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Abstract
A tensor provides a concise way to codify the interdependence of complex data. Treating a tensor as
a d-way array, each entry records the interaction between the different indices. Clustering provides
a way to parse the complexity of the data into more readily understandable information. Clustering
methods are heavily dependent on the algorithm of choice, as well as the chosen hyperparameters
of the algorithm. However, their sensitivity to data scales is largely unknown.

In this work, we apply the discrete wavelet transform to analyze the effects of coarse-graining
on clustering tensor data. We are particularly interested in understanding how scale affects
clustering of the Earth’s climate system. The discrete wavelet transform allows classification of the
Earth’s climate across a multitude of spatial-temporal scales. The discrete wavelet transform is used
to produce an ensemble of classification estimates, as opposed to a single classification. Each
element of the ensemble is a clustering at a different spatial-temporal scale. Information theoretic
approaches are used to identify important scale lengths in clustering the L15 Climate Datset. We
also discover a sub-collection of the ensemble that spans the majority of the variance observed,
allowing for efficient consensus clustering techniques that can be used to identify climate biomes.

1. Introduction

Data measured from a high-order complex system can be difficult to analyze. A convenient tool to store this
data is in the form of a tensor, or d-way array. Each entry of the array describes the value obtained across the
d parameters. Often, the dependencies between indices is not clear, making direct interpretation of the data a
demanding task.

Numerous methods have been developed to allow one to readily parse these complex interdependencies
to provide meaningful interpretations of the data. Among the most well studied methods are tensor
factorizations and clustering techniques. Different forms of tensor factorizations have been shown to be
effective at multi-way dimensionality reduction, blind source separation, data mining, and latent feature
extraction [1–3]. Indeed, non-negative tensor factorizations, a constrained tensor factorization requiring the
data and each factorized component to consist of non-negative real numbers, has had success at extracting
hidden, interpretive features of the data [4–8]. This is because many types of real-world data are naturally
non-negative, so the enforced positivity constraint on the factors can be interpreted as a mixing of physical
signals [9].

While the goal of factorization techniques are often to discover latent structures within the data, the aim
of clustering is to provide coherent groupings of objects. When data comes in the form of vectors (order-1
tensors), there is an immense, ever growing lexicon of clustering methods [10]. For clustering general tensors
there is a larger flexibility of techniques due to the interactions along different fibers of the tensors. This leads
to more complex clustering problems, requiring new optimization algorithms to approximately solve for the
desired clustering [11, 12].

These two goals of factorization and clustering are often deeply related. For example, it has been shown
that by adding constraints to non-negative matrix factorization (order-2 tensor factorization), one can
produce an optimization function identically to K-means or spectral clustering (order-1 clustering) [13].
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Similarly, there is an equivalence between higher order singular value decomposition and a K-means
clustering for tensors with additional constraints [14].

1.1. Classifying climate biomes
We are interested in leveraging the unsupervised learning techniques discussed above to assist in the
interpretation of climate data. Climate data generally arises as a collection of spatial-temporal measurements
of various physical and biological features of The Earth system (e.g. temperature, precipitation, flora and
fauna). The tensor of climate data compactly records the complex interdependence between space and time
for different variables of interest. Recently, tensor factorization techniques have found success at extracting
latent climate signals. For example, see [15, 16]. Clustering the climate into locally similar spaces is a classical
problem with a longer history.

A biome is a region of space that has homogeneous climate features, e.g. similar temperature profiles. The
process of finding climate biomes is clustering, and a biome is a synonym for a cluster of spatial points on the
Earth. Throughout this text, we use the word biome and cluster interchangeably. Historically, the standard to
classify climate biomes has been the Köppen–Geiger (KG) model [17]. The KG model is an expert-based
judgment that describes climate zones using temperature and precipitation measurements. The KG model
utilizes a fixed, expert opinion-based decision tree, where each branch uses various information about
temperature and precipitation. This heuristic allows one to broadly assess climate regions.

While KG is interpretable, it is overly simplistic and somewhat arbitrary. In an attempt to remedy this
problem, Thornthwaite [18] introduced a more nuanced model using moisture and thermal factors.
However, the Thornthwaite model (along with its successors) still suffer from expertly chosen biases in their
parameters.

A solution to this problem is to move towards data-driven methods of classification. Here, human bias is
subsummed onto the machine learning algorithm that seeks to minimize some cost function. This is
equivalent to a statistical assumption about the data generation and distribution [19]. In the views of the
authors, this is often a more reasonable assignment of bias. In [20], Zscheischler et al compare KG to the
K-means algorithm. They show that, unsurprisingly, K-means outperforms KG with respect to statistical
measures, specifically explained predict and variance and variation of information. In [21], the authors use
mean monthly climate data to perform hierarchical clustering and partition around medoids. In each
clustering algorithm, two distance metrics are tested, and these results are compared to KG using an
information-theoretic measure.

These data driven approaches to climate clustering are an epistemological improvement over the user
chosen heuristics of KG. However, these clustering methods suffer from challenges external to the climate
science application space.

1.2. Clustering challenges
Abstractly, a clustering is any function that takes a dataset X= {xn}Nn=1 and returns a partitioning of X. One
usually seeks a clustering that satisfies a chosen heuristic. For example, a K-means clustering is any partition
of X into disjoint non-empty sets U1, . . .UK that minimizes inner cluster variance. Namely,

ArgminU1,...UK

K∑
k=1

∑
xn∈Uk

∥xn −mk∥2 (1)

wheremk is the mean of Uk. The number of possible ways to put the N data points into K clusters is
(N−1
K−1

)
.

For N≫ K, it becomes infeasible to search for the optimal K-means clustering directly. Indeed, finding the
optimal solution to equation (1) is NP-hard [22]. As a result, optimization schemes such as Lllyod’s
algorithm have been developed to approximate the optimal solution. These algorithms are necessarily
nondeterminstic, and therefore may fail to adequately approximate the global minimum if the data is not
sufficiently nice, e.g. low signal to noise ratio [23].

The above example of K-means summarizes an issue persistent across many approaches to clustering. A
heuristic is chosen to group the data, but unfortunately finding the cluster(s) that satisfy this heuristic is
computationally intractable. As a result, algorithms are developed to efficiently compute an approximation
to these optimal solutions. Because these clustering methods cannot guarantee convergence to the optimal
solution for all datasets, different clustering measures have been formulated to assess the quality of a
clustering. However, often the measures are directly exported from the optimization functions used in the
clustering algorithm. The algorithm that is designed to optimize this clustering measure will, by design, out
perform other clustering methods with respect to that metric. As a result, this provides no further
information as to what clustering strategy is better suited for the problem.
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Figure 1. Proposed augmentation to the consensus clustering workflow.

These challenges highlight that there is no true ‘best’ clustering in general. Rather, there are many ideal
clusterings that arise from the specifics of the scientific inquiry pursued. None of the optimal clusterings is
certifiably ‘correct’, but each provides different insights into the structure of the data. Unfortunately, the
quality of the obtained clustering is not easy to evaluate.

