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Abstract 
The first step towards developing a reliable forecast for the forex market re-
turns is to find a model that can be used and explains all of the return beha-
vior. The compound Poisson model with the Normal Inverse Gaussian jumps 
(NIG), geometric Brownian motion (gBm), and the Poisson model with the 
Gaussian jumps (Norm) are used in this work to fit the market data. The AIC 
and BIC scores of the models were used to validate them. The model com-
pound Poisson with Normal Inverse Gaussian jumps (NIG) performs better 
across all currencies than the model Norm and gBm. The data from the Rwan-
dan forex market matches well with a model compound Poisson with Normal 
Inverse Gaussian jumps (NIG). 
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1. Introduction 

The Brownian movement model and the Compound Poisson measure are both 
present in a focused class of stochastic cycles shaped by the Levy process. Appli-
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cations for these models range from material science and science to money and 
protection. They allow for the depiction of unexpected moves by hops, similar to 
the Poisson cycle, which is an essential component for some applications. Over 
the past ten years, Levy measures have been thought to have expanded signifi-
cantly as they are discussed from both a scholarly perspective, where they pro-
vide stochastic models of money-related business sectors, and a financial one, 
where they are informed by a variety of amazing alumni communications. This 
keeps inspiring more research in both practical and theoretical contexts (Ayed, 
Lee, & Caron, 2020). 

Levy measures have garnered significant attention in the field of numerical 
accounting in recent times, largely due to their diverse applications. As a result, 
they are now considered an essential building element for the presentation of 
foreign currency. Toll cycle models should be considered first in developing and 
evaluating quantifiable procedures, as they capture the most important aspects 
of market returns and serve as “first-request approximations” to other, more 
precise models. It should be noted that the combination of a geometric Brow-
nian and a compound Poisson measure yields the broadest Levy measure (Broa-
die & Kaya, 2006). 

All of the market return’s behavior can be explained by these models, which is 
good news. To represent more customized highlights of market returns, other 
Levy-based models have recently been proposed. Retail currency traders use fo-
rex analysis to decide which currency pairs to buy and sell. Gaining an under-
standing of the macroeconomic principles governing currency value could make 
currency traders more successful. In order to do this, traders can fix exchange 
rates, buy and sell currencies in advance on futures swaps, or buy and sell them 
in futures swap markets. Users can profit from the appreciation or devaluation 
of various currencies by using “How to trade the Forex market” and “Forex trad-
ing” (Ennals, 2018). 

The difference in the valuations of currencies between traders and buyers has 
shrunk along with foreign exchange spreads (buyers have a broader focus on the 
long-term ownership and use of financial instruments). Because of this, the val-
ue of different currencies fluctuates, necessitating the use of foreign exchange 
services and commerce. The exchange rate results in a higher value for the orig-
inal currency, which benefits investors (Garner, 2021). 

In Teneng (2013b), Dean Teneng predicted foreign exchange rates using three 
models. Teneng proved that the guileless Random Walk model is outperformed 
by the conjecture of unknown trade day-by-day shutting costs using the stan-
dard reverse Gaussian (NIG) and Variance Gamma (VG) Toll measures. The mod-
els NIG and Norm were not both used in this paper. Furthermore, it was not at-
tempted to fit all three models for every cash and determine which one performs 
better. 

This work (Teneng, 2013a) in order to trade shutting costs, this work focused 
on fitting the Typical Inverse Gaussian (NIG) circulation using the open pro-
gramming bundle R and selecting the least complex models using the method 
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suggested by Käärik and Umbleja. The daily shutting costs (12/04/2008-07/08/ 
2012) of NZD/USD, QAR/CHF, QAR/EUR, CHF/JPY, SAR/CHF, AUD/JPY, 
GBP/JPY, SAR/EUR, TND/CHF, and TND/EUR tend to be magnificent fits, 
whereas EGP/EUR and EUR/GBP are acceptable fits, with a Kolmogorov-Smir- 
nov test with p-worth of 0.062 and 0.08 for each. This means that the daily shut-
ting costs of CHF/JPY, GBP/JPY, QAR/EUR, SAR/EUR, TND/CHF, EGP/EUR, 
EUR/GBP, and TND/EUR (12/04/2008-07/08/2012) have been consistently illu-
strated using ordinary opposite Gaussian circulation, and their future costs have 
been gauged using NIG Lévy measure. He didn’t use any in this paper. 

