesterification process is influenced by 
various operational parameters, encompassing 
factors such as the presence of moisture and 
free fatty acids (FFA), reaction time, reaction 
temperature, catalyst, and the molar ratio of 
alcohol to oil [48]. 
 

The effect of reaction parameters on 
transesterification are discussed as follows: 
 

3.2.1 Effect of Free Fatty Acid (FFA) and 
Moisture Content (MC) 

 

The presence of FFAs and water consistently 
yields detrimental effects, as their presence 
leads to soap formation, catalyst consumption, 
and reduced catalyst effectiveness, ultimately 
resulting in a lower conversion rate. In catalyst-
based methods, water's presence adversely 
affects the yields of methyl esters. In acid-
catalyzed transesterification, the formation of 
fatty acids can occur. These free fatty acids then 
react with the alkaline catalyst, producing soaps 
that hinder the separation of biodiesel, glycerin, 
and wash water. Research findings from [91-93] 
emphasize that achieving a high-quality biodiesel 
with a complete base-catalyzed reaction requires 
a free fatty acid value lower than 2%. As per [94], 
an increased water content in waste cooking oil 
accelerates the hydrolysis reaction and 
simultaneously diminishes ester formation. In 
response to this issue, the supercritical methanol 
method was proposed, noting that water has less 
influence in this approach [91]. Hence, to achieve 
a 90% biodiesel yield, the water content should 
not surpass 0.5%, and this factor is more critical 
in an acid-catalyzed reaction than in a base-
catalyzed reaction [95]. 
 

3.2.2 The effect of molar ratio and alcohol 
type 

 

The biodiesel yield percentage increases with a 
higher alcohol-to-oil molar ratio, reaching an 
optimal yield of 85% at a ratio of 6.1. However, 
going beyond this ratio does not necessarily lead 
to an increase in biodiesel yield; instead, it may 
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escalate production costs and, consequently, the 
pump price of biodiesel. While the stoichiometric 
molar ratio of methanol to triglyceride for 
transesterification is 3.1, higher molar ratios are 
employed to enhance solubility and promote 
increased contact between triglyceride and 
alcohol molecules. Elevated molar ratios 
contribute to greater ester conversion within a 
shorter timeframe. Another crucial factor 
influencing methyl ester yield is the choice of 
alcohol-to-triglyceride type. In general, short-
chain alcohols such as methanol, ethanol, 
propanol, and butanol can be utilized in 
transesterification reactions to achieve high 
methyl ester yields. Among them, methanol 
stands out due to its simple chemical structure, 
resulting in superior yields compared to butanol 
and ethanol [96-98]. Fig 1 illustrates the impact 
of the oil-to-alcohol ratio on biodiesel yield. 
 

Fig 1 illustrates the influence of the oil-to-alcohol 
ratio on supercritical transesterification, where 
carbon dioxide serves as the solvent and 
methanol as the co-solvent. The experiment 
maintained a consistent temperature of 280 ◦C. 
Notably, the biodiesel yield exhibits a positive 
trend for approximately 23 minutes during the 
experiment. This occurrence is attributed to 
findings from previous studies [91], indicating 
that an excessive amount of alcohol leads to 
product contamination, increases overall process 
costs, and consequently reduces the total 
biodiesel production. 
 

3.2.3 The effect of catalyst 
  

Alkali-catalyzed transesterification exhibits 
significantly higher speed compared to acid-
catalyzed transesterification, contributing to its 
commercial success. The Transmethylation 
process occurs 4000 times more rapidly with an 
alkaline catalyst than with an equivalent amount 
of an acidic catalyst. This heightened efficiency is 
attributed to the lesser corrosive nature of 
alkaline catalysts on industrial equipment 
compared to acid catalysts. The concentration of 
the catalyst also plays a role in biodiesel yield. 
However, surpassing an optimal catalyst 
concentration is not economically advantageous, 
as it leads to increased residues in the biodiesel, 
escalating the washing costs [99, 100]. Literature 
has reported that excessive catalyst usage can 
result in emulsions, leading to higher viscosity 
and complicating the biodiesel recovery process 
[101].  
 
Moreover, research conducted by Madhuvilakku 
and Piraman [102] revealed that elevating KOH 

conversion from 2% to 12% resulted in an 
increase in biodiesel output from 20% to 95%. 
Similarly, a study conducted by Vivekpantidar et 
al [65] determined that a 1 weight percent 
catalyst yielded the highest production of 
jatropha biodiesel. Fig 2 depicts the impact of 
catalyst concentration on biodiesel production. 
The graph indicates that the biodiesel yield 
initially increases with the rise in the 
concentration of alkali catalysts (NaOH and 
KOH) but subsequently decreases after reaching 
a peak value. 

