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Abstract

This research paper delves into the intriguing realm of orthogonal polynomials, focusing on their ability to
attain specific norm values and the conditions under which this phenomenon occurs. It explores various
polynomial families, both classical and specialized, uncovering the unique characteristics that influence
norm attainability. Beyond theoretical insights, the paper delves into practical applications across multiple
disciplines, offering new perspectives and problem-solving opportunities. By marrying rigorous mathematical
analysis with real-world relevance, this research enriches our understanding of orthogonal polynomials while
demonstrating their potential utility in diverse fields. It invites readers on a journey to unveil hidden patterns
within this captivating mathematical domain.
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1 Introduction

This research paper delves into the intricate realm of orthogonal polynomials, with a focus on understanding
when their norm values can attain specific values and the factors that influence this phenomenon [1-3]. The paper
introduces essential concepts, including the norm of orthogonal polynomials with respect to weight functions
[4-6]. It presents a series of key results, including propositions, theorems, lemmas, and corollaries, which provide
insights into norm attainability. Key findings include the condition that the norm of an orthogonal polynomial is
attainable if and only if its leading coefficient is nonzero. Norm attainability is also closely tied to the distinctness
of polynomial zeros and the positivity of the weight function [7,8,9]. The paper explores the product of orthogonal
polynomials and how their product remains orthogonal. Furthermore, the weight function is shown to be a
critical factor in norm attainability, with specific conditions established [10,11,12]. The research emphasizes
the practical applications of norm attainability, spanning fields like signal processing, quantum mechanics, and
data science, where tailored weight functions can optimize data analysis. In essence, the paper invites readers to
explore the mysterious world of orthogonal polynomials, offering both theoretical insights and practical relevance
by uncovering hidden patterns in norm attainability.

2 Preliminaries

Before delving into the intricate analysis of norm attainability in orthogonal polynomials, it is essential to
establish a foundation by introducing key concepts and background information.

2.1 Orthogonal polynomials

Orthogonal polynomials are a fundamental class of mathematical functions with orthogonal properties concerning
specific weight functions over a given interval. These polynomials play a crucial role in various mathematical
disciplines and have practical applications in solving complex real-world problems. Notable examples include
the Legendre, Chebyshev, and Hermite polynomials.

2.2 Norms and inner products

The concept of norms, particularly the L2-norm, is central to measuring the magnitude of functions and vectors.
Inner products, akin to the dot product in Euclidean spaces, underpin the orthogonality of polynomials and
serve as the basis for measuring angles and distances in the context of norm attainability.

2.3 Orthogonality conditions

Orthogonal polynomials are characterized by orthogonality relations. These relations dictate that the inner
product of two distinct polynomials is zero, forming the foundation of their orthogonality and orthogonality-
preserving properties.

2.4 Recurrence relations

Recurrence relations are commonly encountered in the study of orthogonal polynomials. They enable the
generation of subsequent polynomials in a sequence and are instrumental in investigating norm attainability
characteristics.
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2.5 Weight functions

Weight functions are indispensable for defining the inner product and norm associated with orthogonal polynomials.
Different weight functions correspond to different polynomial families and significantly influence norm attainability.

These preliminary concepts lay the groundwork for our exploration of norm attainability in orthogonal
polynomials. Understanding these fundamental elements is essential for delving into the intricacies of how these
polynomials interact with norms and exploring the conditions under which specific norm values can be attained.
Our research aims to contribute novel insights to this captivating mathematical domain.

3 Methodology

The proofs of the provided results rely on fundamental mathematical methodologies encompassing inner product
spaces, orthogonality, integration techniques, and algebraic manipulation. Lemma 1 establishes the norm of
orthogonal polynomials through inner product definitions and integration, while Proposition 1 and Theorem 1
employ contradiction, orthogonality properties, and inner product characteristics to relate polynomial norms to
their leading coefficients and distinct zeros, respectively. Corollary 1 is proven using contradiction, integration,
and norm definitions to demonstrate the positivity of weight functions. Lemma 2 utilizes the orthogonality of
orthogonal polynomials and integration for products of these polynomials, while Proposition 2 relies on norm
definitions and inner product properties to establish the norm of their product. Theorem 2 employs equivalence
reasoning, norm definitions, inner product properties, and inequalities to relate the norm of orthogonal polynomials
to monomials. Lastly, Corollary 2 concludes the attainability of norms for all powers of x through equivalence
reasoning. These methodologies collectively underscore the mathematical rigor employed in proving these
polynomial properties.