In Reddy and Clinton (2016), Reddy and Clinton look into the Geometric 
Brownian development model as a means of simulating stock value and provide 
three methods for evaluating the model’s validity. Daily stock value data from 
January 1, 2013, to December 31, 2014, was obtained from the Thomson One 
data set. Because of their year-based limitations, there is a significant discrepan-
cy in the estimation in this paper, making it generally unreliable. 

The study (Mingola, 2013) demonstrates how many radioactive particles a 
model produces. The amount of α-particles delivered up to time t can be repre- 
sented by a Poisson cycle, {N(t): t ≥ 0} with force λ, given an enormous variety of 
radioactive centers that transmit α-particles on schedule and for times impres-
sively not the half presence of the radioactive substance (this can go from a little 
section of a second to billions of years). A Poisson association can demonstrate 
customer purchasing attentiveness; a Poisson cycle can also demonstrate the Cou- 
pon Collection difficulty; and a Poisson cycle can also demonstrate shot upheav-
al. 

The research (Agustini, Affianti, & Putri, 2018) suggests that the Mathemati-
cal Brownian evolution could be used as a numerical model to predict the stock’s 
longer-term cost. The step that comes before estimating stock value is calculat-
ing the stock expected value plan and selecting the 95% assumption level. The 
calculation of stock value expectation using the mathematical Brownian devel-
opment model starts with determining the value of return, followed by evaluat-
ing the value of float and volatility, obtaining an estimate of stock value, calcu-
lating the gauge MAPE, registering the stock expected cost, and calculating the 
95% egotism level. Supported by the analysis, the yield study demonstrates that 
the high-accuracy expectation process is the mathematical Brownian develop-
ment model. It is illustrated using an approximated MAPE. 

The research (Shaw, 2019) presents a framework that exchanges the Levy 
model to examine changes in power Option-Adjusted Spreads (OAS), which are 
the spreads between a spot Treasury wind and an enrolled OAS record of all 
bonds in a particular rating group. Every constituent security’s OAS is used to 
compile an OAS record, which is weighted by market capitalization. OAS moni-
tors a degree of credit risk in bonds that are selected. These are interesting for 
particular reasons. The idea that corporate security yields indicate the cost of fi-
nancing for private companies is one such reason. Excessive spreads indicate 
higher capital costs and, hence, lower experience opening upside. Additionally, 
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given that the premium on genuine capital is a major factor in cash-related. 
This paper makes the following contributions: 1) Fitting the returns on the 

Rwandan forex market with the Geometric Brownian motion 2) Using a com-
pound Poisson model with Gaussian jumps to fit the returns of the 3 Rwandan 
forex market. 3) Using a compound Poisson model with normal inverse Gaus-
sian jumps to fit the returns of the Rwandan forex market. 4) Use both AIC and 
A measures to compare each model’s performance. 

2. Methodology 
2.1. Description of the Models Used 

The inverse Gaussian distribution model, which finds widespread use in intri-
cate applications, is the inverse of a single continuous normal distribution. As 
discussed in this paper (Schrodinger, 1915), Schrödinger initially deduced this 
kind of distribution in 1915 when researching the Brownian movement for the 
first time. Étienne Halphen was the one who suggested this distribution (Banks, 
1999). In 1945, Tweedie’s inverse Gaussian name was approved (Folks & Chhi-
kara, 1978). The inverse normal distribution models depict an exponentially 
composite model with a long tail to the right and only one pattern. One of the 
distributions used in the generalized linear model tracking process is this one 
(Armitage, 1950). In addition to its many varied applications in economics and 
business, survival analysis, finance, medical, and even labor dispute settlement, 
this distribution is employed to track data with positive deviation (Tweedie, 
1957). 