These problems have led researchers to define the concept of an ensemble, or consensus clustering [24].
Here, many clusterings are combined to produce a single clustering of the data. Common features between
the clusterings are amplified, and artifacts become dulled (figure 1(a)). There is evidence to suggest that
selecting a smaller ensemble with good, diverse clusters outperforms larger, redundant ensembles [25–28].
For this reason, we believe it is preferable to find a smaller ensemble of quality, diverse clusters.

1.3. Our contributions
There are still unresolved issues not addressed by the current ensemble clustering framework. The choice of a
heuristic for any single clustering is a proxy for a potentially ill-specified human objective. This ignores other
aspects of the environment, weighting an indifference to other potentially important environmental variables
[29]. Consequently when a user can identify potential problems with their ML architecture, they need to
resolve the effect the issue has on the overall result.

One practical example in the climate sciences is the scale at which the data is acquired. Most natural or
environmental data is formed by directly observing and measuring quantities where the underlying or
driving processes are usually unknown. The hidden or latent features of the data may not clearly present
themselves at the resolution that the data was sampled. For example, weather data is often gathered at fine
temporal and spatial detail, e.g. daily temperature at a single weather station. However, climate signals are
often observed on the order of years or decades and across a region.

The above discussion highlights two important problems:

(a) The need to address hidden parameters affecting the data, such as scale dependence
(b) The desire to build an ensemble of clusters for a consensus clustering algorithm.

In this work, we discuss a clustering workflow that tackles both of these problems.We develop a technique
that uses the discrete wavelet transform to cluster slices of tensors at different scales that we call coarse-grain
clustering (CGC). This highly parallelizable technique results in many potential clusterings, one for each
chosen coarse-graining. Not all of these coarse-grain clusterings provide new information, however. Thus,
we present a novel selection method that leverages mutual information between clusterings to quantify the
loss of information between clusterings and select a small subset that best represents ensemble. We call this
reduction algorithmMutual Information Ensemble Reduce (MIER).

While the end-to-end workflow we have discussed involves ideas from traditional consensus clustering
(figure 1(a)), the focus of this paper is specifically on a novel modification to this approach leveraging the
CGC and the MIER algorithms. Specifically, we are interested in the effects coarse-graining has on clustering,
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and desire to bolster our ensemble through the addition of distinct clusterings (figure 1(b)). This paper
focuses on this workflow, by analyzing

(a) The effect scale can have on a clustering algorithm (via CGC algorithm and mutual information) and
(b) Automatically identify a small subset of the coarse-grain clusterings that span the observations (theMIER

algorithm).

This paper is organized as follows. First background material used for development of the CGC and
MIER algorithms is presented in section 2. The structure of these algorithms is detailed in section 3. In
section 4, the algorithm is applied to a widely-used climate data set as a case study with presentation of
results and discussion, followed by conclusions and a recommendation for future work in section 5.

2. Preliminaries

In this section, we briefly review key mathematical tools used throughout this work including 1) the discrete
wavelet transform and its role in separating earth system data into spatio-temporal scales, 2) graph cuts and
their connection to spectral clustering, and 3) use of mutual information to measure similarity between two
clusters of the same data.

2.1. Discrete wavelet transform (DWT)
Given a one-dimensional function f : N→ R the discrete wavelet transform (DWT) is a process of iteratively
decomposing f into a series of low and high frequency signals. This process is accomplished by convolving
the function f with low frequency and high frequency filter functions that arise from a choice ofmother
wavelet functionΨ, sometimes called a wavelet for short. The low frequency signal is often referred to as the
approximation coefficients, and the high frequency is called the detail coefficients. The filtering process
removes half the signals frequencies, so downsampling can then be performed without reconstruction loss
on f. As a result, if the signal f consists of N data points, then the low and high frequency signals after the
DWT contain approximately N

2 data points. See the appendix for more details.
Fixing a scale level ℓ ∈ N, the signal f is decomposed into its high and low frequency signals ℓ times. The

discrete wavelet transform plays an important role in our work. The DWT is useful to our analysis for the
following reasons:

(a) By filtering data down to different scale lengths, clustering the approximation coefficients allows us to
directly compare how the scale of the data affects the clustering result. For our particular application,
the approximation coefficients have an interpretation in terms of the analysis. Coarse-graining temporal
signals captures seasonal, yearly, and eventually decadal trends, whereas coarse-graining spatial inform-
ation captures city-, county-, and eventually state-sized features. Therefore, a comparison of clusterings
from different coarse-grainings allows one to parse how these different scales affect clustering.

(b) The DWT runs fast. The filter bank implementation of the DWT runs inO(N) for each 1-D implement-
ation [30], or O(N1N2N3) for 3D tensors. Furthermore, we are only interested in the approximation
coefficients, which have drastic size savings, as discussed above.

(c) The coarse coefficients at the end of the filter bank naturally creates a hierarchy of datasets that, when
clustered, provide an ensemble for a consensus clustering algorithm.

2.2. Clustering algorithms and graph cuts
As discussed in the introduction, we are interested in analyzing how the scale of data affects clustering. In this
subsection, we briefly discuss the unsupervised learning tools we use throughout the paper. We outline how
they work, and discuss emphasize our choice for use.

2.2.1. K-means and spectral clustering
Clustering algorithms are diverse with varying advantages and disadvantages [10]. Arguably the most famous
are partitioned based algorithms, where data are iteratively reassigned to clusters until an optimization
function is minimized. The prototypical example of a partitioned based clustering algorithm is K-means
discussed in the introduction. Given a natural number K, the K-means algorithm seeks to partition the
data-set into K distinct groups that minimize the variance within the clusters. Lloyd’s algorithm, the
implementation of K-means we use in this work, is well known to run inO(NDKI), where N is the number
of data points in dimension D, K is the cluster number, and I is the number of iterations.

Another popular method that builds on K-means is spectral clustering. Here, one leverages spectral graph
theory to perform dimensionality reduction before applying the K-means algorithm. In spectral clustering,
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an undirected weighted graph G is formed, where each vertex is a data point and the edge weight is a chosen
affinity between vertices. LetW= (wi,j)

n
i,j=1 denote the weighted adjacency matrix for the graph G. The

(unnormalized) graph Laplacian L ofW is a matrix that captures the combinatorial properties of the
Laplacian on discrete data. The Laplacian L is a symmetric positive semi-definite matrix, so the eigenvalues
may be ordered 0= λ1 ≤ λ2 ≤ ·· · ≤ λn. Finding the eigenvectors ej corresponding to the lowest K
eigenvalues, define U= [e1|e2| . . . |eK] and cluster the rows using K-means. For more details, see [31].

A bottleneck of spectral clustering is its complexity. Given N data points, forming the adjacency matrix
and computing eigenvectors carries a computational complexity ofO(N3). Given K-means’ cost is
O(NDKI), the total complexity of spectral clustering isO(N3)+O(NDKI). Though the computational
complexity is roughly N3, our application of spectral clustering will be on a smaller dataset.