 
3.2.4 The effect of reaction temperature and 

time 

 
Transesterification exhibits variations in reaction 
temperatures based on the type of oil involved. 
The reaction temperature significantly impacts 
the reaction rate, with room temperature allowing 
completion given sufficient time, while higher 
temperatures expedite the reaction. Typically, the 
reaction is carried out at atmospheric pressure 
around the boiling point of methanol (60 to 
70oC). However, a further temperature increase 
adversely affects the conversion process. 
Previous studies [106-108] indicate that, at 
ambient temperatures, the reaction proceeds 
effectively using an alkaline catalyst, with low 
temperatures having no impact on conversion 
but significantly affecting biodiesel recovery. 
Research by Ishak et al [109] also noted that 
temperature enhances the reaction rate up to an 
optimal level. 

 
Fig 3, derived from prior research by 
Mathiyazhagan and Ganapathi [91], illustrates 
the impact of temperature on FAMEs 
composition in the presence of a co-solvent 
(CO2). The rise in temperature increases the 
energy of reacting molecules, and as 
transesterification is inherently endothermic, 
elevated temperatures favor the reaction. The 
graph suggests that the optimum temperature 
range for transesterification lies between 250 and 
350 ◦C. Further temperature escalation may 
result in the thermal decomposition of the 
product. 

 
Fig. 4 illustrates a gradual increase in the 
concentration of fatty acid methyl ester as the 
reaction progresses over an extended duration. 
Initially, the reaction proceeds at a relatively slow 
pace, which can be ascribed to minimal stirring 
and limited dispersion of oil and solvent. The 
primary site of the reaction is predominantly the 
exterior surfaces of the oil and triglycerides. 
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Fig. 1. Oil to alcohol ratio effect on biodiesel yield, Source [91] 

 

 
 

Fig. 2. Influence of catalyst concentration on biodiesel yield [103-105] 
 

 
 

Fig. 3. CO2 and temperature effect on biodiesel yield [91] 
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Table 3. Effect of different parameters on biodiesel synthesis 
 

Feedstock Molar Ratio Time 
(min) 

Catalyst Loading Temperature 
(◦C) 

Agitation 
Speed (rpm) 

Type of Transesteri fic ation Yield  
(%) 

References 

Palm oil 6:1 
(methanol) 
6:1 
9:1 

60 
60 
480 

1% KOH 
1% NaOH 
8.5% KOH 

60 
60 
65–75 

600 
600 
- 

Homogeneous base 88 
93 
96.2 

[113] 
[113]                
[114] 

 10:1 - 0.4% KOH 70–110 -  98 [115] 
Jatropha oil 
Waste frying 
Oil 

10:1 
4.83:1 to 
9.65:1 

480 
300–480 

9% KOH 
1–4% 

60–80 
50–65 

- 
- 

Homogeneous base 96.8 
87.3 

[102] 
[116] 

Soybean oil 12:1 60 6% CaFeAl 60 270 Heterogeneous 
transesterification 

90 [117] 

Jatropha oil 3:7 
3:7 

180 1% H2SO4 1% NaOH 65 
50 

400 
400 

Homogeneous 
acid and base 

21.2 
90.2 

[118] 

Waste cooking oil 3:7 
3:7 

180 
180 

1% H2SO4 1% NaOH 65 
50 

400 
400 

Homogeneous 
acid and base 

21.2 
90.6 

[119] 

Canola oil 3:1 to 8:1 25–75 0.2–1.2% 
KOH 

30–70 100–600 Homogeneous base - [120] 

Mustard oil - 30 KOH 40–60 450 Homogeneous base - [121] 
Sunflower 
Oil 

6:1 
6:1 
12:1 
24:1 

90–330 
- 

1% CaO 
0.06–0.34 

23–60 
23–60 

- 
400 

Heterogeneous 
Homogeneous base 

91 
99 

[122] 
[123] 

Peanut oil 30:1 30–360 - 250–310 500 Supercritical transesterification >90 [124] 
Waste lard 6:1 20 4–6 wt.% enzy me 50 - Ultrasound assisted 

transesterification 
96.8 [125] 

Silybum 
Marianum seed oil 

6:1 75 4–6% sulfonated 
solid acid catalyst 

60 600 Carbon acid esterification and 
homogeneous 
base transesterification 

96.9 [126] 

Canola oil 6:1 - 0.5% KOH 45 - Homogeneous base 95 [127] 
Used frying 
Oil 

6.03:1 120 0.55% KOH 60–100 - Homogeneous base - [128] 

Rapeseed oil 3.5:1 to 42:1 120 - 200–500 - Supercritical transesterification 95 [129] 
Neem oil 10:1 60 10% CZO 55 - Heterogeneous 

transesterification 
97.1 [130] 
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Fig. 4. Influence of reaction time on biodiesel production [109, 110] 
 
As depicted in Fig. 4, the graph indicates that an 
extended reaction time leads to an augmentation 
in the concentration of fatty acid alkyl esters in 
the product. Nevertheless, this impact is 
noticeable only up to a 30-minute reaction time. 
Beyond 30 minutes, the reaction yield becomes 
indifferent to the reaction time. This is attributed 
to the equilibrium being already attained at the 
30-minute mark, as reported by Farobie et al                     
[111], Hossain and Boyce [112]. It is advi                        
sable to conduct supercritical transesterification 
within a reaction time range of 6 to 12 minutes 
and conventional transesterification within a 
range of 30 to 60 minutes. 
 