In an effort to follow Brownian motion in physics, the normal inverse Gaus-
sian distribution model was initially examined in 1956. Because there is an in-
verse link that expresses the time needed to cover the unit’s distance and the 
distance covered at the time the unit was approved, M.C.K. Tweedie originally 
utilized it as an inverse Gaussian (Chhikara, 1988). A variance-mean mixture of 
a normal distribution, with the inverse Gaussian serving as the mixing distribu-
tion, is known as the normal inverse Gaussian distribution. The inverse Gaussian 
process subordinates Brownian motion to a homogeneous Lévy process, which 
can be represented (Barndroff-Neielsen, 1997). The normal inverse Gaussian 
(NIG) distribution was put up by (Barndorff-Nielsen et al., 1998) as a potential 
stock price model. An alternative representation of this process would be a time- 
changed Brownian motion, in which the first passage time of an independent 
Brownian motion with drift to the level t is denoted by the time change T(t). 
Therefore, the time change is an inverse Gaussian process. This proposes the 
nomenclature of a regular inverse Gaussian process when one analyzes a Brow-
nian motion at this point (Lahcene, 2019). 

2.2. Definition: Levy Process 

With values in Rd, a stochastic interaction (Xt)t≥0 on (Ω, F, P) to the extent that 
X0 is described as a Levy Process if it possesses the following characteristics: 

1) Stationary increments: t is independent of the law of Xt+h − Xt. 
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2) Self-governing augmentations: for every growing grouping of times  

0 , , nt t� , the abnormal 
0 1 0 1
, , ,

n nt t t t tX X X X X
−

− −�  variables are Autonomous. 
3) Probabilistic congruence: 0∀ > , lim 0h t h tX X→∞ + − ≥ =   
4) Most likely, it’s càdlàg. 
5) X0 = 0 Without a question 
The third condition implies that for a given time frame t, the likelihood of 

seeing a seize t is zero: discontinuities consistently happen indiscriminately times 
(Huang, 2008). Suppose Ht is a Levy cycle. At that point, Kt, the interaction, is 
described as 

0e , 0.tH
tK K t= >                         (1) 

Equation (1) is known as an extraordinary Levy measure. When autonomous 
log returns are possible, this cycle is typically used to display resource measures. 
Certainly, in the unlikely event that we use the technique’s log-returns Kt 

[ ]log .t t t t t t tK K H H H+∆ +∆= − = ∆                 (2) 

Equation (2) is referred to as an exceptional Levy measure. Usually, resource 
measures are displayed using this cycle when autonomous log returns are possi-
ble. Of course, in the improbable case that we employ the method’s log-returns 
(Iacus & Yoshida, 2018). 

2.3. Generalities on the Gaussian Distribution 
2.3.1. Inverse Gaussian Process 
The Gaussian distribution that is inverse, the distribution  

( ) ( )IG , GIG 1 2, ,δ γ = − δ γ  has the probability density given by Equation (3) be- 
low: 

( )
( )
( )

1 22 132 2
2

IG 21
; , exp ,

2 2

x
p x x

x

−
−

−

 δ − δγ δ  δ γ = −   π  δγ 

             (3) 

for 0, 0x > δ >  and 0γ > . More broadly, the Equation (4) of its Fourier trans-
form indicates that the function ( )IG ; ,p ⋅ δ γ  specifies a probability distribution. 

Consequently, the following replicating property is satisfied by the class of in-

verse Gaussian distributions: The expression ( ) ( )IG IG0
; , e ; , diuxu p x x

∞
ϕ δ γ = δ γ∫ : 

( ) ( )2
IGφ ; , exp 1 1 2 , .u iu u R δ γ = γδ − − γ ∈  

            (4) 

The equivalent Lévy process for ( ) ( ) ( )1 2 1 2IG , IG , IG ,δ γ ∗ δ γ = δ + δ γ  is known 
as an inverse Gaussian process with parameters ( )IG ,δ γ . It is evident that  

( )IG ,δ γ  is infinitely divisible with parameters 0δ >  and 0γ >  (Iacus & Yo-
shida, 2018). 