Beyond the clustering challenges discussed in the introduction, K-means (and therefore spectral
clustering) require the user to choose the number of clusters K in advance. In most applications, this
parameter is not known, and additional heuristics are required to select this value. In spectral clustering, one
can use the eigenvalues of the Laplacian L to determine the cluster number. Specifically, as the eigenvalues are
ordered, search for a value of K such that the first λ1, . . .λk are small, and λk+ 1 is large. This method is
justified by the fact that the spectral properties of L are closely related to the connected components of G
[32]. Use of graph Laplacian eigenvalues to decide the cluster number K is called the eigen-gap heuristic.

2.2.2. Graph cut clustering
Given a notion of distance of data, the adjacency graph or matrix records the pairwise similarity. Clustering
the data X into K clusters is equivalent to providing a K-cut of the adjacency graph G. Graph cut strategies
vary depending upon application. For example, the min cut algorithm minimizes the cost between
components of the graph, but this can result in an undesirable clustering, e.g. a cluster with one element.

The Ratio cut is a graph cut that seeks to ameliorate this issue by incorporating the size of each
component. Concretely, let I⊂ {1,2, . . . ,n}, Ic is the complement of I, and letW(I) :=

∑
i∈I,j∈Ic wi,j be the

total cost between the component I and its complement. Given disjoint subsets I1, I2, . . . Ik such that∪
Ij = {1,2, . . . ,n}, its ratio cut is defined as

RC(I1, I2, . . . , Ik) :=
1

2

k∑
i=j

W(Ij)

|Ij|
. (2)

Finding I1, . . . Ik such that equation (2) is minimized is NP-hard [33]. Luckily, the optimization problem
in equation (2) can be written as a trace minimization problem involving a particular matrix arising from the
graph cut. By relaxing this optimization problem to one where we do not fix the form of the matrix in the
trace, one obtains an optimization problem whose solution can be obtained by spectral clustering. See [32]
for further details.

2.3. Usage of K-means and ratio-cut in this work
In the subsequent implementation of CGC and MIER algorithms in section 4, we will require both a
clustering algorithm for CGC and a graph cut algorithm for MIER. In our implementation of CGC, we will
use K-means algorithm (executed with Llyods algorithm) for clustering, and in MIER we will use Ratio-Cut
(executed by spectral clustering). We have made these choices because:

(a) K-means has historical precedence in clustering for climate applications [20, 21] and straightforward
implementation. The scope of this work is not to find the ‘best clustering’ of our data; instead, we wish to
understand how coarse-graining affects clustering and can be used to develop an ensemble of clusterings
for use in understanding cluster method sensitivity to latent data scales.

(b) TheMIER algorithmwill require a graph cut of a particular adjacencymatrix formed by a large ensemble
of coarse-grain clusterings. As discussed in section 3.2, the adjacency graph is formed using normalized
mutual information (see section 2.3 for Mutual Information). The ratio cut creates reasonable large
components of this graph. Each component will be heterogenous, and distinct from one another on an
information-theoretic level.

2.4. Mutual information
Mutual information provides a method to quantify the shared information. Here, we outline how the
mutual information is computed. For a more detailed account of mutual information and clustering, see [34]
and [35].

Let X= {xi}ni=1 be a collection of data points. Suppose that we partition the data X into two clusterings
U= {Ui}ki=1 and V= {Vi}li=1. The entropy of the clustering U, denotedH(U) is the average amount of
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information (e.g. in bits) needed to encode the cluster label for each data points of U. If the clustering V is
known, U can be encoded with less bits of information. The conditional entropyH(U|V) denotes the average
amount of information needed to encode U if V is known.

Themutual information I(U,V)measures how knowledge of one clustering reduces our uncertainty of
the other. Formally,

I(U,V) =H(U)−H(U|V).

Explicit formulas forH(U) andH(U|V) can be derived as follows. Let ni,j = |Ui ∩Vj| denote the number of

points in both U i and V j. We set ai = |Ui|=
∑l

j=1 ni,j to be the size of U i, and bj = |Vj|=
∑k

i=1 ni,j to be the
size of V j.

Assume points of X are sampled uniformly. Then the probability that a random point in x∈X is in
cluster U i is p(x) =

ai
n . Moreover, the probability that points x, y∈X satisfy x∈U i and y∈V j is p(x,y) =

ni,j
n .

Therefore, it follows that

H(U) =−
∑
x∈U

p(x) log(p(x)) =−
k∑

i=1

ai
n
log

(ai
n

)
,

H(U|V) =−
∑

x∈U,y∈V

p(x,y) log

(
p(x,y)

p(y)

)
=−

k∑
i=1

l∑
j=1

ni,j
n

log

(
ni,j/n

bj/n

)
,

which yields,

I(U,V) =
k∑

i=1

l∑
j=1

ni,j
n

log

(
ni,j/n

aibj/n2

)
.

As the values of ni,j, and therefore ai,bj are determined by the cluster values for the N2 pairs of datapoints,
the complexity to compute the mutual information isO(N2). Notice that I(U,V)≥ 0, and
I(U,V) = I(V,U). It then follows that

I(U,V)≤min(H(U),H(V)))≤ 1

2
(H(U)+H(V)). (3)

Equation (3) shows that we can normalize the mutual information by dividing by the average of the
entropies [35]. Throughout, we define the normalized mutual information as

NI(U,V) := 2I(U,V)
H(U)+H(V)

.

We will use the (normalized) mutual information as a way to measure how similar two clusterings are.
Since mutual information quantifies how much information from one clustering is obtained from another, it
is ideal for measuring how much structure is lost by coarse-graining. As such, mutual information will play a
key role in the MIER algorithm for ensemble selection. ANI(U,V) value of p can be interpreted as 100× p
percent of information was ‘lost’ between the clusters U and V. We will be using this interpretation in
section 4.

3. The CGC andMIER algorithms

Here, we present our wavelet-based workflow for analyzing scale dependence and ensemble assembly. We
detail the clustering algorithm Coarse-Grain Clustering (CGC) and present a method for selecting clusters to
include in an ensemble based off the mutual information, which we callMutual Information Ensemble Reduce
(MIER). Table 1 contains all the notation used throughout both algorithms for ease of reference.

3.1. Coarse-grain clustering (CGC)
This manuscript considers 4-way climate data tensors X ∈ RN1×N2×N3×N4 . We will index the modes of the
tensor using subscripts, namely

X = (Xi1,i2,i3,i4)
N1,N2,N3,N4

i1,i2,i3,i4=1 .

Each of the coordinates coordinates i1, . . . , i4 describes a feature of the abstract dataset X . Correspondingly,
we will always make the following physical identifications: the first and second indices i1 and i2 refer to
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Table 1. Notation for CGC and MIER algorithms.

