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Abstract
Currently, high-dimensional data is ubiquitous in data science, which necessitates the development
of techniques to decompose and interpret such multidimensional (aka tensor) datasets. Finding a
low dimensional representation of the data, that is, its inherent structure, is one of the approaches
that can serve to understand the dynamics of low dimensional latent features hidden in the data.
Moreover, decomposition methods with non-negative constraints are shown to extract more
insightful factors. Nonnegative RESCAL is one such technique, particularly well suited to analyze
self-relational data, such as dynamic networks found in international trade flows. Particularly,
non-negative RESCAL computes a low dimensional tensor representation by finding the latent
space containing multiple modalities. Furthermore, estimating the dimensionality of this latent
space is crucial for extracting meaningful latent features. Here, to determine the dimensionality of
the latent space with non-negative RESCAL, we propose a latent dimension determination method
which is based on clustering of the solutions of multiple realizations of non-negative RESCAL
decompositions. We demonstrate the performance of our model selection method on synthetic
data. We then apply our method to decompose a network of international trade flows data from
International Monetary Fund and shows that with a correct latent dimension determination, the
resulting features are able to capture relevant empirical facts from economic literature.

1. Introduction

Dynamic networks are commonplace in many fields, such as economics, neuroscience, biology,
recommender systems, data mining, and others. In these networks, different entities are represented by
nodes, and their interactions over time are tracked through their edges. Dynamic networks are interrelated
with the statistical relational models [1] presented in artificial intelligence [2]. Statistical relational models
often are characterized as: graphical models [3], latent class models [4] and tensor factorization models [5].
Interestingly, there is a natural interconnection between the concept of these models [6, 7]. The relational
datasets are in the form of graphs, with nodes and edges representing, respectively, the various entities and
their relationships [8], which can be understood as graph-structured knowledge data that contain
information for the relationships between some entities.

The emerging large amounts of high-dimensional data, constantly generated all over the globe by: sensor
networks; large-scale experiments; massive computer simulations; electronic communications;
social-network activities, etc are formed only by directly observable quantities, while the underlying
processes, variables or mechanisms remain often unobserved, hidden, or latent [9]. These hidden variables
can be either impossible to measure/simulate directly or they are simply unknown. Deep learning and deep
belief networks have been recently utilized for dimension reduction and feature extraction [10, 11], however,
one of the most powerful unsupervised tools for extracting understandable latent features remains factor
analysis. Tensor factorization is a cutting-edge approach for factor analysis [12, 13]. Tensor factorization
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Figure 1. Dynamic network representing the interrelation between n nodes, and the corresponding tensor.

methods have been proposed long ago for analyzing relational datasets and dynamic networks as the
dynamics can be fully represented as a three-dimensional tensor with the first two axes indexing the nodes,
and the third axis indexing time, figure 1. It was shown that the RESCAL tensor decomposition can reveal
notable interactions in dynamic asymmetric pairwise relationship tensors [5], especially, when restricting the
factors to be non-negative, which makes the model part-based and highly interpretable [14].

One of the fundamental challenges in any model analysis is the determination of model hyperparameters
[15]. For the tensor decomposition, this means selection of the correct latent dimension in the data that is
related with the estimation of the rank of the analyzed tensor [16], which is an NP-hard problem [17]. The
development of various procedures for model selection is an active research topic that include heuristics such
as the Automatic Relevance Determination(ARD) [18] or generalized class of information criteria for tensors
with specific properties [19]. Especially in economics extracting easily understandable latent variables
impacts important questions about the hidden mechanisms, causes, propagating channels, and groups of any
international trade and economic events [20, 21].

RESCAL can be considered as a specific Tucker-2 decomposition with two equal factors, because of the
inherent symmetry of the data. Hence, in RESCAL we need to know the multi-rank rather the rank of the
analyzed tensor. In the case of non-negative decomposition and even in presence of deficiency of the factors
we can apply NMF to the corresponding unfoldings of the tensor, to find the minimal multi rank [22].

