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Abstract
The accuracy of any machine learning potential can only be as good as the data used in the fitting
process. The most efficient model therefore selects the training data that will yield the highest
accuracy compared to the cost of obtaining the training data. We investigate the convergence of
prediction errors of quantum machine learning models for organic molecules trained on energy
and force labels, two common data types in molecular simulations. When training models for the
potential energy surface of a single molecule, we find that the inclusion of atomic forces in the
training data increases the accuracy of the predicted energies and forces 7-fold, compared to
models trained on energy only. Surprisingly, for models trained on sets of organic molecules of
varying size and composition in non-equilibrium conformations, inclusion of forces in the
training does not improve the predicted energies of unseen molecules in new conformations.
Predicted forces, however, improve about 7-fold. For the systems studied, we find that force labels
and energy labels contribute equally per label to the convergence of the prediction errors. The
optimal choice of what type of training data to include depends on several factors: the
computational cost of acquiring the force and energy labels for training, the application domain,
the property of interest and the complexity of the machine learning model. Based on our
observations we describe key considerations for the creation of new datasets for potential energy
surfaces of molecules which maximize the efficiency of the resulting machine learning models.

1. Introduction

In recent years, machine learning models have become increasingly popular as methods to approximate
potential energy surfaces of molecules. These models range from classical learning methods such as kernel
methods to methods based on deep neural networks [1–19]. A common denominator for these data-driven
models is that they require an adequate training set in order to yield predictions of sufficient accuracy. It is
thus clear that informed and rational selection of training data is paramount to proper optimization of the
data-efficiency of the machine learning models.

For machine learning models describing potential energy surfaces, two types of data seem particularly
convenient as training data: single-point energies and atomic force vectors. However, it has not yet been fully
demonstrated when and to which degree the inclusion of force labels in the training set truly leads to an
improvement of the accuracy of the trained model versus energy labels. It is even possible to find somewhat
conflicting information in literature. For example, the GDML and sGDML methods achieve state-of-the-art
accuracy in certain cases for the MD17 benchmark dataset, despite training only on force labels, ignoring the
energy labels [20–22]. In contrast, the HIP-NN neural network—when only trained on energy
labels—ostensibly achieves similar predictive accuracy to the DTNN, SchNet and PhysNet neural networks,
when these are trained on both forces and energy labels for 50 K molecules from the MD17 dataset, despite
the fact that HIP-NN is trained using far fewer training labels [15, 19, 23, 24]. Similarly, the family of ANI
datasets have resulted in successful potential energy models for general organic chemistry solely trained on
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single-point energies on geometries distorted along normal-modes, although the corresponding gradient
information would not have been much more costly to obtain at the density-functional theory (DFT) level
employed [5, 25–27].

Consequently, it is not clear from literature which is the best strategy for designing a dataset for the most
accurate machine learning potentials for chemical compounds within a given budget of computational
resources. In order to shed more light on this matter, here we investigate how the predictive accuracy of
machine learning models is affected by inclusion of derivative information—namely atomic force vectors in
addition to the energy—in the training set. More specifically, we investigate the nine possible combinations
resulting from the inclusion of functions, derivatives and functions plus derivatives in loss-functions used for
training, as well as in error measures used for evaluating the prediction error.

In order to learn, the predictive accuracy of the trained machinemust strictly increase with an increasing
amount of training data, aside from statistical variation. This holds true as long as the training data is
noiseless and the machine learning model is flexible enough to be able to properly account for all variation in
the data [28, 29]. This has previously been demonstrated numerically with the leading term of the prediction
error decreasing according to a power-law with number of training samples, N, for kernel ridge
regression [30], as well as for neural networks [31], i.e.:

Error∝ a

Nb
(1)

Learning curves of functional machine learning models thusmust behave linearly on log-log scales and
form, in the limit of large N, a robust tool to assess learning data-efficiency through comparison of the
‘offset,’ log(a) and ‘slope,’ b.

This paper is structured as follows: we first describe our methodology and illustrate the idea of learning
curve comparison for a well-known toy system from mathematics, the well-described Himmelblau’s
function, in order to demonstrate how different types of training data affect the learning rate for a generic
non-trivial 2-dimensional surface [32]. Next, we employ the same testing scheme for two different but
common use cases in chemistry: The first use case concerns generating a force field for a single molecule.
Here we demonstrate how using forces and energies in the training data affect the learning rate for the
potential energy surfaces of 10 individual molecules from the MD17 dataset [20, 21]. In order to ensure that
the underlying data is practically noise-free, we additionally present a revision of the MD17 where the
energies and forces have been calculated using dense integration grids and tight self-consistent field (SCF)
tolerances.

The second use case concerns generating machine learning models trained across chemical compound
space, meaning that they can extrapolate to out-of-sample molecules not seen during training. Also here, we
investigate how the inclusion of forces in the training data helps the trained machine to generalize from
points on the potential energy surfaces of known molecules to points on the potential energy surfaces of new
molecules.