Notation—CGC Description

X = (Xi1,i2,i3,i4)
N1,N2,N3,N4

i1,i2,i3,i4=1 Tensor of climate data
Xl, l= 1, . . .N4 Tensors via fixing i4 index
Ψj, j= 1, 2, 3 Wavelet for the indices i1, i2, i3
ℓj, j= 1, 2, 3 Scale level of the DWT on index ij

Notation—MIER Description

L ⊂ N3 Permissible set of wavelet resolutions (ℓ1, ℓ2, ℓ3)

ℓ⃗ A permissible point (ℓj)
3
j=1 ∈ L

Uℓ⃗ CGC at resolution ℓ⃗

G NI graph for {Uℓ⃗}ℓ∈L
W Weighted adjacency matrix for G
{Lj}Kj=1 Components of L corresponding to K− cut of G
A(Uℓ⃗) AverageNI between Uℓ⃗ and its component
{Uj}Kj=1 Reduced ensemble - output of MIER

DWT

Stack

DWT

DWT

Vectorize Cluster Label

1
2

3
4 5

6

Figure 2. Diagram of each step of the CGC algorithm.

latitude and longitude coordinates, respectively; the index i3 denotes time, and i4 refers to state variables (e.g.
temperature or precipitation).

The goal of this work is to provide meaningful clusterings for the spatial location, namely the coordinates
corresponding to i1 and i2. Hence, we seek clusterings of the indices (i1, i2) ∈ {1,2, . . . ,N1}×{1,2, . . . ,N2}
using the data X . While our focus is on clustering two indices of 4-way tensors, we note that this method
does generalize to clustering d-way tensors along any number of indices.

We now describe the Coarse-Grain Clustering algorithm. Figure 2 schematically displays the key features
of CGC, while Algorithm 1 contains the pseudo-code.
Step One—Split Tensor: The first step in the coarse-grain clustering (CGC) algorithm is to separate the

tensor X into sub-tensors that are largely statistically uncorrelated across the dataset. For example,
temperature and precipitation are locally correlated—e.g. seasonal rainfall. However, they are weakly
correlated at large spatial scales. Indeed, there are hot dry deserts, cold dry deserts, wet cold regions, and wet
hot regions. Therefore in the climate dataset X , one would separate by climate variables, but not by space or
time. In a generic, non-climate specific tensor, one might split across different variables or runs of an
experiment. We let X1,X2, . . . ,XN4 be the 3-way tensors obtained by fixing the i4 index to the N4 possible
values. Note that each of these tensors Xl for l= 1, . . . ,N4 have the same size.
Step Two—DWT: After splitting the tensor X into sub-tensors, the next step is to select the inputs. The

user chooses wavelets for each of the remaining indices i1, i2 and i3. We letΨj denote the wavelet for the index
ij, j= 1, 2, 3. Non-negative integers ℓj for j= 1, 2, 3 are selected to control the scale level of the DWT on index
ij. For each 3-way climate variable tensor Xl, l= 1, . . .N4, take the DWT transform.
Step Three—Stack: Since the same wavelets are used on each Xl, the DWT of Xl will each have the same

shape. These tensors can therefore be stacked along the face we wish to classify. For the climate biome
problem, this would be the (i1, i2) face.
Step Four—Vectorize:Once the approximation coefficients are stacked, they may be vectorized along the

face of interest. These vectors will be clustered according to a clustering algorithm of choice. This will result
in a clustering of the face of interest on the DWT stack.
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Algorithm 1: Coarse-Grain Cluster.

Input:X = (Xi1,i2,i3,i4)
N1,N2,N3,N4

i1,i2,i3,i4=1 , {Ψj, ℓj}3j=1, C
Result: Clustering of (i1, i2) face

1 form tensors Xl, l= 1, . . .N4;
2 take DWT of each Xl;
3 stack approximation coefficients along (i1, i2) face;
4 vectorize stack of DWT;
5 cluster vectors according to algorithm C;
6 return labels to (i1, i2) face

Figure 3. Diagram of each step of the MIER algorithm. In step (2), thicker lines correspond to larger mutual information. In step

(5), the clustering with largestA(Uℓ⃗) is highlighted.

Step Five—Clustering: The final input is the choice of clustering algorithm, as well as any
hyper-parameters required for the chosen algorithm. For example, one may choose K-means, in which case
the user needs to specify the number of clusters k. Let C denote the chosen clustering algorithm, along with
its chosen hyper-parameters. With the inputs chosen, the algorithm proceeds as follows. Algorithm C is
applied to the vectorized DWT coefficients from step four.
Step Six—Return Labels: The final step is to translate these labels on the coarse-grain stack to the face of

the original data set. This is done using the inverse DWT. Specifically, cluster labels corresponding with the
largest value appearing in the inverse DWT filter are used to propagate the coarse label to finer detail.

The complexity of CGC determined by the DWT and the clustering algorithm C. The cost of the DWT
(and its inverse) isO(N1N2N3). The cost of C depends, of course, on the choice of clustering algorithm. For
example, suppose we use K-means (as we will in our applications). Then since the size of the approximation
coefficients is N̂ := N1

2ℓ1
N2

2ℓ2
N3

2ℓ3
, the total cost of CGC isO(N1N2N3)+O(KN̂I).

We remark that the process of computing coarse-grain clusterings is extremely parallelizable. Indeed, a
directed tree structure can be implemented to semi-parallelize all scales of the DWT. Each of these scales can
then be independently clustered. This fact, combined with the extreme size savings of the DWT, means the
cost to compute many CGC’s is no worse than computing the most expensive CGC in the collection.

3.2. Mutual information ensemble reduce (MIER)
The CGC algorithm describes how to produce a single clustering at a fixed coarse-graining. This
coarse-graining arises from the choice of wavelets and wavelet levels {Ψj, ℓj}3j=1. The power behind CGC is
its ability to produce many clusterings by simply varying the wavelet levels ℓj, j= 1, 2, 3, which as
discussed above, can be readily parallelized via a single instruction.

This process results in a large ensemble of clusters, one that is potentially too big to analyze. In this
section, we discuss a method to select a small subset of this large ensemble of coarse-grained clusters. Our
method leverages the mutual information to find a compact subset of clusters that contains most of the
information across the large ensemble. This is accomplished by computing the mutual information between
all the clusters in the large ensemble. This results in a connected graph. This connected graph is then
ratio-cut to find heavily connected and therefore information theoretically similar clusters. For each
component, we again use mutual information to select a single representative of the component. We call this
methodMutual Information Ensemble Reduce (MIER).

The MIER algorithm is summarized in figure 3 and Algorithm 2. The details of the algorithm are as
follows.
Step One—Large Ensemble: Let L ⊂ N3 denote the permissible set of wavelet resolutions (ℓ1, ℓ2, ℓ3) for

the chosen wavelets {Ψj, ℓj}3j=1. Reasonable values for L can be deduced from the dataset and problem of
interest, e.g. scale of data and anticipated importance of embedded features. Once L has been decided, CGC

is run for each ℓ⃗= (ℓj)
3
j=1 ∈ L. We denote the clustering using the wavelet resolutions by Uℓ⃗. This results in

an ensemble of clusters {Uℓ⃗}ℓ⃗∈L.