To determine the latent dimensionality in NMF, there exists a recent model determination technique,
called NMFk, [23, 24] that is scalable [25], and has been used to decompose the biggest collection of human
cancer genomes [26]. NMFk integrate the classical NMF with custom clustering and Silhouette statistics [27]
and works on the principle of stability of the extracted latent variables, from several NMF-minimizations
combined with the accuracy of the minimization in order to estimate the optimal number of latent features.

In this paper, we report the application of NMFk to determine latent dimensions, to the non-negative
RESCAL tensor decomposition. We demonstrate the efficacy of our method on synthetic data and apply our
model determination method to decompose a well-known international trade flow dataset. The result shows
that with the correct latent dimension, the model can extract meaningful features which captures relevant
established economic empirical findings.

1.1. Preliminaries and notation
Throughout this work vectors are denoted with lowercase bold letters, x, matrices are denoted with
uppercase letters X, and tensors are denoted with uppercase script letters, X . Mode-1 multiplication between
an order three tensor and a matrix is defined (X ×1 Y)i, j,k =

∑
l=1Yi, lXl, j,k, and similarly for modes 2 and 3.

The Frobenius norm of a matrix or tensor is the square root of the sum of the squares of the elements, or

||X||F =
√∑

i, jXi, j, ||X ||F =
√∑

i, j,kXi, j,k. A single subscript on a matrix, or tensor indicates the slice of

the object along the last index, so Xi indicates the ith column of the matrix, and Xi indicates the ith matrix
along the third mode. Additionally, a superscript in parentheses is used to enumerate items in a set or
ensemble, {X(1),X(2), . . . ,X(p)}.

1.2. Related works
Here we describe some relevant works that are working with a similar decomposition model. The first
proposed model was the single domain Decomposition into Directional Components (DEDICOM)
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model [28]. DEDICOM is capable of analyzing asymmetric data in marketing research and it has both
matrix and tensor versions without constraints on its factors:

two-way DEDICOM X= ARA⊤whereA ∈ Rn×r,R ∈ Rr×r

three-way DEDICOM Xk = ADkRDkA
⊤for k= 1, . . . ,T

In the three-way DEDICOMmodel, Xk is the kth frontal slice of the tensor X , andDk ∈ Rr×r is a diagonal
matrix. These models describe a single domain in the sense that they require the row space to be the same as
the column space. Since there is no constraint on the factors, these decompositions can be estimated
similarly as SVD.

Later, an alternating algorithm, Alternating Simultaneous Approximation Least Square and Newton
(ASALSAN) was proposed to perform a three-way DEDICOM [29] that can be applied to large and sparse
data. Moreover, the non-negative version of three-way DEDICOM was also introduced using a multiplicative
update algorithm. The model was then applied to analyze email network data and export/import data.
However, the latent dimension was selected without being justified, and the meaning of the extracted factors
was not analyzed in details.

A relaxed version of three-way DEDICOM is the RESCAL model [5]. The model decomposes a three-way
tensor X as follows:

Xk = ARkA
⊤for k= 1, . . . ,m

In [5], the factors A andRk minimized the l2-regularizedminimization problem, and can be estimated
using a variation of ASALSAN:

min
A,Rk

1

2

(∑
k

||Xk −ARkA
⊤||2F

)
+

1

2
λ

(
||A||2F +

∑
k

||Rk||2F

)

The model was then applied to different datasets, and the authors suggested to find latent dimension
using cross-validation. Instead, they chose a rather large dimension (k= 20), and then used k-means
clustering method to cluster the matrix A into 6 groups.

Following the initial work, reference [30] introduced updating schemes for different variants of the
non-negative RESCAL mode, including least-squares with l2 regularization, KL-divergence with l1
regularization, and other.