2.3.2. Normal Inverse Gaussian Process 
Barndoff-Neilson introduced the NIG conveyance cycle as a log-returns of stock 
cost model. It belongs to the wider category of exaggerated Levy measures. Fol-
lowing its presentation, it became evident that the NIG dispersion fits log-returns 
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of securities exchange data the best. Additional analyses have demonstrated that, 
in comparison to other resource classes, this appropriation exhibits tantrums. 
Below is a description of the density function: ( )NIG , , ,α β δ µ  

( ) ( )
( )( )

( )

2 2
1

2 2
NIG 2 2

1
; , , , e ,

1

K x
f x x

x
δ

αδ + −µ δα
α β δ µ = α −β +β −µ

π + −µ δ
   (5) 

where 0δ > , 0α > . The parameters of the Normal Inverse Gaussian transport 
in Equation (5) are as follows: α represents the tail steepness, β the skewness, 
δ the scale, and µ the area. The NIG dispersion is the only member of the set 
of generalized heightened distributions to be closed under convolution (Shaw, 
2019). 

An inverse Gaussian process provided by ( )t t R
K K

+∈
=  with  

{ } ( )2 2
1 IG ,K = δ α −β  where ( ), 0,δ α∈ ∞ , Rβ∈  Satisfying α ≥ β ;  

2 2γ = α −β . Define ( )t t R
X X

+∈
=  by t t tkX t K W= µ + β+ , with Rµ∈  and  

( )t t R
W W

+∈
=  being a one-dimensional wiener process independent of K. Let  

kK Wβ +  be the inverse Gaussian process K, which subordinates a one-dimen- 
sional drifting Wiener process k kY k W= β + . Consequently, X and k kY k W= β +  
are Lévy process. Let ( )NIG , , ,α β δ µ  be the normal inverse Gaussian process 
for the process X. We define the distribution as follows: 

{ } { }11 1 kX K W= µ +β +                      (6) 

Equation (6) is known as a normal inverse Gaussian distribution  
( )NIG , , ,α β δ µ . Through 

( )( ) { }( )( )11 1exp exp 2^ 1kE iu k W E iu iu k   β + = β+ −    

with the help of Equation (4) we can determine the characteristics function given 
in Equation (7) 

( ) ( )( )22 2 2
NIG ; , , , exp ,u i u iu ϕ α β δ µ = µ + δ α −β − α − β+  

      (7) 

(Iacus & Yoshida, 2018). 

2.4. Generalities Standard Processes 
2.4.1. Geometric Brownian Motion 

A Brownian (or Wiener) process is the stochastic process B = Bt: t > 0 if and 
only if 

1) When s < t, the increment Bt – Bs is independent of the history of the 
process’s actions up to time s. Thus, Bt has independent increments; 

2) Gaussian increments characterize Bt; thus, the distribution Bt − Bs ∼ N (0, t 
− s). 

3) Although Bt is continuous, it is not smooth, which means it cannot be dif-
ferentiated anywhere. 
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4) B0 = 0. 
In the cosmic system of stochastic cycles used to demonstrate value changes, 

the Brownian movement is without a doubt the most brilliant star. A Brownian 
movement is a random measure Wt with autonomous, fixed additions that fol-
low a Gaussian circulation. Brownian movement is the most generally contem-
plated stochastic measure and the mother of the cutting-edge stochastic exami-
nation (Neisy, 2017). The Brownian movement also, monetary displaying has 
been integrated from the earliest starting point of the last mentioned, when 
Louis Bachelier proposed to show the value Kt of an asset at the Paris Bourse as 
(Tankov & Cont, 2003): 0t tK K W= + σ . The expression “Brownian movement” 
can likewise allude to a cycle Wt which fulfills the primary, second, and fourth 
conditions above, yet which has dissemination for  

( ) ( )( )2,t sW W N t s t s− = µ − − σ , where µ is named the floating coefficient and σ 
the dispersion coefficient. The connection between standard Brownian move-
ment and Brownian movement is equivalent to that among N (0, 1) and N (µt, 
σ2t) (Morters & Peres, 2010). 

The model for fitting currency market returns could then be geometric Brow-
nian motion 

t

t

dK dt dB
K

= µ + σ                          (8) 

where dB ∼ N (0, dt) and µ is the drift and σ is the volatility, and a starting value 
K0 > 0 in Equation (8). What is more, is an exceptional instance of this model as 
its answers are given inside the structure 

2
0

1exp
2t tK K t B  = µ − σ + σ    

,                   (9) 

Occasionally, the process Kt in Equation (9) is referred to as a geometric 
Brownian motion (Garrett, 2013). 