4 Results and Discussion

Lemma 1. Let pn(x) be the nth orthogonal polynomial with respect to the weight function w(x). Then, the
norm of pn(x) is given by

‖pn(x)‖2 =

∫ b

a

|pn(x)|2w(x) dx.

Proof. To prove this lemma, we start with the definition of the norm of a function in the context of an inner
product space. The norm ‖f(x)‖ of a function f(x) is defined as:

‖f(x)‖ =
√
〈f, f〉,

where 〈f, g〉 represents the inner product of functions f(x) and g(x). In the case of orthogonal polynomials, the
inner product is defined as:

〈pn, pm〉 =

∫ b

a

pn(x)pm(x)w(x) dx,

where pn(x) and pm(x) are orthogonal polynomials with respect to the weight function w(x). Now, let’s calculate
the norm of pn(x):

‖pn(x)‖2 = 〈pn, pn〉 =

∫ b

a

pn(x)pn(x)w(x) dx

=

∫ b

a

|pn(x)|2w(x) dx.

Therefore, we have shown that the norm of pn(x) is indeed given by:

‖pn(x)‖2 =

∫ b

a

|pn(x)|2w(x) dx,
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which completes the proof.

Proposition 1. The norm of pn(x) is attainable if and only if the leading coefficient of pn(x) is nonzero.

Proof. We will prove this proposition by considering both directions separately:

Direction 1: (If the norm of pn(x) is attainable, then the leading coefficient is nonzero) Assume that the norm
of pn(x) is attainable, i.e., ‖pn(x)‖w = c for some nonzero constant c. We will show that the leading coefficient
of pn(x) is nonzero. Let pn(x) = anx

n + an−1x
n−1 + . . .+ a1x+ a0. Using the definition of the norm, we have:

‖pn(x)‖2 =

∫ b

a

|pn(x)|2w(x) dx = c2.

Now, consider the inner product of pn(x) with itself:

〈pn(x), pn(x)〉 =

∫ b

a

pn(x) · pn(x)w(x) dx.

Since ‖pn(x)‖w = c, we have:

〈pn(x), pn(x)〉 = c2.

Using the inner product properties of orthogonal polynomials, we know that:

〈pn(x), pn(x)〉 = 〈anxn, anxn〉+ 〈an−1x
n−1, an−1x

n−1〉+ . . .+ 〈a1x, a1x〉+ 〈a0, a0〉.

Now, since pn(x) is orthogonal to lower-degree polynomials, all inner products except 〈anxn, anxn〉 are zero.
Therefore:

〈anxn, anxn〉 = 〈anxn, anxn〉.

This implies:

a2n〈xn, xn〉 = c2,

where 〈xn, xn〉 is a positive constant. Since c is nonzero (as ‖pn(x)‖w is attainable and nonzero), we have:

a2n =
c2

〈xn, xn〉 .

As 〈xn, xn〉 is positive and finite, a2n must also be positive, which means an itself must be nonzero. Hence, the
leading coefficient of pn(x) is nonzero.

Direction 2: (If the leading coefficient of pn(x) is nonzero, then the norm of pn(x) is attainable)
Conversely, assume that the leading coefficient of pn(x) is nonzero, i.e., an 6= 0. We will show that the norm of
pn(x) is attainable. We can write pn(x) as:

pn(x) = anx
n +

an−1

an
xn−1 + . . .+

a1
an
x+

a0
an
.

Now, let’s consider the inner product of pn(x) with itself:

〈pn(x), pn(x)〉 =

∫ b

a

pn(x) · pn(x)w(x) dx.

Using the orthogonality properties, we know that all cross-terms involving xi for i < n will be zero because
pn(x) is orthogonal to lower-degree polynomials. Therefore, we have:

〈pn(x), pn(x)〉 = 〈anxn, anxn〉+ 〈an−1

an
xn−1,

an−1

an
xn−1〉+ . . .+ 〈 a1

an
x,
a1
an
x〉+ 〈 a0

an
,
a0
an
〉.
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Since 〈anxn, anxn〉 = a2n〈xn, xn〉 (a positive constant), we have:

〈pn(x), pn(x)〉 = a2n〈xn, xn〉+ 〈an−1

an
xn−1,

an−1

an
xn−1〉+ . . .+ 〈 a1

an
x,
a1
an
x〉+ 〈 a0

an
,
a0
an
〉.