2. Methods and implementation

2.1. Nonnegative RESCAL
The RESCAL model is a tensor decomposition that takes advantage of the inherent structure of relational
properties such as those expected in a dynamic network. More specifically, RESCAL decomposes an order
three tensor by finding a common low dimensional latent space for the first two modes such that

X =R×1 A×2 A

where A is an n× r matrix containing the features,R is an r× r×T tensor capturing the mixing relations
between the features, and×i is the mode-i product defined above. In practice, a decomposition is always
approximated by solving the optimization problem

argminA,R||X −R×1 A×2 A||2F (1)

When applied to a dynamic networks, RESCAL is interpretable in the way that each column of A
represents a group of objects or nodes, andRt represents the relations among these groups at time t. An
equivalent problem statement demonstrates that RESCAL simultaneously decomposes each slice of an order
three tensor with a rank r factorization,

argminA,Rt

∑
t

||Xt −ARtA
⊤||2F . (2)

With this interpretation RESCAL attempts to find a common set of features that can be simultaneously
used to represent both the row space and the column space of the matrices Xt. To remove a scaling ambiguity,
RESCAL also can constrain the columns of A to be unit norm, ||Ai||= 1 for 1≤ i≤ r.
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Figure 2. RESCAL Model—Columns of A specify groups of objects, and tensorR captures group interactions through time.

In reality, we can easily find experimental data that are non-negative, such as signal/imaging data, trading
amount (in currency) between countries, DNA microarray, etc quite often for the non-negative data, and
especially with a correct latent dimension, a non-negative decomposition provides more physically
meaningful and easier-to-interpret features [14]. Nonnegative RESCAL provides the same advantage by
decomposing the data with non-negative features, and non-negative mixing matrices with the optimization

argminA,Rt

∑
t

||Xt −ARtA
⊤||2F

subject to


∑

jAij = 1, for 1≤ j≤ r

A≥ 0

R≥ 0

.

(3)

2.2. Multiplicative update algorithm
To solve the non-negative constraint minimization problem in equation (3), we use the multiplicative update
scheme similar to the one used for DEDICOMmodel [29], and for non-negative RESCAL [30]. Starting
from non-negative random initialization of A and R, the following update steps are performed until the
relative error converges to a predefined tolerance:

(Rt)ij = (Rt)ij
[A⊤XtA]ij

[A⊤ARtA⊤A]ij + ϵ
for t= 1, ...,T

Aij = Aij

[∑T
t=1XtAR⊤

t +X⊤
t ARt

]
ij[

A
(
RtA⊤AR⊤

t +R⊤
t A⊤ARt

)]
ij
+ ϵ

.

(4)

After the multiplicate update scheme converges, A andR are appropriately scaled such that columns of A
have a sum equal to one. Notice that the decomposition can be scaled without affecting the reconstruction
error.

2.3. Model selection
To select an appropriate latent dimension, we adapt the clustering procedure that has found success in
NMF [23]. For each explored latent dimension, k, our procedure applies three steps: (i) bootstrapping by
resampling the data, (ii) decomposing the bootstrapped data, and then (iii) analyzing the cluster stability of
the solutions. Figure 3 shows a diagram of the model selection scheme. To resample the data, we construct an

ensemble of tensors {X (1),X (2), . . . ,X (P)} sampled from X (p)
i, j,k ∼ U(1− ϵ,1+ ϵ) ∗Xi, j,k for 1≤ p≤ P where

U(a, b) is a uniform distribution between a and b. Each resampling introduces some variability in the data
which mitigates the possibility of overfitting.

We use a custom clustering algorithm designed to exploit the stability of the NMF’s solutions
corresponding to the resampled data. The custom property of the clustering is that each cluster should
contain precisely one feature vector from each A(p). Our algorithm is based on k-means but iterates over each
A(p) to assign each vector to an appropriate centroid. The assignment is done by a greedy algorithm applied
to the cosine similarity between the columns of A(p) and the current centroids.
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Figure 3. Diagram of steps to determine latent dimension for non-negative RESCAL.

To analyze the quality of the clustering, we use silhouette statistics [27]. The silhouette of a single point
has a value between−1 and 1 relating how close it is to other points in the same cluster and how far is this
point to the closest of the other clusters. A high silhouette score indicates that the clusters are compact and
well separated, while a low silhouette score indicates that the clusters are not well separated. We use both the
mean silhouette score, as well as the minimum silhouette score of a group as cluster quality metrics.