2.4.2. Compound Poisson Process 
For financial applications, A cycle with only one potential leap size is not very 
interesting. The leap sizes may exhibit a self-emphatic movement in the com-
pound Poisson measure, where the holdings up events between hops are excep-
tional in any case. Alternatively, consider N as a Poisson cycle with boundary λ 
and {Yi}i≥1 be an assembly of independent, self-assured parts (Tankov, 2007). 
Stochastic process Xt is defined as a compound Poisson process with intensity 
λ > 0 and, hence, the jump size distribution f., 

1 .tN
i iiX Y

=
= ∑                             (10) 

In this Equation (10), Nt is a Poisson method with intensity λ, which makes it 
independent from (Yi)i≥1. The jump sizes, Yi, are independent and identically 
distributed (i.i.d) with distribution 3f. 

The definition of a compound Poisson method yields the following properties, 
which can be readily ascertained: 
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1) The sample paths of X are piecewise constant functions. 
2) (Ti)i≥1 is the jump times with the same law as the jump times of the Poisson 

process Nt: they can take the form of partial sums of free exponential random 
variables with parameter λ. 

3) These jump sizes (Yi)i≥1 are independent and identically distributed (i.i.d.) 
with law f (Tankov & Cont, 2003). 

The Poisson interaction (the leap part) and Brownian motion (the dissemina-
tion part) are the two fundamental structure squares of every Lévy cycle. Since 
the Black-Scholes model is present, the Brownian movement is a natural item for 
each discerning dealer; however, a few words about the Poisson cycle are all to-
gether necessary. 

Consider a set of autonomous remarkable irregular variables { } 1i i≥
τ  with 

boundary λ, that is, with full apportionment. Work [ ] e y
iP y −λτ ≥ =  and let  

1n i
n

iT
=

= τ∑  

11 .T t nnN T
≥

= ≥∑                           (11) 

Equation (11) is referred to as having a boundary of λ and being a Poisson 
process. The total number of transports shown up to time t is a Poisson interac-
tion, for instance, if the holding up events between transports at a bus stop are 
significantly scattered. A Poisson measure has piecewise steady bearings (right 
continuous with as much as possible, or RCLL), or bounces of size 1. The gaps 
(the holding up events) between the leaps, which happen irregularly Ti, are dra-
matically appropriated. With boundary tλ, Nt has the Poisson transport at every 
date t > 0; that is, it is a whole number valued and 

[ ] ( )e !, 0,1,2,ntP Nt n t n nλ= = λ = �                 (12) 

Equation (12) is the compound Poisson process with [ ]tE N t= λ , where the 
parameter λ is the intensity function. The Poisson collaboration gives the 
Brownian development the essential property of stationary and freedom from 
augmentations; that is, the addition Nt Ns for each t > s has a comparative law as 
Nt s and is independent of the association’s true background up to time s. The 
cycle featuring independent and fixed additions is referred to as the “toll interac-
tion,” named for the well-known French mathematician Paul Levy (Tankov, 
2007). 

3. Data Analysis and Discussion 
3.1. Description of the Data in Terms of Returns 

The return for the USD, GBP, EUR, ETB, KES, and TZS against the Rwandan 
franc is shown in the current figure. 

Figure 1 shows that the pound sterling (GBP) is not steady and tends to 
bunch over time, with a noticeable huge (little) peak or drop in return over time. 
The euro (EUR) shows an up and downtrend, with a high return from 2015 to 
2016 accompanied by high bunch periods. The US dollar (USD) exhibits low  
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Figure 1. Shows the spread return for every currency. 

 
time-series behavior similar to that of other currencies. Among regional curren-
cies, the Ethiopian Bir (ETB) shows decreasing clustering and is not constant as 
it tends to cluster over time. The Kenyan shillings (KES) shows cluster from 
2013 to 2016 indicating a panic sell-off. From 2016 to 2019, there is no cluster 
and no trend. 

Returns are frequently utilized because they facilitate the normalization of da-
ta and facilitate the comparison of assets with varying absolute values. 