2. Theory

In order to achieve a fair comparison between models trained on different kinds of data (here energies and
forces), we employ three closely related kernel-based regression models which are described in this section, as
well as standard training protocols [33]. Using these schemes, we ensure that models trained on different
types of data will rely on the same kernel functions and representations while at the same time being
exactly-determined with closed-form solutions. This is done by defining loss functions in which basis kernel
functions are placed on the training data, as well as placing kernel derivatives corresponding to any gradient
or force information in the training data. This yields a set of basis functions which guarantees that the model
(within a given regularization) is able to perfectly align with the training labels. Additionally, use of the force
operator ensures that the resulting force fields are conservative force fields, which is important for molecular
dynamics simulations and that the predicted energies obey common physical relations such as rotational and
translational invariances.

The three machine learning models which employ training on either energies (function) only, or energies
and forces (function and derivatives) simultaneously, or forces (derivatives) only are presented next. Each
model is characterized by its loss function J which is minimized through regression. Note, that prediction
errors can also be evaluated using different loss functions. Conventionally, training and test error definition
are identical, and their evaluation only differs in being assessed on a training or test set, respectively. As such,
there are nine possibilities to combine the three loss functions in training and in testing.

While the relevant equations for each regressor can be derived both in the context of kernel ridge
regression (KRR), as well as Gaussian process regression, we present them here in the notation most
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commonly used for the former [10, 14, 20–22, 34–38]. For more detailed derivations, we refer to the work by
Bartók and Csányi [1], as well as that of Mathias [39]. We further note that the equations for the force-only
regressor have recently seen a different derivation in the work on ‘gradient domain’ machine learning
(GDML) by Chmiela hboxet al [20].

2.1. Energy-only training
In KRR, the energy, u, of a query molecule, represented by M̃, can be expanded using a basis set of kernel
functions placed on training samples. That is,

u
(
M̃
)
=

training∑
i

∥
(
M̃,Mi

)
αi, (2)

whereMi is the ith molecule in the training set, αi is the ith regression coefficient with units of energy and
∥(·, ·) is a function that relates two molecules through a similarity measure which typically depends on the
specific functional form of the kernel function, the representation and the metric. Writing the above
equation on matrix form yields:

u= Kα (3)

Here, u is the vector containing predicted energies, K is the kernel matrix containing the pairwise kernel
elements between the molecules in the training set and the predictions sets and finally α is the vector
containing regression coefficients. Bold lowercase letters indicate vectors and bold capital letters indicate
matrices. The specific kernel function used for the different experiments are given in section 2.4. From
equation (3), a set of regression coefficients can be obtained by minimizing a loss function. Using Tikhonov
regularization and minimizing the squared errors leads to the loss function which is the foundation of KRR:

J(α | {uref}) = 1

2
∥Kα−uref∥22 +

λ

2
α⊤Kα (4)

This loss function contains a hyperparameter, λ, which determines the amount of L2-regularization for
the regression coefficients stored in α, which in turn yields the well-known closed-form solution for training
a KRR model:

α= (K+ Iλ)−1uref. (5)

These regression coefficients can then be used to predict energies (as in equation (3)), through
evaluation of the relevant kernel matrix. Via the definition of the force operator, i.e. the negative gradient of
the energy with respect to the atomic coordinate vector, r, the atomic force vector, f, can be predicted by
differentiation of equation (3):

f≜− ∂

∂r
u=

[
− ∂

∂rK
]
α (6)

Note that this approach is as ‘naive’ as general and in principle any differential property can be learned
this way as long as the representation accounts for all the variables which are being perturbed [38].

2.2. Combined energy and force training
The second model investigated herein, is a model closely related to conventional KRR but which allows for
training on both force and energies simultaneously. Similar to how KRR can be used to construct a function
that goes through the training points exactly, it is also possible to—at the same time—enforce the derivatives
at those points. Here, derivatives are enforced by including the derivatives (for example, forces) in the
regression in addition to the function value (for example, energies). In order to allow the model to match
both the function values and derivatives of the training set exactly, it is necessary to increase the number of
basis functions considerably, as the set of equations would otherwise be vastly overdetermined, as, for
example, there are 3 N force labels for each energy label. One choice of extended basis comes from
augmenting the set of basis functions in standard KRR with additional kernel functions corresponding to the
kernel derivatives with respect to the coordinates of the training molecules. This choice of basis ensures that
the basis function accompanying a training label always adds the necessary flexibility to describe that label
exactly. The resulting set of equations for this problem looks as follows:[

u
f

]
=

[
K − ∂

∂r⊺K

− ∂
∂rK

∂2

∂r∂r⊺K

]
α (7)

3



Mach. Learn.: Sci. Technol. 1 (2020) 045018 A Christensen and O von Lilienfeld

Here, K is again the kernel matrix containing the pairwise kernel elements between the molecules in the
training set and the predictions sets and is defined identically to K in equation (3). Similarly to the problem
in equation (3), this choice of basis functions ensures that the training kernel is square-symmetric and the
minimization of the regularized loss function has a convenient closed-form solution. For a set of reference
training energies and forces, the regression coefficients can here be obtained by minimizing the following set
of squared errors with Tikhonov regularization:

J(α | {uref, fref}) = 1

2

∥∥∥∥[ K − ∂
∂r⊺K

− ∂
∂rK

∂2

∂r∂r⊺K

]
α−

[
uref

fref

]∥∥∥∥2
2

+
λ

2
α⊤
[
K − ∂

∂r⊺K

− ∂
∂rK

∂2

∂r∂r⊺K

]
α (8)

The closed-form solution is, similarly to that of equation (5),

α=

([
K − ∂

∂r⊺K

− ∂
∂rK

∂2

∂r∂r⊺K

]
+ Iλ

)−1 [
uref

fref

]
. (9)

This definition guarantees that the regression problem is exactly determined and allows for the
machine-learned potential energy surface to match both the energy and the forces of each training molecule.