The selection of the correct latent dimension is accomplished by considering both the silhouette
statistics, which measures the stability of the solutions, and the relative error. We expect that with the correct
latent dimension the solutions will cluster well with a small relative error. With a too small latent space, the
relative error will be too large, and with too large latent space there will be latent features representing the
noise in the system that are not stable and hence will not cluster well, resulting in a low silhouette score. We
consider the correct latent dimension to be the largest dimension that generates low relative errors and high
silhouette scores.

3. Experiments

3.1. Synthetic data
Here we test the performance of our protocol for model selection in determining the ground truth latent
dimension of synthetic datasets with different levels of noise. First, a synthetic data tensor X with
dimensions n× n×T and the latent dimension k is generated as follows:

• Elements of matrix An×k are randomly sampled from U[0, 10). The matrix A is only selected if
rank(A)= k. Otherwise, it is regenerated.

• Elements of matrix A is sparsified by setting elements smaller than ThreshA to zeros.
• The tensorR is also generated from U[0, 10).
• TensorR is also sparsified by setting elements smaller than ThreshR to zeros.
• X =R×1 A×2 A+ ϵ where elements of ε are sampled from U[0,NoiseFactor).
• The noise level of the data tensor can be adjusted by the value of NoiseFactor.

• The noise level is computed as
||X −ARA⊤||F
||ARA⊤||F

.

The latent dimension determination procedure described in 2.3 is then applied to the simulated data.
More specifically, the sample perturbation is 0.03 and the number of iterations P = 50.

In these scenarios, for a range of NoiseFactor∈ 1, 10, 50, 100, 150, 200, a tensor of dimension
10× 10× 100 is simulated with the ground truth dimension ktrue = 4. The plots of relative reconstruction
error, minimum and average silhouette scores are shown in figure 4. As the noise factor increases, the noise
level also increases and gradually distorts the L-shape of the reconstruction error curves. However, the
silhouette score curves are consistent up to k= 4, and after that, the silhouette score curves start diverging,
demonstrating that the clusters are no longer compact and well separated.

3.2. Economic application: decompose the international trade flows
International trade has been shown to generate mutual benefit between countries by allowing them to focus
on specialization and exchange their produced goods and services. Unsurprisingly, it has increasingly
contributed to the Gross Domestic Product (GDP). In fact, according to the World Bank, in 2017, the world
GDP is about $80 trillion. It has been shown that the economic growth of a country is strongly associated
with its role in the world trading network. Therefore, understanding the trade pattern is an essential step
before we can discuss the effects of international trade, or even suggest policy changes.

Here we show that by applying the non-negative RESCAL model, with our latent dimension
determination method, we can decompose the international trade network into different groups of countries
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Figure 4. The indicator from silhouette score curves to determine the true latent dimension is consistent across different noise
levels. Tensor dimension 10× 10× 100, ktrue = 4, (Red): Relative reconstruction error, (Blue Solid): Average Silhouette Score, (Blue
Dash): Minimum Silhouette Score .

whose exports and imports are tightly linked together and their interactions over time are captured in the
resulting interacting tensor. More interestingly, the groups’ activities are also meaningful in the sense that
they are consistent with stylized economic facts.

3.2.1. International trade flows data
We obtained the international trade flows data from Direction of Trade Statistics, IMF [31]. Specifically, the
data contains monthly export amounts in U.S. dollars between 23 countries from January 1981 to December
2015 (420 months). Thus the data tensor has 23 by 23 by 420 dimensions, in which each entry, Xijk,
represents how much country i exports to countries j in month k. For clarity, the list of countries includes
Australia, Canada, China Mainland, Denmark, Finland, France, Germany, Hong Kong, Indonesia, Ireland,
Italy, Japan, Korea, Malaysia, Mexico, Netherlands, New Zealand, Singapore, Spain, Sweden, Thailand,
United Kingdom of Great Britain and Northern Ireland, United States.