Comprehending the distribution and patterns of returns becomes essential 
while executing currency models or fitting financial models. Certain statistical 
characteristics of returns, like normality or stationarity, are frequently assumed 
by models. You give the model the information it needs to forecast or estimate 
parameters based on these assumptions by characterizing the data in terms of 
returns. 

The relationship basically comes down to how the models being used for fi-
nancial or currency research and the assumptions made about them are met by 
the data representation that has been selected, such as returns. 

3.2. Results (From Fitting the Models) 
3.2.1. Running the Model for International Currency EUR, GBP and USD 
The compound Poisson model with Gaussian jumps (Norm) fit, empirical den-
sity (continuous line) against the geometric Brownian motion (gBm) fit, and 
Normal Inverse Gaussian (NIG) model density are shown in the current figures 
below. 

The densities of the assumed gBm (horizontal dashed green line), Norm 
(dashed red line), and NIG (blue dashed line) densities are plotted against the 
density of the experimental data Ht (solid line) in Figure 2, Figure 3 and Figure 
4. The densities of the assumed gBm, Norm, and NIG were approximated using 
the Poisson measure of the degenerate mixture in Equation (10). In Figure 2, 
NIG is blue, which aims to balance the density of observational data; red (Norm) 
is next, and gBm comes last. In Figure 3, the NIG, which is blue, is the highest,  
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Figure 2. Depict the three models that were used to fit the euro (EUR). 

 

 
Figure 3. Depict three models that were fitted with British Pound 
sterling (GBP). 

 
followed by the empirical density, then the norm, which is red, and gBm (green) 
come last. In Figure 4, the empirical density is the highest, followed by NIG, 
though all three densities seem to deviate from the empirical data set. The best 
densities are the blue NIG in all the figures above, which is followed by the den-
sities of the Norm (red); gBm, on the other hand, completely deviates from the 
density of observational data; suffice to say that gBm is the worst case in Figure 
2, Figure 3 and Figure 4. In this specific data set, the data is obviously not  
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Figure 4. Displays the three models that the US dollar (USD) was 
fitted with). 

 
Gaussian, and, in particular, it does not originate from gBm, but rather it can 
have a complex Poisson type with an NIG. This empirical evidence is also con-
firmed by evaluating the Akaike information criteria using the AIC function. 

3.2.2. Running the Model for Regional Currency ETB, KES and TSZ 
The empirical density (continuous line) is plotted against the geometric Brow-
nian motion (gBm) fit, the compound Poisson model with Gaussian jumps 
(Norm) fit, and the density of the Normal Inverse Gaussian (NIG) model in the 
current figures. 

The densities of the assumed gBm (horizontal dashed green line), Norm 
(dashed red line), and NIG (blue dashed line) densities are plotted against the 
density of the experimental data Ht (solid line) in Figure 5, Figure 6 and Figure 
7. The densities of the assumed gBm, Norm, and NIG were approximated using 
the Poisson measure of the degenerate mixture in Equation (10). In Figures 5-7, 
NIG (blue) seeks to balance the empirical data, followed by norm (red) and fi-
nally gBm (green). In this specific data set, the data is obviously not Gaussian, 
and, in particular, it does not originate from gBm, but rather it can have a com-
plex Poisson type with an NIG. The best densities are the blue NIG, which is 
followed by the densities of the norm (red); gBm, on the other hand, completely 
deviates from the density of observational data; suffice to say that gBm is the 
worst case. This empirical evidence is also confirmed by evaluating the Akaike 
information criteria using the AIC function. 

3.3. Validation of the Model 
3.3.1. Selection Criteria 
The two techniques listed below are for selecting the optimal or most effective 
model using the Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC). 
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Figure 5. Shows the three models that the Ethiopian Birr 
(ETB) was fitted to. 

 

 
Figure 6. Shows the three types of models that the kenyan 
shillings was fitted to. 

 

 
Figure 7. Shows three models that were fitted to Tanzanian 
Shillings. 
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1) Akaike Information Criterion (AIC): In order to examine several models 
for a given result, Akaike initially suggested the AIC. The following is an illustra-
tion of the candidate model’s AIC: 

( )ˆAIC : 2 | 2 ,l y J= − θ +                         (15) 

where ( )ˆ|y θ  is a log-likelihood at the surveyed model’s most limit place and J 
is the number of assessed boundaries in the model, including the catch. The 
standard for judgment: a model’s quality increases with its AIC value. 