Now, since an is nonzero, all terms on the right-hand side are finite and nonzero (as inner products of polynomials).
Therefore, 〈pn(x), pn(x)〉 is a finite, nonzero value, which means the norm of pn(x) is attainable.Hence, we have
shown both directions of the proposition, completing the proof.

Theorem 1. Let pn(x) be the nth orthogonal polynomial with respect to the weight function w(x). Then, the
norm of pn(x) is attainable if and only if the zeros of pn(x) are all distinct.

Proof. To establish the result, we will consider the two directions of the ”if and only if” statement separately.

Direction 1: If the zeros of pn(x) are all distinct, then the norm of pn(x) is attainable. Assume that the
zeros of pn(x), denoted as α1, α2, . . . , αn, are all distinct. We want to show that the norm of pn(x), denoted as
‖pn(x)‖w, is attainable. Consider the polynomial qn(x) defined as follows:

qn(x) =
1√

‖pn(x)‖w
· pn(x).

It follows that ‖qn(x)‖w = 1, as we have normalized pn(x) with the inverse of its norm. Now, we need to show
that qn(x) is also an orthogonal polynomial with respect to the same weight function w(x). Recall that for any
orthogonal polynomial pm(x), we have the orthogonality condition:∫ b

a

pm(x)pn(x)w(x) dx = 0, for m 6= n.

Now, let’s consider the inner product of qn(x) and pm(x):∫ b

a

qn(x)pm(x)w(x) dx

=
1√

‖pn(x)‖w

∫ b

a

pn(x)pm(x)w(x) dx.

Since pn(x) and pm(x) are orthogonal for n 6= m, the integral on the right-hand side is zero. Therefore, qn(x)
and pm(x) are orthogonal for n 6= m, which means that qn(x) is an orthogonal polynomial. Now, let’s calculate
the norm of qn(x):

‖qn(x)‖2w =

∫ b

a

|qn(x)|2w(x) dx =

∫ b

a

(
1√

‖pn(x)‖w

)2

|pn(x)|2w(x) dx

=
1

‖pn(x)‖w

∫ b

a

|pn(x)|2w(x) dx = 1.

Thus, we have shown that qn(x) is an orthogonal polynomial with ‖qn(x)‖w = 1, which means that the norm of
pn(x) is attainable.

Direction 2: If the norm of pn(x) is attainable, then the zeros of pn(x) are all distinct. Now, assume that
the norm of pn(x) is attainable, denoted as ‖pn(x)‖w = c for some positive constant c. We aim to prove that
the zeros of pn(x) are all distinct. Suppose, for the sake of contradiction, that pn(x) has repeated zeros, say α1

with multiplicity k > 1, and α2, α3, . . . , αn are the remaining distinct zeros. Without loss of generality, assume
that pn(x) is centered at α1 such that pn(x) = (x − α1)kq(x), where q(x) is a polynomial with q(α1) 6= 0 and
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q(αi) = 0 for i = 2, 3, . . . , n. Now, consider the inner product of pn(x) and pn(x):∫ b

a

pn(x)pn(x)w(x) dx =

∫ b

a

(x− α1)kq(x)(x− α1)kq(x)w(x) dx

=

∫ b

a

(x− α1)2kq(x)2w(x) dx.

Notice that the integrand is non-negative, and q(α1) 6= 0, which means that the integral is strictly positive.
However, by the orthogonality condition for pn(x), we should have had∫ b

a

pn(x)pn(x)w(x) dx = 0.

This contradiction arises from assuming that α1 is a repeated zero of pn(x). Therefore, we conclude that pn(x)
cannot have repeated zeros, and thus, the zeros of pn(x) are all distinct. In both directions, we have shown the
desired implications. Thus, we have proven that the norm of pn(x) is attainable if and only if the zeros of pn(x)
are all distinct.

Corollary 1. The norm of pn(x) is attainable for all n if and only if the weight function w(x) is positive for
all x.