With the regression coefficients obtained through equation (9), predicted energies can then be calculated
via the set of kernel functions and kernel derivatives placed on the training set:

u=
[
K − ∂

∂r⊺K
]
α (10)

Likewise, forces can be obtained by taking the relevant derivative of the energy, i.e.:

f≜− ∂

∂r
u=

[
− ∂

∂rK
∂2

∂r∂r⊺K
]
α (11)

2.3. Force-only training
The third model presented is a model which constructs a potential energy surface from information about
derivatives only. This model is similar to the model described in section 2.2 except that, in this case, only
force labels are used in the training step and, consequently, the set of basis functions is comprised of only the
corresponding kernel derivatives.

In this approach, we start with the following equation, in which the kernel matrix is formed by the
double derivatives of pair-wise kernel functions:

f=
[

∂2

∂r∂r⊺K
]
α (12)

For a set of reference force labels, fref, the corresponding regression coefficients are obtained analogously
to the energy-only and energy+force examples in the previous sections.

J(α | {fref}) = 1

2

∥∥∥[ ∂2

∂r∂r⊺K
]
α− fref

∥∥∥2
2
+

λ

2
α⊤
[

∂2

∂r∂r⊺K
]
α (13)

α=

([
∂2

∂r∂r⊺K
]
+ Iλ

)−1

fref. (14)

This is also sometimes referred to as training in the ‘gradient domain’ [20].
Energies can then be predicted through direct integration of equation (12), which allows the scalar field

to be determined up to an integration constant:

u=
[
− ∂

∂r⊺K
]
α+ constant term (15)

For problems where only a single surface is of interest—for example the potential energy surface of a
given stoichiometry—the integration constant is rarely of any importance and can also be inferred by
predicting the energies for the training data. Unfortunately, however, this approach is less practical when
multiple surfaces are of interest, for example for datasets involving the potential energy surfaces of multiple
different molecules. Note that the number of possible stoichiometries is known to grow exponentially with
elementary particle number [40]. Hence, force-only training makes it hard if not impossible to train models
that directly predict energies for molecules of varying size and chemical composition, if the energy of the
molecules are of interest. Of course, composite approaches, e.g. using dressed atom models [41], can still be
used to rectify such shortcomings.
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2.4. Representations and kernel functions
Since we present machine learning models trained on (i) an analytical function (Himmelblau’s function) and
on (ii) several models of molecular energetics trained non-equilibrium geometries, different kernel and
representation choices have been made.

2.4.1. Representing Himmelblau’s function
Here, Himmelblau’s function is used as a toy-model for learning complicated surfaces [32]. This allows for
thorough benchmarking of the regressors used herein. Himmelblau’s function is a multi-modal function
with one local maximum and four minima and bears some resemblance to the potential energy surface of a
simple molecule with four conformational minimia. The function is defined as:

u(x,y) =
(
x2 + y− 11

)2
+
(
x+ y2 − 7

)2
. (16)

Points on the surface are represented here as their xy-coordinate pair, that is, qi = [xi,yi]
⊤. A Gaussian

kernel function is used to compute the kernel elements for Himmelblau’s function, i.e.:

Kij = exp

(
−
∥qi − qj∥22

2σ2

)
for Himmelblau’s function (17)

This choice of representation and kernel function makes is straightforward to implement and enables the
computation of necessary kernels and derivatives analytically.

2.4.2. Representing molecules
To represent the environments of an atom in a molecule, we rely on the computationally more efficient
variant of the Faber–Christensen–Huang–Lilienfeld (FCHL) representation [42], namely the FCHL19
representation [22]. Briefly, this representation is a vector which contains histograms of the radial
distributions of atoms and a number of Fourier terms describing angular distributions of atoms in the
environment of a certain atom [43]. In principle, any continuous representation that generalizes across
chemical space could have been used for this purpose. In addition, we use the localized kernel ansatz in
which the kernel elements between two molecules correspond to the pairwise sum over the kernel functions
between the respective representations of atomic environments in the two molecules [37, 44]. This makes it
possible to train models that span molecules of varying size and chemical composition. The following
Gaussian kernel function is used throughout:

Kij =
∑
I∈i

∑
J∈i

δZIZJ exp

(
−∥qI − qJ∥22

2σ2

)
for molecules (18)

where qI and qJ are the representations of the Ith and Jth atoms in the molecules i and j, respectively, δ is the
Kronecker delta, with ZI and ZJ being the atomic numbers of each atom, respectively.

3. Results

In this section, we present numerical evidence which demonstrates the effects on the learning rate of
including derivative labels in the training data. This section is organized as follows: first, we establish the
generality of our numerical experiment by learning the surface of a simple two-dimensional function,
unrelated to molecules or chemistry. Next, we demonstrate the same principles applied to two distinct use
cases, namely (1) training a model for the potential energy surface for a single molecule and (2) training a
general model for the potential energy surfaces of a number of molecules of different size and chemical
composition.