8
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Algorithm 2:Mutual Information Ensemble Reduce

Input:{Uℓ⃗}ℓ⃗∈L
Result:{Uj}kj=1

1 import the large cluster ensemble {Uℓ⃗}ℓ⃗∈L;
2 build mutual information graph G;
3 ratio cut G;
4 ComputeA(Uℓ⃗) for each ℓ⃗ ∈ L;
5 return reduced ensemble {Uj}kj=1

Step Two—Mutual Information: Next, we compute the normalized mutual information between each

clustering Uℓ⃗ in our ensemble L. This results in a complete weighted graph G on nodes indexed by the set L.
The weight between node ℓ⃗= (ℓ1, ℓ2, ℓ3) and node ℓ⃗′ = (ℓ′1, ℓ

′
2, ℓ

′
3) is the normalized mutual information

NI(Uℓ⃗,Uℓ⃗′). We call the graph G themutual information graph, and letW denote the weighted adjacency
matrix for G.
Step Three—Graph Cut:Having built the mutual information graph, we now perform a graph cut.

Recall, spectral clustering solves a relaxed version of the ratio cut problem. Hence, we use spectral clustering
onW to find a ratio-cut of G. The eigen-gap heuristic is used when selecting the number of clusters K for
spectral clusteringW [32]. Let L1,L2, . . .LK denote the K components of L corresponding to the K − cut
of G.
Step Four—AverageNI : For each component of the cut mutual information graph, we seek a best

representative. LetA(Uℓ⃗) denote the average mutual information between Uℓ⃗ and all other members of its
component. That is, for ℓ⃗ ∈ Lj,

A(Uℓ⃗) =
1

|Lj| − 1

∑
ℓ⃗′∈Lj,ℓ⃗′ ̸=ℓ⃗

NI(Uℓ⃗,Uℓ⃗′)

whereNI(Uℓ⃗,Uℓ⃗′) is the normalized mutual information between the clusters Uℓ⃗ and Uℓ⃗′).

Step Five—Choose Representative: For each j= 1, . . .K, the goal is to select the clustering Uℓ⃗ that best

represents all the clusterings in Lj. If Uℓ⃗ is a good representative for all the other clusterings within its

component, then the mutual information between Uℓ⃗ and the other members of the component will be high

on average. Thus,A(Uℓ⃗) will be large. Consequently, we select a cluster in Lj for whichA is maximized:

Uj ∈ Argmaxℓ⃗∈Lj
A(Uℓ⃗).

In the unlikely event that the Argmax consists of more than one element, one is selected randomly.
To compute the complexity of the MIER algorithm, we note there are |L|2 pairs of clusterings whose

normalized mutual information needs to be computed. If there are N total data-points, the cost to form G is
O(|L|2 N2). Next, spectral clustering on the |L|2 connections of the graph needs to be performed. This costs
O(|L|3)+O(|L|KI). This puts the total cost of MIER atO(|L|2 N2)+O(|L|3)+O(|L|KI).

This cost is deceptively high however. In general, |L| is very small compared to N. Indeed, |L|might be
on the order of 10’s or worst case 100’s, while N is many orders of magnitude higher. The complexity of the
MIER algorithm is therefore dominated by the cost normalized mutual information, and is really more like
O(N2).

4. Application—gridded climate dataset

As a proof of concept, we apply the MR-Cluster to a gridded historical climate data set of North America
[36], referred to hereafter as L15. This data set ingests station data and interpolates results for each grid
point, integrating the effects of topography on local weather patterns. The gridded data is six by six
kilometers a side and consists of 614 latitudinal, 928 longitudinal, and 768 temporal steps for the years
1950–2013. The available monthly variables in the L15 data set are averaged values of daily total
precipitation, daily maximum temperature, daily minimum temperature, and daily average wind speed. A
representative snapshot of precipitation, maximum and minimum temperature is shown in figure 4. The
datasets contains key inputs needed for biome classification using the KG model [17] and allows ready
comparison against this expert judgement based approach. As this dataset is freely available, as well as widely
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Figure 4. Representative variables within the from L15 dataset, illustrating broad range of both coarse and fine spatial scales for
precipitation, maximum temperature, and minimum temperature.

used within the climate community (e.g. Henn et al 2017), it provides a good benchmark application to
illustrate capabilities of the method.

4.1. CGC hyperparameter selection for L15
The first step of CGC is to split the tensor X into sub-tensors corresponding to the climate variables. The
historical precedent has been to use temperature and precipitation data to prescribe the biomes
[17, 18, 20, 21]. Hence, we will only consider the sub-tensors X1,X2,X3 corresponding to precipitation and
temperature values in the data set—namely the averaged values of daily total precipitation, daily maximum
temperature, daily minimum temperature for each month. The next step is to determine the inputs to
Algorithms 1 and 2. We describe these now.

L15 is a gridded observational dataset that achieves a six km spatial resolution, while each time slice of
the data represents monthly timescale data. Whenever a wavelet transform is taken, the spatial and/or
temporal scales are approximately doubled. For example, the L15 dataset has a six km spatial resolution.
Thus, the coarse wavelet coefficients have a spatial resolution of 12, 24, 48, etc, km for one, two, and three
wavelet transforms, respectively. Similarly, wavelet transforms of the monthly time scales will result in 2, 4, 8,
etc, month long scales.

There is a scale at which both the spatial and temporal information is too coarse and begins to lose
meaning. For example, on one extreme the spatial scale of the entire dataset is meaningless. On the other, the
six km initial resolution is too fine scale for adequate characterizations into distinctly visible biomes at the
North American scale.

These scales demarcate our set of permissible wavelet resolutions L. At least one wavelet transform is
taken in both space and time. The maximum for the spatial indices ℓ1, ℓ2 is four (roughly 96 km). The
maximum number of temporal wavelet transforms is six (roughly 5 years). Further, we opted for a parsimony
with regards to the spatial wavelet transforms—a wavelet transform is taken along i1 (latitude) if and only if
it is also taken along i2 (longitude). For example, if we take two wavelet transforms in space laterally, we will
also take two in space longitudinally so that horizontal spatial resolution is uniformly scaled. Thus, we have

L= {(i, i, j) : i= 1, . . . ,4, j= 1, . . . ,6}. (4)

Note, while it was possible to push the maximum levels to coarser grain, we wanted to avoid the risk of
over-coarsening the result. For our choice of wavelets, we choose Daubechies 2 (db2) to match the time
signals and Haar for space, corresponding to anticipated smooth periodicities in time and sharp gradients,
e.g. near mountains, in space.

For the algorithm C, we have chosen to use K-means clustering for k= 4,5, . . .20 due to the historical
precedence this algorithm has in clustering for climate applications [20, 21] and straightforward
implementation. Recall that the aim is not to find the ‘best clustering’ of our data; instead, we wish to
understand how coarse-graining affects clustering and can be used to develop an ensemble of clusterings for
use in understanding cluster method sensitivity to latent data scales.