2) BIC (Bayesian Information Criterion): First introduced by Schwarz, BIC 
one of the times calls the Bayesian data criterion (BIC) or Schwarz criterion (also 
SBC, SBIC) which is a basis for model choice among a limited arrangement of 
models. The following describes the competitor model’s BIC: 

( ) ( )ˆBIC : 2 | ln ,l y n J= − θ +                      (16) 

where n is essentially the size of the sample; J is the number of evaluated boun-
daries in the model including the catch and ( )ˆ|y θ  is the log-likelihood at its 
most limit spot of the surveyed model. The norm of decision: the more unas-
suming the value of BIC is, the better the model. The methodology for applying 
AIC and BIC are given as follows: 

Step 1: Selecting up-and-comer models which can be fitted to the dataset. Step 
2: Estimating unknown parameters of models. Step 3: Finding upsides of AIC 
and BIC by utilizing the formulas (15) and (16), respectively. Step4: Basing on 
the standard of choice, one can choose the most reasonable model (Pho, Ly, Ly, 
& Lukusa, 2019). 

3.3.2. Comparison Performances of Models 
Models will be validated in this section based on their AIC and BIC scores. 

A lower Akaike information criterion (AIC) is found for the compound Pois-
son with Normal Inverse Gaussian jumps (NIG) model in Table 1. Additionally, 
the Bayesian criteria information (BIC) of the model NIG is smaller. Therefore, 
when compared to the model gBm and Norm, the model NIG is most likely. 

A lower Akaike information criterion (AIC) is found for the compound Pois-
son with Normal Inverse Gaussian jumps (NIG) model in Table 2. Additionally, 
the Bayesian criteria information (BIC) of the model NIG is smaller. Therefore, 
when compared to the model gBm and Norm, the model NIG is most likely. 

A lower Akaike information criterion (AIC) is found for the compound Pois-
son with Normal Inverse Gaussian jumps (NIG) model in Table 3. Additionally, 
the Bayesian criteria information (BIC) of the model NIG is smaller. Therefore, 
when compared to the model gBm and Norm, the model NIG is most likely. 

A lower Akaike information criterion (AIC) is found for the compound Pois-
son with Normal Inverse Gaussian jumps (NIG) model in Table 4. Additionally, 
the Bayesian criteria information (BIC) of the model NIG is smaller. Therefore, 
when compared to the model gBm and Norm, the model NIG is most likely. 

A lower Akaike information criterion (AIC) is found for the compound Pois-
son with Normal Inverse Gaussian jumps (NIG) model in Table 5. Additionally,  
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Table 1. Give each model’s BIC and AIC scores for EUR. 

 NIG Norm gBm 
BIC −18296.86 −17284.92 2exp+10 
AIC −18320.35 −17296.67 2exp+10 

 
Table 2. Give each model’s BIC and AIC scores for GBP. 

 NIG Norm gBm 
BIC −18296.86 −17292.15 2exp+10 
AIC −18320.35 −17303.9 2exp+10 

 
Table 3. Give each model’s BIC and AIC scores for USD. 

 NIG Norm gBm 
BIC −18527.59 −15479.26 2exp+10 
AIC −18551.09 −15491.01 2exp+10 

 
Table 4. Give each model’s BIC and AIC scores for ETB. 

 NIG Norm gBm 
BIC −20042.86 −18369.91 2exp+10 
AIC −20066.36 −18381.66 2exp+10 

 
the Bayesian criteria information (BIC) of the model NIG is smaller. Therefore, 
when compared to the model gBm and Norm, the model NIG is most likely. 

A lower Akaike information criterion (AIC) is found for the compound Pois-
son with Normal Inverse Gaussian jumps (NIG) model in Table 6. Additionally, 
the Bayesian criteria information (BIC) of the model NIG is smaller. Therefore, 
when compared to the model gBm and Norm, the model NIG is most likely. 