3.1. Toy system: learning Himmelblau’s function
In this section we investigate the learning curves of machines trained to predict Himmelblau’s Function. This
2D surface has four local minima and is displayed in figure 1, as well as the norm of its gradient. Here,
Himmelblau’s function serves as a toy system to demonstrate the effects of including function derivatives in
the training procedure.

We generate a dataset by selecting random points from the surface. The test set consists of 10 000 points
sampled randomly and uniformly across the interval {xi,yi} ∈ [−6.0;6.0], with training sets of varying sizes
sampled randomly and uniformly across the same interval. For each training set size
N ∈ {25, 50, 100, 200, 400, 800, 1600}, 100 training and test sets are created using 100-fold random
sub-sampling cross-validation with a constant test set size of 10 000 points. This extensive cross-validation
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Figure 1. Panel (A) displays the surface of Himmelblau’s function and (B) the gradient norm of the surface. Panels (C) and (D)
display the MAE prediction and MAE gradient prediction, respectively, of the surface of Himmelblau’s function as a function of
the training set size. Three different sets of training labels are used: green is trained on only the function values, red is trained only
on function gradient components and finally blue is trained using both simultaneously.

Table 1. Slopes and offsets for predictions of the MAE value and MAE gradient component for Himmelblau’s function, based on three
machine learning methods trained on different types of data.

MAE value MAE gradient

Training data Slope Offset Slope Offset

Values −2.45± 0.03 8.5± 0.2 −2.05± 0.03 7.1± 0.2
Values and gradients −2.33± 0.03 5.8± 0.2 −1.96± 0.03 4.8± 0.2
Gradients −2.43± 0.03 6.4± 0.2 −2.06± 0.03 5.2± 0.2

was necessary in order to have well-converged averages over the folds, as the test errors were observed to vary
up to one order of magnitude. In total over 350 000 individual models with different training sets and
hyperparameters were trained in order to obtain the presented learning curves.

Three different models were trained for the surface: the first model trained on only the function values,
the second only trained on the function derivatives at the training points and the third model was trained on
both the function values and function derivatives simultaneously. As expected [30, 31], the three machines
yield learning curve fits for the predicted mean-absolute-error (MAE) function value with similar slopes
when plotted on a log-log scale, as displayed in figure 1(C).

The average difference between the two models which include forces labels in the training set is much
smaller than the standard deviation of the 100 folds used to calculate the average. Compared to training on
function values exclusively, the average decrease in the off-set of the learning-curve was found to be a factor
of 7.0 for the model trained on only function derivatives and 7.2 for the model trained on both function
values and function derivatives.

Learning curves for gradient predictions show similar trends among the three models (see figure 1(D):
the average decrease in the MAE of function values predicted on a test set was found to be a factor of 7.9,
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Table 2. Learning curves for three machines trained on different types of data and the same loss functions evaluated on a test set of
10 000 points on the surface of Himmelblau’s function. The three machines are trained on either function values, function values and
gradients simultaneously, or gradients only. The loss functions used to train each machine is denoted in the left column, followed by the
slopes and offsets for the resulting learning curves for three loss functions evaluated on the test data. The three loss functions are defined
in the text in equation (4), 8 and 13, respectively.

Training Test loss Test loss Test loss

J(α | {utest}) J(α | {utest, ftest}) J(α | {ftest})
Training data Training loss Slope Offset Slope Offset Slope Offset

Values J(α | {uref}) −4.59± 0.03 27.1± 0.2 −3.74± 0.03 25.2± 0.2 −3.63± 0.03 24.4± 0.2
Values and gradients J(α | {uref, fref}) −4.41± 0.03 22.4± 0.2 −3.58± 0.03 20.8± 0.2 −3.49± 0.03 20.3± 0.2
Gradients J(α | {fref}) −4.60± 0.03 23.1± 0.2 −3.78± 0.03 21.5± 0.2 −3.69± 0.03 20.9± 0.2

when training on gradients only and 7.0 when training on both function values and gradients
simultaneously, compared to training only on function values.

Fitted slopes and offsets for all six learning curves are displayed in table 1. We note that the 95%
confidence intervals of the fitted learning curves for the two models that include gradients in the training
loss-function are mostly overlapping and while slopes and offsets differ somewhat (see table 1), the
difference between the two models is not statistically significant.

Also for learning curves using loss functions we find agreement with the power-law behavior that is
expected from models trained on function values [30, 31], here demonstrated for models trained on
function gradients. In table 2, we present resulting slopes and offsets for loss-function learning curves for the
three types of trained machines trained using three different sets of training data and corresponding loss
functions (rows). These learning curves are shown graphically in figure S1 in the Supplementary Information
(stacks.iop.org/MLST/1/045018/mmedia).