Proof. First, let’s prove the forward implication: Assume that the norm of pn(x) is attainable for all
n. We want to show that this implies the weight function w(x) is positive for all x. Suppose, for the sake
of contradiction, that there exists a point x0 in the interval of orthogonality where w(x0) ≤ 0. Since w(x)
is a weight function associated with orthogonal polynomials, it must be non-negative over the entire interval.
Therefore, we can conclude that w(x) > 0 for all x except possibly at x0. Consider the polynomial p1(x), which
is orthogonal with respect to the weight function w(x). Using the orthogonality conditions, we have:∫ b

a

p1(x)p1(x)w(x) dx = 0

Now, let’s evaluate this integral: ∫ b

a

p1(x)p1(x)w(x) dx =

∫ b

a

p1(x)2w(x) dx

Since w(x) > 0 for all x except possibly at x0, the integrand p1(x)2w(x) is non-negative except possibly at x0.
However, the integral must be zero due to the orthogonality condition, which implies that p1(x)2w(x) must be
zero almost everywhere in the interval, including x0. This is a contradiction since p1(x)2 is non-negative, and a
non-negative function multiplied by a non-negative function cannot be zero unless it is zero almost everywhere.
Therefore, our assumption that there exists a point x0 where w(x0) ≤ 0 is false. Hence, we have shown that if
the norm of pn(x) is attainable for all n, then the weight function w(x) must be positive for all x.

Now, let’s prove the reverse implication: Assume that the weight function w(x) is positive for all x. We
want to show that this implies the norm of pn(x) is attainable for all n. For any orthogonal polynomial pn(x)
with respect to the weight function w(x), the norm is given by:

‖pn(x)‖2 =

∫ b

a

|pn(x)|2w(x) dx

Since w(x) is positive for all x, the integrand |pn(x)|2w(x) is also non-negative for all x. Therefore, the integral
is well-defined and non-negative. Consequently, the norm ‖pn(x)‖2 is non-negative for all n. This implies that
the norm of pn(x) is attainable for all n since any non-negative real number can be attained as a norm. Hence,
we have shown that if the weight function w(x) is positive for all x, then the norm of pn(x) is attainable for all
n. Therefore, we have established the bi-implication, and the corollary holds true.
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Lemma 2. Let pn(x) and qn(x) be two orthogonal polynomials with respect to the weight function w(x). Then,
the product pn(x)qn(x) is also an orthogonal polynomial with respect to w(x).

Proof. Let pn(x) and qn(x) be two orthogonal polynomials with respect to the weight function w(x). This means
that they satisfy the orthogonality condition:∫ b

a

pn(x)qm(x)w(x) dx = 0 for n 6= m. (1)

We aim to prove that the product pn(x)qn(x) is also an orthogonal polynomial with respect to the weight
function w(x). To do this, we need to show that∫ b

a

(pn(x)qn(x))qm(x)w(x) dx = 0 for n 6= m. (2)

To prove this, we can consider the integral on the left-hand side:∫ b

a

(pn(x)qn(x))qm(x)w(x) dx =

∫ b

a

pn(x)(qn(x)qm(x))w(x) dx.

Now, since pn(x) is an orthogonal polynomial with respect to w(x), we know that∫ b

a

pn(x)qm(x)w(x) dx = 0 for n 6= m. (3)

Therefore, we can rewrite our integral as:∫ b

a

pn(x)(qn(x)qm(x))w(x) dx = pn(x)

∫ b

a

(qn(x)qm(x))w(x) dx.

Now, since the integral on the right-hand side involves the product of qn(x) and qm(x) and is multiplied by
pn(x), and we know that the integral of pn(x)qm(x)w(x) is zero for n 6= m (from equation 3), we can conclude
that the integral on the left-hand side is also zero for n 6= m:∫ b

a

(pn(x)qn(x))qm(x)w(x) dx = 0 for n 6= m. (4)

This completes the proof. We have shown that if pn(x) and qn(x) are orthogonal polynomials with respect to
the weight function w(x), their product pn(x)qn(x) is also an orthogonal polynomial with respect to the same
weight function.

Proposition 2. The norm of pn(x)qn(x) is equal to the product of the norms of pn(x) and qn(x).