3.4. Summary of Model’s Performance 

After running the model for the euro, British Pound Sterling, United States Dol-
lar, Ethiopian Birr, Kenyan Shillings, and Tanzanian Shillings, the model com-
pound Poisson with normal inverse gaussian jumps (NIG) has the lowest value 
for both the Akaike information criterion and the Bayesian information crite-
rion, followed by the model compound Poisson with gaussian jumps and then 
geometric Brownian motion. In contrast to the compound Poisson model with 
gaussian jumps and the geometric Brownian model, the model with normal in-
verse gaussian jumps has fit the Rwandan forex market return quite well. 

4. Conclusion and Discussion 
4.1. Conclusion 

The study’s primary goal was to assess the Levy process on the returns from 
the Rwandan FX market utilizing 2631 observations from 02/01/2013 to 18/08/ 
2023. The study specifically sought to match the returns from the Rwandan FX 
market using the gBm, Norm, and NIG models, and it evaluated each model’s  
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Table 5. Give each model’s BIC and AIC scores for KES. 

 NIG Norm gBm 

BIC −20042.86 −18715.11 2exp+10 

AIC −20066.36 −18726.86 2exp+10 

 
Table 6. Give each model’s BIC and AIC scores for TZS. 

 NIG Norm gBm 

BIC −20066.36 −17106.82 2exp+10 

AIC −20066.36 −17118.57 2exp+10 

 
performance using the AIC and BIC metrics. The research determined that, after 
fitting the three models for each currency, the model Compound Poisson hav-
ing Normal Inverse Gaussian jumps (NIG) with AIC = −18320.35 and BIC = 
−182926.86 is the best model for the euro (EUR) in comparison to the models’ 
geometric Brownian motion (gBm) with AIC = 2exp+10 and BIC = 2exp+10 and 
Compound Poisson having Gaussian jumps (Norm) with AIC = −17296.67 and 
BIC = −17284.92. The study also discovered that, in terms of the model’s geo-
metric Brownian motion (gBm) with AIC = 2exp+10 and BIC = 2exp+10, and 
Compound Poisson having Gaussian jumps (Norm) with AIC = −17303.9 and 
BIC = −17292.15, the model Compound Poisson having Normal Inverse Gaus-
sian jumps (NIG) with AIC = −18320.35 and BIC = −18296.86 is the best model 
for Pound sterling (GBP). The study also discovered that the model Compound 
Poisson having Gaussian jumps (Norm) with AIC = −15491.01 performs margi-
nally better than the model Compound Normal Inverse Gaussian jumps (NIG) 
with AIC = −18551.09 and BIC = −18527.59 for the US currency (USD). In addi-
tion, the study discovered that the model Compound Poisson having Normal 
Inverse Gaussian jumps (NIG) with AIC = −20066.36 and BIC = −20042.86 is 
the most effective model for Ethiopian Birr (ETB) when compared to the mod-
el’s geometric. 

Brownian motion (gBm) with AIC = 2exp+10 and BIC = 2exp+10 and Com-
pound Poisson having Gaussian jumps (Norm) with AIC = −15491.01 and BIC 
= −15479.26. Additionally, the model Compound Poisson with Normal Inverse 
Gaussian jumps (NIG) with AIC = −20066.36 and BIC = −20042.86 outper-
forms the model Compound Poisson with Gaussian jumps (Norm) with AIC = 
−18726.86 and BIC = −18715.11 for Kenyan shillings (KES), according to the 
study. A comparison between the model geometric Brownian motion (gBm) 
with AIC = 2exp+10 and BIC = 2exp+10 and the model Compound Poisson 
having Gaussian jumps (Norm) with AIC = −17118.57 and BIC = −17106.82 re-
veals that the model with the best performance for Tanzanian shillings (TZS) is 
the one with Normal Inverse Gaussian jumps (NIG) with AIC = −20066.36 and 
BIC = −20066.36. 
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4.2. Recommendation 

The study’s empirical findings indicate that, across all currencies, the NIG model 
performs better than the Norm and gBm models. The Nairobi Securities Ex-
change (NSE), Dares Salaam Stock Exchange (DSE), Rwanda Stock Exchange 
(RSE), and Lusaka Stock Exchange (LuSE) could all adopt the model NIG. 
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