4.2. Results
4.2.1. L15 CGC algorithm results—effects of coarse-graining
We begin with a qualitative analysis by visualizing the effect scale has on clustering. For a parsimonious
exposition, we have opted to display the sensitivity of CGC on L15 to scale only for a fixed value of K = 10.
Different values of K result in similar qualitative results. Figure 5 explores this sensitivity.

Visually, scale can be seen to have a drastic effect on the overall structure of the clusters. For example,
decreased temporal scale increases resolution from two to three eastern US classifications and shown in
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figure 10(c) versus 10(d) and 10(f). Coarsened classifications are observed as a direct role of spatial scale, e.g.
figure 10(f) versus 10(c) to 10(e). Cluster boundary shape is also affected by the wavelet resolution. For
example, a vertical boundary can be found in the middle of the United States across each classification.
However, the shape of that boundary depends on the resolution, e.g. figure 10(d) versus 10(e).

However, note that several coherent features are observed. Strong latitudinal dependence in the eastern
portion of the US is consistent across clusterings as scales are modified, e.g. figure 5(a) to 5(d). Moreover, the
location of the class boundary lines is relatively stable across all resolutions, in particular, in the Midwestern
United States.

For a quantitative measure of the effects scale has on CGC for the L15 dataset, we use statistics derived
from the normalized mutual information across various cluster numbers. Specifically, we compute the CGC

clusterings {Uℓ⃗}ℓ∈L for each K= 4, . . . ,20. For each fixed K, we then computed the normalized mutual
information between ‘adjacent’ scales:

NI(U(1,1,1),U(1,1,2)),NI(U(1,1,1),U(2,2,1)),NI(U(1,1,2),U(1,1,3)), . . . ,NI(U(3,3,6),U(4,4,6)).

By using adjacent resolutions, we are measuring the sensitivity of K-means to adjusting scale. Computing
basic statistics across all K allows us to infer the expected information loss in coarse-grain clustering. Table 2
and figures 6–8 present this statistical data at different levels of granularity.

In table 2, we displayNI pertaining to each possible adjacent coarse-graining. Since there are 38
adjacent coarse-grainings, each with 16 totalNI values, a parsimonious representation is required. For
table 2, we have chosen to only present the minimum, average, and maximumNI values.

Next, we begin grouping the data based on a fixed pair of adjacent spatial or temporal scale lengths. In
figure 6, we have binned all theNI values for adjacent spatial resolutions. Once the data is binned, the
minimum, average, and maximum are computed, as well as a histogram and a kernel density estimate. For
example, figure 6(a) contains all theNI values between (1, 1, j) and (2, 2, j) for all j= 1, . . . ,6 and all
K= 4, . . . ,20. The spread of these plots is the range of observedNI . These are the worst and best case
scenarios for information loss transitioning between the stated resolutions. The peaks correspond to values
NI that were frequently observed. These are the approximate expected information loss transitioning
between the stated resolutions.

In figure 7, we follow the same procedure only binning temporal scales instead of spatial scales. Finally,
figure 8 takes the entire collection ofNI values, plotting the PDF as well as the minimum, average and
maximum.

4.2.2. L15 MIER algorithm results—creating the coarse-grain ensemble
For different K values, the CGC algorithm was run across all the resolutions L as in equation (4). For each
fixed K, the MIER algorithm was applied to the outputs to discover the reduced ensemble. Once again for a
parsimonious exposition, we will only display the MIER algorithm for K = 10.

Figure 10 shows the result of the MIER algorithm for K = 10. Figure 10(a) displays the value ofA(Uℓ⃗) for
each resolution ℓ⃗ ∈ L. The value on the vertical access denotes the number of spatial wavelet transforms,
while the horizontal axis displays the number of temporal wavelet transforms. Figure 10(b) shows the results
of the ratio cut algorithm. The key resolutions found by running the MIER algorithm are highlighted in a
darker shade.

The clusters plotted in figure 10(c) through figure 10(f) are the best representative clusterings found by
the MIER algorithm for K = 10. Each clustering encapsulates different observed qualitative features from the
large ensemble of clusterings L.

For each K= 4, . . . ,20, the MIER algorithm was run to find a small diverse subset of the resolutions L.
For a given K, MIER found either three or four clusters was adequate to represent the entire ensemble of
clusters. Looking across all values of K, some resolutions were never discovered to be good representatives of
the whole ensemble, while others appeared rather frequently. In figure 9, we plot the average number of
times each resolution has appeared as representatives. As before, the value on the vertical access denotes the
number of spatial wavelet transforms, while the horizontal axis displays the number of temporal wavelet
transforms. We note that of the 24 resolutions, only five consistently appear, namely
ℓ= (1,1,5),(2,2,1),(2,2,3),(2,2,4) and (4, 4, 4).

4.3. Discussion
4.3.1. CGC discussion
CGC resolution dependence plots in figure 5 highlight the variability that data resolution introduces into the
clustering process. It perhaps comes as little surprise that increasing the number of spatial wavelet transform
results in a coarser clustering. High variance regions, such as the Rocky Mountains, become less resolved as
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Figure 5. Clusterings obtained for k= 10 at resolution (ℓ1, ℓ2, ℓ3).

(a) Scale 1 − 2: {0.73, 0.84, 0.91} (b) Scale 2 − 3: {0.72, 0.82, 0.89} (c) Scale 3 − 4: {0.63, 0.74, 0.83}

Figure 6.NI values binned by spatial resolution. Scale i− i+ 1 indicates the levels of the spatial wavelet transform bin. The
{min,average,max} is displayed for each bin.

the number of spatial resolutions increases. However, large structural features such as The Great Plains are
persistent across the spatial wavelet coarse-graining.
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Figure 7.NI values binned by temporal resolution. Scale j− j+ 1 indicates the levels of the temporal wavelet transform bin. The
{min,average,max} is displayed for each bin.

Figure 8. The PDF of adjacentNI values for CGC with K-means, K= 4, . . . ,20 on L15 dataset
{min,average,max}= {0.63,0.82,0.92}.

What is more unexpected is the effect that coarse-graining time has on the clustering. High variability
regions remain high variability, however distinctly different clustering patterns do begin to emerge. For
instance, how CGC clusters the Northern Rocky Mountains and the Pacific Northwest does seem to depend
on the temporal resolution selected. Indeed, in figure 2 we see that increasing temporal scale results adds
more ‘micro’ biomes to these regions. Low variability regions also depend heavily on the temporal scale. For
example, the North Eastern U.S. splits into more biomes as the temporal scale becomes coarser.