This dataset has previously been analyzed with variations of the RESCAL model. In [32], Chen et al also
apply the RESCAL model, though not non-negative, and they do not have a procedure to determine the
correct latent dimension, they simply chose a latent dimension of three for illustrative purposes of the model.

3.2.2. Determine the latent dimension & optimal factors
To determine the latent dimension for the model, we resampled as described in section 2.3 with the uniform
distribution U(0.9, 1.1) so that each value in our ensemble has the measured value±10% error. We
resampled from this distribution 50 times to construct our ensemble and calculated the silhouette statistic
for a range of dimensions k ∈ {3, . . . ,8}. Figure 5 shows the relative reconstruction errors, the average and
minimum silhouette statistics leading us to conclude that that the true latent dimension is 5.

To determine the optimal factors for the analysis, we first ran 100 iterations from random initialization on
the original data with the selected dimension k= 5, and select the decomposition, which provided the lowest
reconstruction error. For both purposes, the stopping criterion is the relative convergence rate= 1× 10−8.

3.2.3. Interpretation of the decomposition
Here we show the interpretation and analysis of the optimal decomposition. First, since the columns of A are
normalized to have a sum equal to one, the entry Aij can be interpreted as how much the country i
contributes into group j. Figure 6 shows that the latent factors, which here are the country contribution
profile in each group, approximately correspond to five economic regions: Asia and Pacific (without China),
Europe, NAFTA (Canada, Mexico, and the U.S.), U.S., and China. These geo-economic regions are essential
participants in the international trade, verifying that the model selection procedure extracts meaningful
latent factors.

Next, we analyze the interacting tensorR to determine its economic meanings. We first look at the
aggregate export level for each economic group over time by summing across the rows of eachRt without
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Figure 5. (Red) Relative reconstruction error in Frobenius norm. (Solid blue) Average Silhouette Score. (Dashed Line)Minimum
group silhouette score. The largest gap between the relative reconstruction error curve and the silhouette statistics occurs at k= 5,
which indicates that 5 is the optimal number of groups to explain the data.

the diagonal elements. By doing this, we exclude the contribution of the groups themselves to their aggregate
export activities. We then check how well these approximated export activities agree with four global and
local economic recession periods, which are identified by the National Bureau of Economic Research
(NBER).

As shown in figure 7, the approximated activities match well with the international trading trends in all
considered periods. For example, during the Great Recession (12/2007−06/2009), in which international
trade was dramatically decreasing, the activities of all groups dropped substantially. Secondly, during early
2000s Recession, which was partially caused by the dotcom bubble and September 11, the activities represent
the fact that the trading trend of all groups, except Asia, were dropping. Thirdly, during the Asia Financial
Crisis (1997−199), only the activities of the group Asia is going down, representing the fact that this
Recession mostly affected Asian countries. Lastly, during the European Debt Crisis, which peaked in
2010−2012, while the economy of other regions was recovering from the Great Recession, only European
countries struggled with their high government debt. This styled fact is replicated in the approximated
activity of the Europe-group. Overall, the interacting tensor captured the connection between the export and
economic health of different economic regions.

Finally, we analyze the interaction tensor R ∈ R5×5×420 by summing the tensor R over time, which gives
us the matrix S ∈ R5×5 describing how strongly these groups interact. Rs is then normalized by its maximum
value for better visualization.

S̄= S/max(S) where S i, j =
420∑
t=1

Ri, j, t

We makes three observations from figure 8. First, the European group has the strongest interaction with
itself, which makes sense since this is a group of advanced economies, and they have formed the European
Union since 1995. Second, the strong two-way connection between NAFTA and the United States and
between China and Asia, are also matched with statistics. Third, by comparing the row and column for China
and United States, we can see that China is a trade surplus (the amount of exports is greater than the number
of imports), and the United States is a trade deficit. Overall, the interacting tensor did extract meaningful
information from the data in the sense that they agree with international economics empirical facts,
indicating that our model selection procedure can capture meaningful activities from the data.