Results for the corresponding three test loss functions (columns) are obtained using a test set of 10 000
points randomly selected from the surface of Himmelblau’s function. Here, the same trends as for the MAE
learning curves are observed. The resulting slopes from the three types of trained machines do not differ with
statistical significance, but instead depend on the type of test data. In contrast, the offsets depend strongly on
the training loss function and training data. More specifically, the inclusion of gradients in the training loss
function is on average beneficial when predicting function values, function and gradient values, as well as
gradient values alone. We also remind the reader that the slope of these learning curves are independent of
the units of the labels, as this quantity is folded into the offset. Despite using hundred-fold cross-validation,
we do not observe a statistically significant difference between any of the three test predictions when using
training loss functions and data sets based on function values and gradients, or gradients alone. We also note
that the learning curves for the MAE error are observed to follow the expected power-law behavior over a
range that spans 6 and 5 orders of magnitudes for predicted function values and predicted function gradient
components, respectively.

We have thus demonstrated for the Himmelblau function, that MAE error in this case can be decreased
7-fold by inclusion of labels that correspond to function derivatives in the training set. At the same time,
however, we find negligible improvement upon inclusion of function values, in addition to the gradient
information in the training algorithm. Interestingly, these results suggest that when learning a single function
surface, using derivatives as training labels is more advantageous than actual function values.

3.2. Use case 1: learning the PES for a one molecule
In this section we discuss the accuracy of energy and force predictions from three models trained on the
revised MD17 dataset [20, 21].

For each of the 10 molecules in the revised MD17 dataset, three models are trained using either only the
energy labels of each sample, only the force labels, or both types of labels simultaneously. For each of the
three models, the training set size N is varied for N ∈ {50, 100, 150, 200, 400, 600, 800, 1000}. The resulting
MAE of energy and force predictions for each molecule can be found in table S1 in the Supplementary
Information and plots with linear fits to the learning curves are shown in figure 2. As it is clear from the
results and similarly to the example with Himmelblau’s function, including the forces in the training
procedure improves the prediction of both energies and forces. On average, the MAE of the predicted
energies and force components is reduced about 7-fold for the same number of training samples. Regarding
the inclusion of energies in addition to forces, we find, again in complete analogy to the Himmelblau
function, that it makes little difference. In all cases, the largest difference was found to be 0.001 kcal mol−1

MAE predicted energy and 0.002 kcal mol−1 Å−1 MAE predicted force components at the largest training set
size of N = 1000 samples.
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Figure 2. Learning curves for machines trained on three different datatypes for the 10 molecules in the revised MD17 dataset,
namely machines trained on energies only, forces only and both forces and energies. Data for five folds are plotted as a scatter plot
for each training set size and a linear fit for each curve is plotted in addition. In (A) the mean absolute error (MAE) of the
predicted atomization energy is presented for each molecule as a function of the number of molecules in the training set, while
(B) shows MAE of the predicted force components for the same folds.

In figure S2 the MAE predicted energy is plotted as a function of the number of training labels for each of
the 10 molecules using the three models described earlier. Here, the slopes and offsets of the learning curve
are close to identical in all 10 cases, regardless of what data was used to train the models. This suggests that
for this dataset, one force label yields as much improvement in the predictive accuracy of a machine learning
model as one energy label. Thus, a model for a specific molecule, trained on a certain number of energies,
will have roughly the same predictive accuracy as one that is trained on the same number of force labels. As a
consequence, in such cases—and if force-evaluations represent computationally negligible overhead
(common within, for example, DFT)—the number of independent quantum calculations necessary to
generate the training data required to reach a certain predictive power, can be reduced by a factor of 3N
thanks to the inclusion of forces.

We find that in all but one case, the learning curves for both force as well as energy prediction follows the
expected power law, meaning they display a linear relationship on a log-log scale. In the case of benzene, the
off-set of the learning curve is extremely low, but the slope is inconsistent with the expected power-law. This
can be seen clearly in figure S1 in the Supplementary Material. It seems unlikely that underlying numerical
noise in the training data is at the origin of such premature saturation: the learning curves for Uracil are
equally low and do not suffer from lack of linearity. The more likely culprit appears to be the specific
parameterization of the FCHL19 representation achieving only insufficient uniqueness, a possibility recently
pointed out by Pozdnyakov hboxet al [45]. The addition of higher order terms, such as for example 4-body
terms, into FCHL [42] might rectify this issue. Furthermore, we note that the parameters in the
representation have not been re-optimized for discriminating the subtle difference between the very similar
structures in this, but rather work across molecules of varying sizes and chemical composition. It is thus
possible that they could be re-optimized to alleviate such issues to some extent.
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Figure 3. Energy and force learning curves machine learning models trained on a dataset consisting of non-equilibrium
conformers for 1,595 small, organic molecules. Two models are trained, one including only the energy labels of each
non-equilibrium conformer and one additionally including the corresponding force labels. Panel (A) shows the MAE predicted
atomization energy as a function of the number of molecules in the training set, while (B) shows the same predicted quantity, but
as a function of the total number of training labels (i.e. the total number of energy and force components in the training set) for
each machine. The MAE predicted force components are displayed in panels (C) and (D) as a function of the number of
molecules in the training set (C) as well as the total number of training labels (D).

Table 3. Slope and offsets (see text) of linear fits to mean absolute error (MAE) of energies and gradients, predicted on a test set, versus
the training set size, on a log-log scale. The dataset consists of 1595 small organic molecules in non-equilibrium conformation (see text).
The column ‘Training’ denotes what data was used to train the models. Lastly, the column ‘N unit’ denotes the unit is used for the
abscissa of a given learning curve. [Molecules] denotes that the unit is simply the number of molecules in the training set, that is for
energy-only training, one training label (the energy) is used per molecule, while for energy+forces, 3N+1 training labels (one energy
and 3 N force components) are used for each molecule, whereas [Labels] denotes that the total number of 3 N+1 labels are used on the
abscissa.