To better understand which resolutions affect the clustering greatest, we computed theNI for various
adjacent scales. In table 2, we see that there is a large variability in the averageNI . This shows that increasing
the coarseness at some scale lengths results in a greater loss of information then others. For instance,
NI(U(1,1,1),U(2,2,1)) is large - roughly 90% of the information is retained on average. This indicates that the
difference between clustering at the (1, 1, 1) resolution (12 kilometers) versus the (2, 2, 1) resolution (24
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Figure 9. Average number of times a given resolution was chosen by the MIER algorithm across all K= 4, . . . ,20.

kilometers) is not significant at the monthly time scale for the L15 dataset. At higher temporal scales
however, it would appear as though the difference between the 12 kilometers and 24 kilometer resolution is
more consequential. This is likely due to the blurring of the added complexity in regions such as the
Northern Rocky Mountains and the Pacific Northwest discussed above.

Table 2 allows us to pinpoint individual resolution jumps where large amounts of information was lost.
Figures 6 and 7 on the other hand, help discover the spatial and temporal scales that are responsible for
information loss. Figures 6(a) (12–24 km) and 6(b) (24–48 km) demonstrate that regardless of temporal
scale and K, the expectedNI was approximately the same. However, 6(c) (48–96 km) is significantly lower,
with a maximum value near the mean of the other two scale transitions. This indicates that spatial scale i= 4
has entered into a regime where the higher frequency features of the L15 dataset have been completely
smoothed for more global ones.

Perhaps more interesting, figure 7 allows us to identify the timescales responsible for the largest amount
of change. Note that figures 7(a) (2–4 month), 7(c) (8–16 months) and 7(d) (16–32 months) have similar,
right weighted distributions with relatively high expectedNI . However, figures 7(b) (4–8 months) and 7
(32–64 months) are different. The transition from 32 to 64 months is significantly more normally distributed
with a noticeably lower averageNI . The transition from 4 to 8 months is very different, with itsNI values
densely centered near the mean significantly lower than the other four plots. What these plots seem to
indicate is that, in terms of clustering the L15 dataset, is the critical role seasons and many years play. Indeed,
the difference between 2 or 4 months is not very significant in terms of loss of information. However, once
you start to jump across seasons (figure 7(b)), new patterns emerge causing a remarkably different clustering.
Likewise, the difference between seasons and small number of years (figure 7(b) and (c) is not very
significant. However, once you start to enter into a larger number of years (figure 7(e)), climate trends begin
to emerge. This climate signal is slower moving compared to the yearly signal, resulting in a noticeably
different clustering from an information theoretic standpoint.

4.3.2. MIER discussion
The MIER algorithm massively reduces the size of the large ensemble L for each choice of K. In all the
experiments run, the size of L was 24, but the reduced ensemble size is between three and four. This
illustrates the success of the method in identifying a reduced set of clusterings. Furthermore, the algorithm is
successful at picking resolutions that are sufficiently spaced apart. Consequently, the chosen clusters
accurately represent the dynamical range of all the 24 clusters in the large ensemble.

Qualitatively, this can be seen by comparing figures 5 and 10. The six sample plots in figure 5 are the
extreme cases (lowest and highest coarse-graining) and as well as some middle cases. By looking at figure 10
we see that, for instance, the cluster U(1,1,1) belongs to component 0. The representative for component 0 is
the cluster U(2,2,1). U(1,1,1) on figure 5 and U(2,2,1) on figure 10 are qualitatively similar. Indeed, U(2,2,1) has
structure observed in U(1,1,1) and U(4,4,1), which is another clustering that belongs to the same connected
component.

As can be seen from the output of the MIER algorithm, the reduced ensemble can succinctly represent
differences across the spatial temporal resolutions. Most of the variance seen between the clusterings at

15



Mach. Learn.: Sci. Technol. 1 (2020) 045020 D DeSantis et al

Figure 10. Output of the MIER algorithm for K= 10. a)A(Uℓ⃗) for each resolution ℓ⃗ ∈ L, b) results of the ratio cut algorithm
and key resolutions, c–f) plots of key resolutions.

different resolutions is captured within this subset. From a numerical standpoint, the reduced ensemble is
robust as well.

The success of the MIER algorithm can also be identified from an information theoretic standpoint. As
can been seen from figure 10, the expected normalized mutual information between any representative and
the other clusters in its component of the graph is usually rather large. Note that while mutual information
graph G is built from all pairs of interactionsNI(Uℓ,Uℓ′), ℓ,ℓ′ ∈ L, the graph cut is made along adjacent
resolutions. This was common amongst all the runs of the MIER algorithm for K= 4, . . . ,20. Furthermore,

the max value forA(Uℓ⃗) over each component was almost always greater than the average value obtained by
adjacent mutual information. This is noteworthy, since adjacent resolutions will always have a higher mutual
information than those spread apart. This indicates that the MIER algorithm has selected components that
were very information theoretically similar. Thus, picking the best cluster from each component via

Argmaxℓ⃗∈Lj
A(Uℓ⃗), we have found a small set of clusters that minimize the information loss across the large

ensemble.
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It is also worth noting that the most important resolutions found in figure 10 are in some sense,
expected. Indeed, comparing figure 9 and figure 10, three of the four found resolutions are among the five
most consistently discovered across all K. As discussed above, each run of MIER for K= 4, . . . ,20 found
either three or four representative clusters. In general, all but one of these would appear in the five consistent
resolutions, with one falling to a different resolution. This indicates that for the L15 dataset, there are
important resolutions for clustering independent of the cluster number K.

5. Conclusion

We have shown that scale of data is a non-negligible feature with regards to clustering. The normalized
mutual information drop off at different scale lengths illustrates certain resolutions are producing novel
clusters. Consequently, in addition to running several clustering algorithms, it is also important to include
several coarse-grain clusterings into your cluster ensemble. To avoid ballooning the size of the ensemble, its
crucial to not consider every possible coarse-graining, but rather a small subset that largely represents every
possible resolution. The MIER algorithm has shown to be a good method to prune the size of the CGC
ensemble. This capability to produce an ensemble of classifications representing the diversity of scales
provides a direct pathway to better understand clustering sensitivities, illustrating a continued need to assess
and mitigate uncertainties resultant from hyperparameter selection.

As discussed in section 3.1, the computational complexity to run many CGC’s is generally no more
expensive than naive K-means. However, the resultant large ensemble it is more difficult to analyze than a
single clustering. By design, MIER algorithm effectively selects a diverse small subset from the large
ensemble. However, as discussed in figure 1, the additional clusterings from the CGC and MIER framework
should be imported into a consensus clustering algorithm. Further study is needed to assess the confidence
across the cluster ensembles within this classification approach.
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Appendix A. Continuous wavelet transform

Representing functions via a decomposition into simpler functions is classic. Perhaps the most famous is the
Fourier transform and Fourier series. Recall that given f ∈ L2[0, 2π], the set of square integrable (finite
energy) functions and ω ∈ R, the Fourier transform

f̂(ω) =
1

2π

ˆ 2π

0
f(x)e−iωxdx

measures the ‘amount’ of the frequency ω the signal f contains. The Fourier series of f ∈ L2[0, 2π] is a
decomposition of f into a (potentially infinite) L2−sum of trigonometric functions. Concretely, the
functions fN(x) =

∑N
n=−N f̂(n)e

inx converge to f in L2[0, 2π] [37].
The Fourier transform only contains this frequency information, it does not know ‘where’ this frequency

occurs. By taking a window of the domain, one can better localize frequencies. However, there is a
Heisenberg’s uncertainty type inequality that limits how well one can simultaneously resolve both the
frequency and spatial values of a function [38]. The wavelet transform seeks to solve this issue by utilizing a
scaling window, which is shifted along the signal. At each position, the spectrum is calculated. This process is
repeated with varying window lengths, resulting in a collection of time–frequency representations of the
signal and multiple resolutions i.e. power at different frequencies and scales.

