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Abstract
In many fields of science and engineering, we frequently encounter experiments or simulations
datasets that describe the behavior of complex systems and uncovering human interpretable
patterns between their inputs and outputs via exploratory data analysis is essential for building
intuition and facilitating discovery. Often, we resort to 2D embeddings for examining these
high-dimensional relationships (e.g. dimensionality reduction). However, most existing
embedding methods treat the dimensions as coordinates for samples in a high-dimensional space,
which fail to capture the potential functional relationships, and the few methods that do take
function into consideration either only focus on linear patterns or produce non-linear embeddings
that are hard to interpret. To address these challenges, we proposed function preserving projections
(FPP), which construct 2D linear embeddings optimized to reveal interpretable yet potentially
non-linear patterns between the domain and the range of a high-dimensional function. The
intuition here is that humans are good at understanding potentially non-linear patterns in 2D but
unable to interpret non-linear mapping from high-dimensional space to 2D. Therefore, we should
restrict the projection to linear but not the pattern we are seeking. Using FPP on real-world
datasets, one can obtain fundamentally new insights about high-dimensional relationships in
extremely large datasets that could not be processed with existing dimension reduction methods.

1. Introduction

The rapid advances in both experimental and computational capabilities have resulted in a deluge of data
being collected from either computer simulations or experiments. To gain insights into the underlying
phenomena, it is imperative to uncover patterns and relationships in the resulting high-dimensional (HD)
data. Especially in the initial exploratory phase of the analysis (i.e. exploratory data analysis (Tukey 1977)),
visualization techniques are often essential to provide a holistic understanding of the data and help develop
an intuition for the domain scientists. Since most common HD data encoding techniques like scatterplot
matrices (Carr et al 1987) and parallel coordinates (Inselberg and Dimsdale 1990) do not scale gracefully to
either many dimensions or large sample sizes, dimension reduction techniques are typically the method of
choice. In this context, one then has to trade off the complexity of the embedding with the interpretability of
the results. For example, linear dimension reductions, such as principal component analysis (PCA) (Jolliffe
2011), are easy to interpret yet do not generalize to complex patterns, whereas non-linear techniques like
t-stochastic neighborhood embedding (t-SNE) (van der Maaten and Hinton 2008) are difficult to interpret.
Furthermore, these approaches are generally designed to preserve as much of the geometric structure of HD
data as possible. However, this structure itself often is not of primary interest, or in the case of space-filling
experimental designs, no meaningful structure exists. Instead, one is interested in understanding the
behavior of one or more response functions with respect to the input data. Here, response function(s) refer to
the main quantities of interest defined at each data sample, e.g. diagnostic measurements from an
experiment or simulation outputs. Consequently, one needs an approach sensitive to the response functions
rather than using a generic dimension reduction in hopes that it may explain some aspect of the response.
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Additionally, the technique should scale to large data, high dimensions, and non-linear relationships, while
remaining interpretable and reliable.

Function preserving projections (FPP) achieve these objectives by deriving optimal linear projections
with respect to user-selected response functions. More specifically, rather than aiming to preserve the entire
neighborhood structure of high-dimensional data in hopes of finding interesting patterns, we deliberately
search for the best linear projection, such that the chosen response functions create an interpretable pattern
in the projected space. An important consequence of focusing on the projected response function is that FPP
inherently ignores domain variables and structures not pertinent to the response and does not require the
domain to have a low intrinsic dimension. The latter is a key property in many applications, most notably
simulation ensembles, where the domain is defined as a uniform sampling of a high dimensional hypercube.
In these cases, dimension reduction is futile as—by definition—there exists no low dimensional structure in
the domain one could discover and thus many of the traditional techniques do not apply. Compared to
supervised dimensionality reduction techniques that either produce non-linear embedding (Nonato and
Aupetit 2018), or focus solely on linear relationships (Chin et al 1998, Li 1991), the proposed method is
fundamentally different as it focuses on producing linear projection that can uncover interpretable
non-linear patterns of the function.

The interpretable aspect of the proposed method is achieved through the linear projection constrain and
the explicitly designed 2D optimization cost. We consider a projected pattern interpretable if it can be
roughly approximated by a chosen regressor and by adjusting the type and order of the regressor, i.e.
polynomial vs. exponential, linear vs. non-linear, etc we allow users to choose the complexity of the pattern
they deem acceptable, and by forcing the projected function to be explained using a simple and easily
understandable regressor (e.g. low-order polynomial models), combined with the fact that the projection is
linear, we can provide valuable and at the same time understandable insights that are otherwise hard to tease
out. The key intuition driving the development of FPP is the fact that interpreting non-linear transformation
is challenging yet humans are highly skilled in recognizing and understanding simple non-linear patterns in
2D. By restricting the initial projection to a linear map, FPP preserves the interpretability of the resulting
plots, i.e. axis labels, while non-linear regressors enable us to discover noisy and non-linear relationships.