MAE energy [kcal/mol] MAE force [kcal/mol/Å]

Training N unit Slope Offset Slope Offset

Energy only [Molecules] −0.44 4.35 −0.23 4.01
Energy and forces [Molecules] −0.45 4.47 −0.31 3.29
Energy and forces [Labels] −0.45 6.16 −0.31 4.46

3.3. Use case 2: training models across chemical composition
In our second use case scenario, we investigate how learning forces and energy across chemical compound
space behaves as a function of the number of training molecules and the type of training data. Figure 3 shows
learning curves for force and energy predictions on a dataset consisting of non-equilibrium conformations of
1,595 small, organic molecules. The training set is divided such that every (distorted) molecule of a given
chemical composition is only seen once in either the training or test sets. Using this data, two types of models
are trained: one model is trained using only atomization energy labels and a second model is trained using
both atomization energy as well as the corresponding 3 N components of the force vector. As the model
trained on only forces would only integrate the energy up to an arbitrary constant, the predicted energies
would not be meaningful and therefore this model is not used in this section.

9



Mach. Learn.: Sci. Technol. 1 (2020) 045018 A Christensen and O von Lilienfeld

Figure 3(A) shows the MAE predicted atomization energy for the two models as a function of the
number of molecules involved. The learning rates hardly differ, with the largest deviation between the two
curves being 3% of the average MAE. While this seems surprising in light of the effect of including forces for
the MD17 dataset discussed in the previous section, this result has a simple explanation. Since the gradient
information only provides information about the underlying function up to an integration constant, the
additional information is useless in providing information about the differences between the individual
potential energy surface on which all the molecules are located. In this case, this information is provided
solely by the atomization energies and, in the end, the dominant error in the learned atomization energies
comes from learning energy differences between the different constitutions of atoms in each molecule and
not from more subtle changes in molecular conformation. The learning rates are displayed in table 3, where
the slopes and offsets for energy predictions are very close for the two different models. For energy
predictions, the slopes of the learning curves are−0.44 and−0.45 for the models trained on only energies
and the models simultaneously trained on energies and forces, respectively. For force prediction, however,
the slopes differ somewhat, at−0.23 and−0.31, for the same two models, respectively, indicating that the
model trained on both energies and forces might be better at very large training sets. We note, however, that
the current training set is not large enough to confirm this, as this would require a force training set with at
least 10 000 to 50 000 training molecules (See figure 3(D), which, in turn, would render this experiment
computationally intractable with a kernel matrix of up to around 2 000 000× 2 000 000 elements.

When the curves are viewed as a function of the total number of training labels (in figure 3(B), the
energy-only model requires about 51 times fewer labels to reach the same accuracy as the model trained on
both forces and energies. This indicates, that the additional force labels do not aid the model in predicting
energies of unseen molecules. This is likely due to the fact that forces can only determine the potential
surface up to an integration constant, which can only be learned using energy labels.

Next, in figure 3(C), the MAE predicted force components are plotted for the two models as a function of
the number of molecules in the training set. On average, including the forces in the training set reduces the
predicted MAE force component by a factor of 3.5. Essentially, while the additional gradient information is
not able to improve learning beyond the integration constant, it does help improve the prediction of the
relative energy landscape of each potential energy surface, in turn leading to improved gradient predictions,
but at the cost of much larger number of training labels. Figure 3(D) displays the same MAE predicted force
components as in figure 3(C), but as a function of the total number of training labels. In this case, we observe
that the two learning curves are very close-lying, similarly to what was found for the revised MD17 dataset in
the previous section. This suggests that for the training sizes investigated herein, one training energy label is
worth roughly the same as one training force component label, although the differences in slopes indicate
that the model trained on energies and forces might reach superior accuracy at much larger training sizes
where the role of the integration constant is diminished.

4. Methodology

4.1. Hyperparameter selection and learning curves
All learning curves were generated using nested cross-validation as implemented in scikit-learn[46] via
the following recipe: First, the datasets were randomized. Secondly, the datasets were divided into 100 folds
using random subsampling for Himmielblau’s function, while datasets consisting of molecules were
randomly divided into 5 folds using the KFold class implemented in scikit-learn. Next, a grid-search
with 4-fold cross-validation within the training set extracted from the fold was used to select the optimal
choice of the hyperparameters σ (the kernel width) and λ (regularization strength), in order to avoid
overfitting. In order to select hyperparameters that simultaneously work well for both force and energy
prediction, the following loss function was used to select these: [15]

L= 0.01
∑
i

(
Ui − Ûi

)2
+
∑
i

1

ni
∥Fi − F̂i∥2 (19)

Here, U i is the energy of the ith molecule and Fi and ni are the force-vector and number of atoms in the
same atom, respectively. We acknowledge that the functional form of this loss function is somewhat
empirical in nature. However, in contrast with the loss function which is minimized in the regression step,
this loss function never minimizes to zero because it is evaluated on out-of-training samples. For this reason
it is necessary to balance the contributions of the prediction errors from energies as well as forces, as (i) the
energies are far fewer in numbers and (ii) they exist on different scales of units. This particular functional
form has previously been shown to exhibit a fair balance between these considerations [15, 22].