According to literatures report, Table 3 shows the 
effect of various parameters on biodiesel 
synthesis. 
 

4. BIODIESEL FUEL SPECIFICATION 
 
The most recent standard for B100 biodiesel is 
ASTM D6751-078 or D6751, where ASTM 

stands for the American Society of Testing and 
Materials. This organization comprises 
manufacturers of engines and fuel injection 
systems, fuel producers, and users, and its 
standards are officially recognized in the United 
States by governmental entities, including state 
agencies, to ensure fuel quality. Biodiesel fuels 
failing to meet these specifications are deemed 
unsuitable for use in Internal Combustion 
Engines (ICE). To ensure quality, Nigeria, 
through its Nigerian biofuel policy and incentives, 
has legislatively established the Standard 
Organization of Nigeria (SON) and the 
Department of Petroleum Resources (DPR), both 
of which have subsequently adopted the ASTM 
standard. Currently, B20 biodiesel blend has 
received commercial approval for use in ICEs, 
though it is not readily available in the open 
market. Table 3 demonstrates that biodiesel 
shares similar physico-chemical properties with 
conventional diesel fuel and typically does                 
not require engine modification for diesel 
engines. 

 
Table 4. Specification of biodiesel standard [1],[137-141] 

 

Properties ASTM D6751 EN 14214 

Density (15 oC, g/cm3) NS 0.86–0.90 

Kinematic viscosity (40 oC, 
mm2/s) 

1.9 – 6.0 3.5 – 5.0 

Cetane number 47 min 51 min 

Flash point (oC) 130 min 120 min 

Sodium (ppm) Potassium 
(ppm) 

Na & K combined 5 (max) Na & K combined 5 (max) 

Acid value (mg of KOH/g) 0.50 max 0.50 max 

Iodine value (g I2 /100 g) NS 120 (max) 

Total sulfur (ppm) 15 max 10 max 

NS: not specified. Max: maximum. Min: minimum  

 



 
 
 
 

Linus et al.; J. Energy Res. Rev., vol. 15, no. 4, pp. 63-81, 2023; Article no.JENRR.110808 
 
 

 
75 

 

Top-notch fuel is generated through the correct 
blending of diesel fuel that meets all 
specifications with biodiesel that also fulfills those 
criteria, following appropriate fuel management 
procedures. The outcome is a superior diesel 
fuel proven to operate efficiently in nearly any 
unmodified diesel engine. Nevertheless, the use 
of substandard fuels, including biodiesel, may 
lead to performance issues or equipment 
damage [131-136]. 
 

4.1 ASTM and EN Biodiesel Specification 
 
Table 4 presents a comparative examination of 
the physico-chemical properties of several 
biodiesel standards utilized in gas turbines 
across Europe and the American continent. The 
differences in the values observed for various 
fuel properties can be largely attributed to the 
climatic conditions prevalent in each specific 
country. 
 

5. CONCLUSION 
 

As the demand for energy continues to rise with 
population growth and economic expansion, the 
depletion of fossil fuels, the primary energy 
source, becomes a pressing concern. Given the 
current consumption rate, these fossil fuel 
reserves are anticipated to diminish. However, 
rising crude oil prices and environmental 
pollution concerns associated with traditional 
fuels have propelled biodiesel into the spotlight 
as a promising alternative and renewable fuel for 
diesel engines worldwide. Consequently, there is 
an urgent need to enhance the oil extraction 
process for biodiesel production. Various oil 
extraction methods are employed to extract oils 
from seeds, with oil expellers falling into this 
category. This discussion has covered two types 
of oil expellers: automatic screw press and 
manual. 
 

While each oil extraction method discussed has 
its advantages, this research aims to bridge the 
gap between automatic and manual methods. 
The recommendation involves incorporating a 
heater or heating element into the crushing 
chamber of automatic expeller machines. This 
addition aims to reduce oil viscosity in the paste, 
resulting in increased oil production, reduced 
processing time, and improved overall production 
efficiency. The study delineates four methods for 
biodiesel production: Heating/pyrolysis, 
dilution/blending, micro-emulsion, and 
transesterification. Among these approaches, 
transesterification emerges as one of the most 

practical techniques for  biodiesel production. 
This method involves reducing the viscosity of oil 
or fat using an acid or base catalyst in the 
presence of methanol or ethanol. However, the 
biodiesel yield in the transesterification process 
is influenced by various process parameters, 
including the presence of moisture and free fatty 
acids (FFA), reaction time, reaction temperature, 
catalyst, and the molar ratio of alcohol to oil. 
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