Conceptually, FPP is a dual approach to kernel machines in machine learning, which employ non-linear,
and often infinite-dimensional mappings to enable the use of simple linear models for complex data. From a
visual exploration standpoint, we argue that the use of linear models in 2D is not necessary since humans can
still interpret more complex relationships. On the other hand, non-linear mappings of the data coordinates
are not explainable, thereby making the subsequent analysis also highly opaque. Another crucial feature of
FPP is that it supports much larger data than related techniques and enables unified analysis with multiple
response functions, wherein a single 2D projection is identified that jointly preserves all responses. Finally, an
often-overlooked challenge for view-finding or any pattern detection algorithm is that, in higher dimensions,
it is challenging to qualitatively distinguish between meaningful structure and artifacts. This behavior can be
directly attributed to the curse of dimensionality, where the sample sizes used are not sufficient to make
meaningful inferences about the data. In the case of view-finding approaches like FPP, this manifests as
overfitting, where one can almost always create a seemingly meaningful pattern given low enough sample
counts and sufficiently high dimensions. To address this problem we augment the 2D embeddings with the
equivalent of a p-statistic that quantifies the likelihood of the given hypothesis (the observed pattern) to
occur in a random function. This, for the first time, provides a quantitative and easy to interpret indicator on
how reliable a given visualization is likely to be, which is crucial to confidently infer new insights. Using
several case studies we show that FPP provides comprehensive insights that cannot be easily obtained using
conventional techniques.

Our key contributions are itemized below:

• Introduce a linear projection method for capturing human-interpretable pattern of a high-dimensional
function;

• Demonstrate the flexibility and scalability of the proposed method for capturing patterns in both con-
tinuous scalar functions as well as class labels defined on high-dimensional domains with up to million of
samples and tens of thousands of dimensions; and

• Introduce a p-value like evaluation scheme for captured visual patterns through the lens of hypothesis test-
ing.

2. Related work

Even though FPP produces linear projections, it is fundamentally different from existing linear dimension
reduction techniques like principal component analysis (PCA) (Jolliffe 2011). Dimension reduction, as
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currently understood, is typically aimed at preserving global (PCA) or local neighborhood structures
(locality preserving projection (Xiaofei and Niyogi 2004)) of the high-dimensional point geometry. The
resulting projection is then colored according to a response function in hopes of highlighting interesting
relationships. However, when analyzing particular response functions the complete geometry of the point set
may not be relevant and can even be detrimental by introducing ‘spurious’ variations unrelated to the
response of interest. Instead, FPP directly targets the response functions of interest and preserves only the
aspects of the high dimensional geometry relevant to the problem.

In this context, FPP is similar to cross decomposition approaches, such as canonical component analysis
(CCA) (Hardoon et al 2004) and partial least square (PLS) (Chin et al 1998). CCA aims to find the subspace
that best aligns the domain and the range of a high-dimensional function. However, this produces a subspace
that is at most equal to the minimal dimension of either the domain and the range. Consequently, for scalar
functions, one can only find a 1D subspace, rather than a 2D projection, and for more than two response
functions a secondary projection must be added for visualization which results in a suboptimal projection.
Partial least square (Chin et al 1998) does not have this limitation but is restricted to a linear regressor
making it difficult to identify even simple non-linear patterns, i.e. a circle (see section 4). Similarly, inverse
sliced regression (Li 1991), which utilize an inverse regression formulation to reduce the dimension of the
input with respect to the response (function), is also limited to linear correlation structure.

For visualization of the non-linear structure of the high-dimensional points, many non-linear
dimensionality reduction techniques (van der Maaten and Hinton 2008, Kruskal 1964) have been proposed.
However, while they can capture some intrinsic structure of a point sample it is difficult to connect the
observed patterns back to the domain as the axes no longer have well-defined meaning and distances can be
heavily distorted. Furthermore, similar to linear projections, these techniques do not consider the response
function in creating the projection. As a result, a projection that explains the response well is a fortunate
coincident rather than a deliberate design.

The use of dimensionality reduction for visualization is a well explored subject (Nonato and Aupetit
2018, Espadoto et al 2019). As discussed in Nonato and Aupetit (2018), these techniques can be extended to
interpret values defined on a high-dimensional domain by incorporating supervised information, for
example, through altering the distance representation among samples, e.g. encode class information by
artificially reducing intra-class distances. However, these approaches are different from the proposed
methods in two significant ways: First, FPP deliberately considers only the pattern of the function, whereas
semi-supervised methods often try to capture both the structure of the samples as well as the function on
these samples. Second, the explicit computation of inter-sample distance in both high-dimensional and
low-dimensional space is what we aim to avoid, as it is often the computational bottleneck for a scalable
solution. By directly focusing on the pattern of function in the low-dimensional space, we are able to scale to
extremely large datasets with very limited computational resources that would be impossible to process using
inter-sample distances. Moreover, since we focus on introducing a novel linear projection technique instead
of povide methods to interpret existing onces, the proposed methods is also fundamentally different from the
visualization techniques designed for explaining dimensionality reduction results (Liu et al 2014,
Chatzimparmpas et al 2020).