In the cases where either force/function derivatives or energies/function values were not included in the
training data, the first or the second term was left out, respectively.
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Figure 4. The distribution of various properties of the dataset of small organic molecules [38]. (A) shows the distribution of
molecular sizes, while (B) shows the a kernel density estimate (KDE) plot of the distribution of atomization energies of the
molecules and lastly (C) shows the KDE plot of the force components in the dataset.

For the grid searches for Himmelblau’s function, the kernel width was tested in the range
σ ∈ {0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6} and the regularization strength was tested in the range
λ ∈ {10−13,10−12,10−11,10−10,10−9,10−8}. For the molecular datasets (see next section), the grid-searches
used values of σ ∈ {0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0} for the kernel width and λ ∈ {10−12,10−11,10−10,
10−9,10−8,10−7,10−6} for the regularization strength.

4.2. Software
All machine learning models were implemented in Python using the QML machine learning package [47].
The packages Matplotlib and Seaborn were used to plot all figures and Scikit-Learn was used to obtain
the linear fits to learning curves [46, 48, 49].

4.3. Datasets
This subsection briefly presents the used datasets and their availability.

4.3.1. Revised MD17 dataset
For each of the 10 molecules in the MD17 dataset [20, 21] (aspirin, benzene, ethanol, salicylic acid,
malonaldehyde, toluene, naphthalene, uracil, paracetamol and azobenzene), 100,000 structures were
randomly selected from the available MD trajectory data. For each of these structures, a single-point force
and energy evaluation was carried out at the DFT level. All calculations were performed in ORCA 4.0.1,
using the PBE functional and the def2-SVP basis set with the resolution-of-identity (RI) approximation for
the Coulomb integrals [50–52]. In order to have a minimal unsystematic error, the keyword VeryTightSCF
was used to reduce the error from SCF convergence, while the keywords Grid7 and NoFinalGrid were used
to utilize the largest standard grid implemented in ORCA. This data has been uploaded to
https://dx.doi.org/10.6084/m9.figshare.12672038 and https://dx.doi.org/10.24435/materialscloud:wy-kn
along with the indices used for the outer 5-fold cross-validation.

4.3.2. Small organic molecules
This dataset is taken from reference [38] and consists of non-equilibrium conformers of 1,595 small organic
molecules with up to 7 atoms of the elements CNO saturated with hydrogen atoms. This data is available for
download at https://dx.doi.org/10.6084/m9.figshare.7000280. For each of these structures generated via
normal-mode sampling, the atomization energy and corresponding forces were provided at the
ωB97xD/6-31G(d) level of theory [53]. Figure 4 shows plots of the distributions of molecular sizes, energies
and forces in the dataset.

5. Conclusion and outlook

In this paper we have presented numerical confirmation that the predictive error of machines trained on
function derivatives follows a power law, a result that is well-known and to be expected for both neural
networks as well as kernel models trained on scalar values. Our numerical results demonstrate this power-law
behaviour for two popular and distinct types of molecular datasets, as well as for the Himmelblau’s function
for which 6 orders of magnitude have been spanned.

For datasets that deal with a single surface, such as Himmelblaus’s function and the potential energy
surfaces of 10 molecules in the MD17 dataset, we find that including force labels in the set of training
labels—in addition to energy labels—leads to an improvement of the predictive error when the same number
of training points are used. At the same time, however, we only find negligible differences between models
trained on force labels only and models trained on both energy and force labels. Regarding the number of
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total training labels (rather than number of molecules in the MD17 dataset), we found that the predictive
error of forces and energies was close to identical, regardless of whether the model was trained on energies
only, trained on both energies and forces, or trained on forces only.

For the diverse dataset of distinct organic molecules, we find that the prediction error of energies does
not improve upon addition of force labels to energy labels in the training set, in contrast to what was
observed for Himmelblau’s function and the MD17 dataset. Conversely, the predictive error of atomic forces
is greatly improved by including forces in the training set. The likely explanation is that geometrical
derivative information only helps determine the surface up to an integration constant, corresponding to the
atomization energy. This effect is more visible when viewing the learning rate as a function of the number of
training labels. In this case, energies are learned with about 20× less training labels, training on energies
only, compared to training on both forces and energies. At the same time, the predictive force error when
training on either energies, or forces and energies simultaneously, seems to decay at comparable rates with
the number of force labels in these two scenarios. In order to use derivative information to further improve
this learning, it would be necessary to use alchemical derivatives, i.e. the derivatives of the energy with respect
to the atomic charges [40, 54] which form the basis of alchemical perturbation density functional
theory [55, 56] These derivatives describe the change in energy as one molecule is alchemically transformed
to another molecule and could allow for better interpolation between potential energy surfaces of different
molecules in a training set.