Wavelet transforms differ from the Fourier transform in that there is a choice of wavelet function, or
kernel, one uses to compute the weights. Rather than integrating against e−iωx to measure the amount of
frequency ω the function f has, shifts and dilation’s of a ‘window’ kernel function are used. Themother
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ω

1,02,03,04,0

Figure C1. Diagram demonstrating how the different dilations cover the frequency spectrum of f. The bar in red indicates the
frequency domain of f, and the boxes for each ψℓ,0 show what portion of the frequency spectrum the wavelet captures.

wavelet is a functionΨ∈L2([a, b]) that satisfies additional regularity conditions [39]. Perhaps the most
famous example is Haar wavelet, given by

Ψ(x) =


1 0≤ x< 1

2
−1 1

2 ≤ x< 1
0 else.

Wavelets are generated by scaling and translated the mother wavelet. Given a scale factor s and translation
factor τ , we denote the wavelet scaled by s and shifted by τ as

Ψs,τ (x) =
1√
s
Ψ

(
x− τ

s

)
.

Just as the Fourier transform at ω measures the amount of frequency Ω in f by convolution with e−iωx, the
wavelet transform measure the ‘amount’ of the signal at scale s and translation τ by convolution. The
(continuous) wavelet transform of f at s, τ is

f̂(s, τ) =

ˆ 2π

0
f(x)Ψs,τ (x) dx

where the bar denotes complex conjugate. In our work, we will only be working with real valued wavelet
functions, so the conjugate is not necessary. Thus, the wavelet transform f̂(s, τ) will always be real valued.

Appendix B. Discrete wavelets

By taking discrete steps in the frequency space, the Fourier transform was leveraged to create the Fourier
series. Similarly, by fixing a scale and translation and taking integral steps, one can create a wavelet series
representation of f. Usually, one fixes s= 2, and τ = 1 (so-called dyadic sampling of scale/translation space),
and modifies the wavelet transform to

Ψℓ,k(x) =
1√
2ℓ
Ψ

(
x− 2ℓ

2ℓ

)
,

where ℓ,k ∈ Z. TheΨℓ,k are known as the discrete wavelets. If the discrete wavelets satisfy a very natural
bounding condition called the frame bounds, then the initial signal can be reconstructed perfectly with
(potentially infinite) L2−sum ofΨℓ,k [39]. That is,

f=
∞∑

ℓ=−∞

∞∑
k=−∞

f̂(ℓ,k)Ψℓ,k

where convergence is in L2.

Appendix C. Discrete wavelet transform—wavelet filter bank

Clearly in practice, one cannot compute the infinite number of f̂(ℓ,k). Luckily in practice, one would not
have to anyways. At any given scale, the number of translations is bounded by the length of the signal
interval. Therefore, it suffices to limit the range of scales one needs to compute. From Fourier analysis, we
know that time compression by factor of 2 will stretch and shift the frequency spectrum by a factor of 2. If,
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Figure C2. Diagram of a 3-layer wavelet filter bank for a signal f. The frequency domain of f is split each iteration via a low
pass/high pass filter. After each filter, the resultant signal is down-sampled.

for example,Ψ1,0 covers the upper bound of the frequency spectrum of f, then further dilations will begin to
cover the whole frequency spectrum of f. See figure C1.

Because the window width for the frequency spectrum is halved at each iteration, it is not possible to
cover zero with a finite number of iterations. For this reason, after a finite number of steps, the residual low
passed signal is collected. The low frequency function is called the scaling function, denoted Φ. For the Haar
wavelet,

Φ(x) =

{
1 0≤ x< 1
0 else.

This process of splitting the frequency domain via low-pass and band-pass filters is an example of a filter
bank [40].

In practice, the filter bank is created by selecting a scale level ℓ, and iteratively computing the wavelet
coefficients up to the chosen scale. For example, if ℓ= 2, convolution with the waveletsΨ1,0,Ψ1,1 will cover
the top half of the frequency spectrum for f providing a high pass filter. Taking the scaling function from the
first iteration, convolution withΨ2,0,Ψ2,1,Ψ2,2,Ψ2,3 will cover the next quarter of the frequency spectrum
for f. The residual is the low passed signal. See figure C2.

A computationally efficient implementation of this filter bank method is easily implemented for a
discrete 1-D signal f of length N. Here, the convolution and downsampling can be encoded into a single
vector-matrix multiplication g=Hf. The output g= [gl|gh] will be a vector approximately the same length as
f. Two vectors g l and gh that make up g consist of the low-pass and high-pass portions of f, respectively [41].

For multidimensional signals such as a tensor, there are several ways to compute the discrete wavelet
transform. The most popular is the separable method, whereby the 1-D DWT is applied sequentially along
each axis. For example, given a 3-way tensor data of size N1 ×N2 ×N3, the 1-D DWT filterbank is first
applied along axis 1. This splits the data into two chunks of size roughly N1

2 ×N2 ×N3. The 1-D DWT
filterbank can then be applied again to the next axis, again reducing the size of the data [42]. See figure C3 for
a diagrammatic explanation.

The complexity of the 1-D DWT can be shown to beO(N) [30]. The complexity for higher-order wavelet
transforms will depend on the choice of wavelets, but a worst-case upper bound for a separable DWT of a
third-order tensor isO(N1N2N3). For a comprehensive overview of wavelets, see [43].

Appendix D. Example of discrete wavelet transform

Consider the 1-D signal f = [1, 2, 3, 4, 5, 6, 7, 8]. Suppose we want to compute the third-level Haar wavelet
transform of f. The matrix for the Haar wavelet transform is given by
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Figure C3. Diagram of (separable) DWT applied to a 3-tensor of data. After each application of a 1-D wavelet transform, the size
of the tensor is reduced by a factor of two.

H=
1√
8



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2

√
2 −

√
2 −

√
2 0 0 0 0

0 0 0 0
√
2

√
2 −

√
2 −

√
2

2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2



Φ
Ψ1

Ψ2,0

Ψ2,1

Ψ3,0

Ψ3,1

Ψ3,2

Ψ3,3

Here, we have written the Φ andΨℓ,k next to the rows that the represent. In order to compute the DWT, we
compute Hf. Doing the matrix multiplication yields

Hf=
1√
8



36

− 16

− 2
3
2

−2
3
2

− 2
−2
−2
−2



where we have added separation lines to indicate the different detail coefficients from the different
coarse-grainings. The top level is the approximation third level’s approximation coefficient.
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