4. Discussion

In this paper, we introduce a model selection protocol for determination of the dominant latent dimension
of the non-negative RESCAL model. This method, which is based on nonnegativity assumptions on both
factors A andR, evaluates the stability of the latent factors A, or equivalently the quality of clusters generated
by factorization of a set of different realizations of the input data. The method then selects the highest
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Figure 6. Normalized columns of A, latent factors, show the relative contribution of the countries in each group. Based on the
major contributions, five latent factors approximately represent five actual economic regions : Asia and Pacific (without China),
Europe, NAFTA (Canada, Mexico, and United States), United States, and China. (∗) inside a bar indicating the country is in the
classified economic regions geographically.

dimension at which the stability is still high. Our method performs well on sparse synthetic data with
different noise levels. Moreover, when applied to a real dataset, the international trade flows data from IMF,
the model was able to decompose considered countries into meaningful geo-economics regions; with
interacting activities matching the trading characteristics of each region and consistent with what has been
observed about different economic recessions.

One limitation of this method is that it requires some extent of uniqueness from the solution in order to
significantly achieve the factors’ consistency. During our testing with synthetic data, we did observe that the
method occasionally produced poor cluster quality when the generating factors were dense. With increasing
the sparsity of the generating factors, the occasional poor clustering disappeared as sparsity in the generating
factors is likely to lead to boundary close and sufficiently spread data. Precisely how the sparsity of the data
effects the method’s performance is potentially an interesting opening question. Besides generating data with
uniqueness, an alternative approach that could be employed in practice is to add regularization to the
decomposition model that encourages uniqueness, such as minimum volume or sparsity. In many real-world
applications though, severe non-uniqueness is atypical, so in practice this method of choosing the latent
dimension with non-negative RESCAL performs well without additional regularization.

It would be of a particular interest to apply the method presented here to two common modeling
challenges in business analytics and quantitative marketing: forecasting, and customer marketing
segmentation. For example, traditional forecasting techniques rely almost exclusively on the time-series
properties of the learning data set (usually called statistical forecasting methods). Another set of techniques
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Figure 7. Export activities of each group. Grey areas are periods of economic recessions. (I) Great Recession: This is a global
recession that affected all groups. (II) Early 2000 s recession, which only affected developed countries. (III) Asian Currency Crisis
1997–1999, which only affected Asia. (IV) European Debt Crisis 2010–2012 which affect European countries.

Figure 8. Normalized Export Level between groups.

that have been developed introduces additional (external) variables, and a regression-like model was fitted
with the additional requirement that the residuals are an ARIMA-distributed process; they are referred to as
machine learning (ML) based forecasting methods [33]. However, it is unclear which set of techniques is the
better one and would universally work for different types of forecasts: customers forecasting vs. revenue
forecasting vs. i.e. inventory forecasting. Two recent papers have carried out an ad-hoc comparison of
statistical vs. machine learning models and have arrived at precisely opposite conclusions using similar
testing methodologies and goodness of fit metrics ([33] and [34]). Both statistical and machine learning
techniques use the time-series nature of the data in the forecasting in a specific manner, whereas the method
presented here treats the time dimension like all other dimensions of the multidimensional data set. Further,
it is of interest to compare the performance of our method for forecasting of customers and revenue and
contrast it against the statistical and the ML methodologies. Remarkably, Markidakis et al ([34]) have also
compared the forecasting performance of several Deep Learning algorithms and have found it to be stacking
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unfavorably against the statistical models—it would be instructive also to see how the Nonnegative RESCAL
algorithm fares against deep learning models.

Further, the customer segmentation is a fundamental modeling exercise in quantitative and precision
marketing. Customer segmentation has almost exclusively been done in two distinct, loosely connected steps:
A) segmenting customers using static data (no time-resolved data, typically using clustering techniques),
B) consider transitions to (slightly) different segmentation states, to simulate time-resolved behavior. We
intend to apply the Nonnegative RESCAL methodology to this problem as the time dimension is treated in
much more natural fashion here.
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