We believe that our observations have implications for the generation of new molecular datasets. Here we
point out that it is necessary to account for the cost of obtaining the training labels. With this in mind, it is
beneficial for use cases of the MD17-type to include forces labels in the training set when the cost of
acquisition is less than the cost of 3 N single-point energy calculations on un-correlated samples, where N is
the number of atoms in the molecule. This suggests that for DFT-based datasets, it seems very favorable to
calculate and report gradients in addition to single-point energies, while for methods with more costly
gradients (compared to the energy evaluation) this becomes less favorable.

For energy predictions throughout large datasets used to fit models for general chemistry, i.e. throughout
chemical space, such as, for example, the family of ANI datasets [5, 25–27], it seems more valuable to build
the most compact model using a compositionally diverse training set with only single-point energies, rather
than ‘wasting’ coefficients by training also on forces for more conformations of the same molecule. If the
goal, however, consists of alsomodeling forces, such as is typically the case for relaxing geometries
throughout chemical compound space, our results indicate that the addition of forces (if acquisition cost is
lower than for energies) in the training set is always beneficial. This conclusion, however, also depends on the
requirements for execution speed and the availability of training data: Models trained on force labels can be
computationally substantially more expensive to train and execute compared to models on the same number
of energy labels, since this often involves the derivative of, for example, a kernel matrix or a neural network.
Consequently, in an application scenario where sufficient energy labels are available, it might be best to train
on energy labels only, as this enables numerically less complex training models. Considering the prediction
times for kernel-based models, it is also much more computationally expensive to evaluate kernel functions
placed on derivatives compared to those placed on scalars. If the ultimate goal is to have very fast prediction
times for kernel-based models, it seems worthwhile to consider the use of kernel-based force models which
do not require the evaluation of second-order kernel derivatives.

All these observations summarize our insights into the design of future data-driven models and their
underlying dataset generation. We believe that they are applicable to all branches of machine learning where
the goal is to learn multidimensional, differentiable function surfaces.
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[17] Grisafi A, Wilkins D M, Csányi Gabor and Ceriotti M 2018 Symmetry-adapted machine learning for tensorial properties of

atomistic systems Phys. Rev. Lett. 120 036002
[18] Zhang L, Han J, Wang H, Car R and Weinan E 2018 Deep potential molecular dynamics: A scalable model with the accuracy of

quantum mechanics Phys. Rev. Lett. 120 143001
[19] Unke O T and Meuwly M 2019 PhysNet: a neural network for predicting energies, forces, dipole moments and partial charges J.

Chem. Theory Comput. 15 3678–93
[20] Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T and Müller K-R 2017 Machine learning of accurate

energy-conserving molecular force fields Sci. Adv. 3 e1603015
[21] Chmiela S, Sauceda H E, Müller K-R and Tkatchenko A 2018 Towards exact molecular dynamics simulations with

machine-learned force fields Nat. Commun. 9 3887
[22] Christensen A S, Bratholm L A, Faber F A and von Lilienfeld O A 2020 Fchl revisited: Faster and more accurate quantum machine

learning J. Chem. Phys. 152 044107
[23] Lubbers N, Smith J S and Barros K 2018 Hierarchical modeling of molecular energies using a deep neural network J. Chem. Phys.

148 241715
[24] Schütt K T, Arbabzadah F, Chmiela S, Müller K R and Tkatchenko A 2017 Quantum-chemical insights from deep tensor neural

networks Nat. Comm. 8 13890
[25] Smith J S, Isayev O and Roitberg A E 2017 ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic

molecules Sci. Data 4 170193
[26] Smith J S, Nebgen B, Lubbers N, Isayev O and Roitberg A E 2018 Less is more: Sampling chemical space with active learning J.

Chem. Phys. 148 241733
[27] Smith J S 2020 The ani-1ccx and ani-1x data sets, coupled-cluster and density functional theory properties for molecules Sci. Data

7 134
[28] Vapnik V 2013 The Nature of Statistical Learning Theory (Berlin: Springer Science & Business Media)
[29] von Lilienfeld O A 2018 Quantum machine learning in chemical compound space Angew. Chem. Int. Ed. 57 4164
[30] Cortes C, Jackel L D, Solla S A, Vapnik V and Denker J S 1994 Learning curves: Asymptotic values and rate of convergence Advances

in Neural Information Processing Systems (San Mateo, CA: Morgan Kaufmann Publishers) pp 327–334
[31] Müller K R, Finke M, Murata N, Schulten K and Amari S 1996 A numerical study on learning curves in stochastic multilayer

feedforward networks Neural Comp. 8 1085
[32] Himmelblau D M 1972 Applied Nonlinear Programming (New York: McGraw-Hill)
[33] Hansen K, Montavon G, Biegler F, Fazli S, RuppM, Scheffler M, von Lilienfeld O A, Tkatchenko A andMüller K-R 2013 Assessment

and validation of machine learning methods for predicting molecular atomization energies J. Chem. Theory Comput. 9 3404–19
[34] Solak E, Murray-Smith R, Leithead W E, Leith D J and Rasmussen C E 2003 Advances in Neural Information Processing Systems 15

ed Becker S, Thrun S and Obermayer K (Cambridge, MA: MIT Press) pp 1057–1064 Advances in Neural Information Processing
Systems 15

[35] Rasmussen C E and Williams C K I 2006 Gaussian Processes for Machine Learning Dietterich T (Cambridge: MIT Press)
Www.gaussianprocess.org
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