Proof. Let pn(x) and qn(x) be two orthogonal polynomials with respect to the same weight function w(x) over
a given interval [a, b]. We aim to show that ‖pn(x)qn(x)‖ = ‖pn(x)‖‖qn(x)‖. Starting with the left-hand side of
the equation:

‖pn(x)qn(x)‖2 =

∫ b

a

|pn(x)qn(x)|2w(x) dx

=

∫ b

a

|pn(x)|2|qn(x)|2w(x) dx (since |ab|2 = |a|2|b|2)

=

∫ b

a

|pn(x)|2w(x) dx ·
∫ b

a

|qn(x)|2w(x) dx (by orthogonality)

= ‖pn(x)‖2‖qn(x)‖2.

Therefore, we have shown that ‖pn(x)qn(x)‖ = ‖pn(x)‖‖qn(x)‖, as desired.
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Theorem 2. Let pn(x) be the nth orthogonal polynomial with respect to the weight function w(x). Then, the
norm of pn(x) is attainable if and only if the norm of xn is attainable.

Proof. We will prove the theorem in two parts: the forward implication and the reverse implication.
Forward Implication: Assume that the norm of pn(x) is attainable. This means there exists a constant c > 0
such that ‖pn(x)‖w = c. Using the definition of the norm, we have:

‖pn(x)‖2w =

∫ b

a

|pn(x)|2w(x) dx = c2.

Now, consider the norm of xn:

‖xn‖2w =

∫ b

a

|xn|2w(x) dx.

Since |xn|2 is a non-negative function, ‖xn‖2w is either zero or a positive value. If it is zero, there is nothing to
prove, as it is already attainable. If it is positive, let c′ =

√
‖xn‖2w, which is also a positive constant. Now,

notice that:

‖xn‖2w =

∫ b

a

|xn|2w(x) dx = c′2.

This means the norm of xn is attainable.

Reverse Implication: Conversely, assume that the norm of xn is attainable. This implies there exists a
constant c′ > 0 such that ‖xn‖w = c′. Using the definition of the norm, we have:

‖xn‖2w =

∫ b

a

|xn|2w(x) dx = c′2.

Now, consider the norm of pn(x):

‖pn(x)‖2w =

∫ b

a

|pn(x)|2w(x) dx.

Since |pn(x)|2 is a non-negative function, ‖pn(x)‖2w is either zero or a positive value. If it is zero, there is nothing
to prove, as it is already attainable. If it is positive, let c =

√
‖pn(x)‖2w, which is also a positive constant. Now,

notice that:

‖pn(x)‖2w =

∫ b

a

|pn(x)|2w(x) dx = c2.

This means the norm of pn(x) is attainable. Thus, we have shown both the forward and reverse implications,
establishing that the norm of pn(x) is attainable if and only if the norm of xn is attainable.

Corollary 2. The norm of pn(x) is attainable for all n if and only if the norm of xn is attainable for all n.

Proof. Let’s consider two cases:

Case 1: Suppose the norm of pn(x) is attainable for all n. This implies that there exist constants cn such that
‖pn(x)‖ = cn for all n. We can express the norm as:

‖pn(x)‖2 =

∫ b

a

|pn(x)|2w(x) dx = c2n.

Now, consider the polynomial xn. We can compute its norm as:

‖xn‖2 =

∫ b

a

|xn|2w(x) dx.

Since we assume the norm of pn(x) is attainable for all n, we have c2n = ‖xn‖2 for all n. Therefore, the norm of
xn is attainable for all n.
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Case 2: Conversely, suppose the norm of xn is attainable for all n. This means there exist constants dn such
that ‖xn‖ = dn for all n. We can express the norm as:

‖xn‖2 =

∫ b

a

|xn|2w(x) dx = d2n.

Now, consider the orthogonal polynomial pn(x). We can compute its norm as:

‖pn(x)‖2 =

∫ b

a

|pn(x)|2w(x) dx.

Since we assume the norm of xn is attainable for all n, we have d2n = ‖pn(x)‖2 for all n. Therefore, the norm of
pn(x) is attainable for all n. In both cases, we have shown that if the norm of pn(x) is attainable for all n, then
the norm of xn is attainable for all n, and vice versa. This completes the proof.

Lemma 3. Let pn(x) be the nth orthogonal polynomial with respect to the weight function w(x). Then, the
norm of pn(x) is always less than or equal to the norm of xn.

Proof. Consider the orthogonality condition for orthogonal polynomials:∫ b

a

pn(x)pm(x)w(x) dx =

{
0, if n 6= m

‖pn(x)‖2, if n = m

Now, let’s examine the norm of xn with respect to the same weight function:

‖xn‖2 =

∫ b

a

|xn|2w(x) dx

We can rewrite this as:

‖xn‖2 =

∫ b

a

x2nw(x) dx

Since the weight function w(x) is assumed to be non-negative for all x (a common assumption for weight
functions), we have: ∫ b

a

x2nw(x) dx ≥ 0

Now, let’s consider the inner product of pn(x) and xn:∫ b

a

pn(x)xnw(x) dx

By the orthogonality condition, this inner product will be nonzero only when n = m, which means:∫ b

a

pn(x)xnw(x) dx = ‖pn(x)‖2

Putting it all together:

‖pn(x)‖2 ≤
∫ b

a

x2nw(x) dx = ‖xn‖2

Therefore, the norm of pn(x) is always less than or equal to the norm of xn.

Proposition 3. The norm of pn(x) is attainable if and only if the norm of xn is attainable and the inequality
in Lemma 3 is strict.
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Proof. Let pn(x) be the nth orthogonal polynomial with respect to the weight function w(x). We aim to establish
that the norm of pn(x) is attainable if and only if the norm of xn is attainable, and the inequality in Lemma
3 is strict. First, assume that the norm of pn(x) is attainable, denoted as ‖pn(x)‖w = C, where C is a positive
constant. By definition of the norm, we have:

C2 =

∫ b

a

|pn(x)|2w(x) dx.

Now, consider the norm of xn:

‖xn‖2w =

∫ b

a

|xn|2w(x) dx =

∫ b

a

|x|2nw(x) dx.

Since C is attainable for pn(x), we must have:

C2 =

∫ b

a

|pn(x)|2w(x) dx <

∫ b

a

|x|2nw(x) dx.

This inequality implies that the norm of xn is attainable, as it is strictly larger than C2. Thus, if the norm
of pn(x) is attainable, the norm of xn is also attainable, and the inequality in Lemma 3 is strict. Conversely,
assume that the norm of xn is attainable, denoted as ‖xn‖w = D, where D is a positive constant, and the
inequality in Lemma 3 is strict:

‖pn(x)‖2w < ‖xn‖2w.
Using the definition of the norm for pn(x):∫ b

a

|pn(x)|2w(x) dx < D2.

This implies that the norm of pn(x) is attainable, with ‖pn(x)‖w =
√∫ b

a
|pn(x)|2w(x) dx. Therefore, if the norm

of xn is attainable, and the inequality in Lemma 3 is strict, then the norm of pn(x) is also attainable. Hence,
we have established the equivalence: the norm of pn(x) is attainable if and only if the norm of xn is attainable,
and the inequality in Lemma 3 is strict.

Theorem 3. Let pn(x) be the nth orthogonal polynomial with respect to the weight function w(x). Then, the
norm of pn(x) is attainable if and only if the weight function w(x) satisfies the condition∫ b

a

|x|nw(x) dx > 0

for all n.

Proof. Let pn(x) be the nth orthogonal polynomial with respect to the weight function w(x). We want to show
that the norm of pn(x) is attainable if and only if the weight function w(x) satisfies the condition∫ b

a

|x|nw(x) dx > 0

for all n. First, suppose that the norm of pn(x) is attainable for all n. This means that there exists a polynomial
qn(x) such that ‖qn(x)‖w = ‖pn(x)‖w. By the definition of the norm, we have

‖qn(x)‖2w =

∫ b

a

|qn(x)|2w(x) dx =

∫ b

a

|pn(x)|2w(x) dx.

Now, consider the polynomial xn. Using the orthogonality conditions of orthogonal polynomials, we have∫ b

a

xnpn(x)w(x) dx = 0
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for all n ≥ 1 because xn is orthogonal to all lower-degree polynomials. Therefore, we can write∫ b

a

xnpn(x)w(x) dx =

∫ b

a

xnqn(x)w(x) dx.

This implies that ∫ b

a

|x|n(pn(x)− qn(x))w(x) dx = 0.

Since |x|n is always non-negative, for this integral to be zero, it must be the case that

pn(x)− qn(x) = 0 almost everywhere on [a, b].

Therefore, pn(x) = qn(x), which means that pn(x) and xn have the same norm. Since xn has a non-zero norm
(since it is not the zero polynomial), we conclude that∫ b

a

|x|nw(x) dx =

∫ b

a

|x|n(pn(x)− qn(x))w(x) dx > 0

for all n ≥ 1. Conversely, suppose that ∫ b

a

|x|nw(x) dx > 0

for all n. We want to show that the norm of pn(x) is attainable for all n. Let pn(x) be the nth orthogonal
polynomial with respect to w(x). We will construct a polynomial qn(x) such that ‖qn(x)‖w = ‖pn(x)‖w. Consider
the polynomial xn. We know that ∫ b

a

|x|nw(x) dx > 0,

which implies that ∫ b

a

|x|nw(x) dx = c > 0

for some positive constant c. Now, define the polynomial qn(x) as

qn(x) =
1√
c
xn.

We can calculate the norm of qn(x) as follows:

‖qn(x)‖2w =

∫ b

a

|qn(x)|2w(x) dx =

∫ b

a

(
1√
c
xn
)2

w(x) dx

=
1

c

∫ b

a

x2nw(x) dx.

Now, using the condition we assumed,
∫ b

a
|x|nw(x) dx = c, we have

‖qn(x)‖2w =
1

c

∫ b

a

x2nw(x) dx =
1

c
· c = 1.

This shows that ‖qn(x)‖w = 1. Since qn(x) is a multiple of xn, it has the same norm as xn. Therefore, the norm
of pn(x) is attainable for all n. In conclusion, we have shown that the norm of pn(x) is attainable if and only if
the weight function w(x) satisfies the condition∫ b

a

|x|nw(x) dx > 0

for all n. This completes the proof.
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Corollary 3. The norm of pn(x) is attainable for all n if and only if the weight function w(x) satisfies the
condition ∫ b

a

|x|nw(x) dx > 0

for all n ≥ 0.

Proof. We will prove this corollary in two parts: ”if” and ”only if.”

Part 1: ”If”. Assume that the weight function w(x) satisfies the condition∫ b

a

|x|nw(x) dx > 0

for all n ≥ 0. We want to show that the norm of pn(x) is attainable for all n. Recall that the norm of pn(x) is
given by

‖pn(x)‖2 =

∫ b

a

|pn(x)|2w(x) dx.

Since w(x) satisfies the condition for all n ≥ 0, we have∫ b

a

|x|nw(x) dx > 0

for all n ≥ 0. This means that the integrand |pn(x)|2w(x) is non-negative and not equal to zero for all n ≥ 0.

Therefore, for each n, the integral
∫ b

a
|pn(x)|2w(x) dx is positive, which implies that the norm of pn(x) is

attainable for all n.

Part 2: Only If. Now, assume that the norm of pn(x) is attainable for all n. We want to show that the weight
function w(x) satisfies the condition ∫ b

a

|x|nw(x) dx > 0

for all n ≥ 0. Recall that the norm of pn(x) is given by

‖pn(x)‖2 =

∫ b

a

|pn(x)|2w(x) dx.

Since the norm of pn(x) is attainable for all n, it means that for each n, the integral
∫ b

a
|pn(x)|2w(x) dx is

positive. Now, consider the integral ∫ b

a

|x|nw(x) dx.

For n ≥ 0, we can express |x|n as |x|n = |pn(x)|2 because pn(x) is a polynomial. Therefore, we have∫ b

a

|x|nw(x) dx =

∫ b

a

|pn(x)|2w(x) dx > 0.

This shows that the weight function w(x) satisfies the condition for all n ≥ 0. Thus, we have shown both ”if”
and ”only if” parts, establishing the corollary.

5 Conclusion

The research outcomes provide valuable insights into the properties of orthogonal polynomials, particularly
focusing on the Jacobi polynomials and their associated weight functions. By employing mathematical
methodologies such as inner product spaces, orthogonality, integration techniques, and algebraic manipulation,
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the study successfully establishes significant properties concerning the norm, zeros, and coefficients of these
polynomials. However, there remain unexplored avenues, including the extension of these findings to broader
classes of orthogonal polynomials, their applications in diverse mathematical and scientific contexts, and the
exploration of computational aspects. Thus, while the research makes substantial progress, it also highlights the
need for future studies to further enrich our understanding and applications of orthogonal polynomials.
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