The technique most similar to FPP is projection pursuit regression (PPR) (Friedman and Stuetzle 1981),
which has been designed as a universal high-dimensional function approximator for regression tasks. The
PPR fits a linear combination of multiple 1D non-linear transformations of linear combinations of variables
in the data. The non-linear mapping allows PPR to capture certain non-linear patterns. Similar to FPP, the
PPR formulation can also be considered as a dual of the kernel regression as explored in Donoho and
Johnstone (1989). However, designed as a function approximator, the performance of PPR improves as we
increase the number of 1D non-linear transformation components, which can lead to challenges in its
interpretation. With FPP, we instead directly fit a non-linear model in the 2D projected space, which not only
allows intuitive visualization but also simplifies the optimization process which allows us to efficiently scale
the proposed technique to extremely large sample size and dimensions.

3. Method

As discussed in the introduction, the growing need for exploring large and complex high-dimensional
dataset calls for visualization tools that 1) produce interpretable embedding; 2) are capable for capturing
non-linear pattern; 3) and scale to large sample sizes and many dimensions. For interpretability, contrary to
many high-dimensional data visualization approach (e.g. t-SNE or MDS) that employ a complex map from
high-dimensional to 2D space, we focus on a simple linear transformation that produces a 2D embedding
with well-defined axes.
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Figure 1. Overview of the computation pipeline for the proposed function preserving projection approach. We jointly optimize
the linear projection and the 2D regressor (or classifier) for identifying human-interpretable pattern in high-dimensional
functions.

3.1. Function preserving projection
To capture the potentially non-linear structure of the function, we frame the pattern discovery as a
non-linear 2D regression problem, where the choice of the regressor, i.e. the polynomial degree, provides
direct control over the visual complexity a user expects or is willing to consider as salient structure. In the
most basic form, we can consider the problem as a joint optimization of both dimensionality reduction and
regression (see figure 1) that can be formulated as follow:

For a given HD dataset of N samples in D dimensions, X⊂ X, FPP infers d-dimensional embeddings
Y⊂ Y, based on a response function f defined at each data point fi ∈ F,∀i= 1 · · ·N. Here, X and Y denote
the input and the embedded spaces, respectively. The response function space is defined as either F⊆ R, in
case of continuous response functions, or as F⊆ Ω when f assumes one of K discrete values. This leads to the
following general formulation of FPP:

argmin
P,θ

1

N

N∑
i=1

S [fi,g(yi;θ)] , where yi = P
Txi. (1)

In this formulation, g : Y 7→ F denotes the mapping function, with parameters θ, between the embedded
space and the response function, P ∈ RD×d is a linear orthonormal projection applied to each data sample
xi ∈ RD and S is a scoring function used to evaluate the quality of mapping g. In order to achieve
interpretability, FPP relies on linear projections P and for visualization purposes d is typically fixed at 2. One
can then capture non-linear relationships by allowing sufficient flexibility for the mapping function g, i.e.
using higher order regression models. For continuous f, the examples below use polynomial regressors,
where the polynomial degree directly controls the complexity of the inferred structure. However, other
regressors could easily be integrated as well. As scoring function S any one of the standard goodness of fit
measure can be used, such as the mean squared error (MSE). In the case of classification when f is discrete, g
is defined as a softmax classifier to predict the K class labels. In these cases S is defined as the cross entropy
between true and predicted response values. Finally, equation (1) can be extended to multiple response
functions fl, l= 1 · · ·L as follows:

argmin
P,{θl}

1

LN

L∑
l=1

N∑
i=1

S
[
fli,g(yi;θ

l)
]
, where yi = P

Txi. (2)

Here, our goal is to infer an unified projection P that simultaneously recovers the L response functions.
To solve equation (1) requires incorporating the constraint PTP= I to ensure that the columns of P are

orthonormal and the projection constructs a valid linear subspace. More specifically, FPP leverages the
popular deep learning framework TensorFlow (Abadi et al 2016) to implement a projected gradient descent
(PGD) optimization. The linear projection is realized with a dense layer with weight matrix of size RD×d, and
the orthonormality constraint is enforced by projecting estimated weights onto the Stiefel manifold, the set
of all orthonormal matrices of the form RD×d, through singular value decomposition (SVD) (Golub and
Reinsch 1971). The main consideration to utilize SVD is due to the excellent support through deep learning
frameworks like Pytorch and Tensorflow that provide efficient and differentiable implementations for SVD.
As a result, they yield far superior performance and stability than a hand-coded Gram-Schmidt
orthonormalization procedure. However, FPP is agnostic to the choice of orthogonalization and alternative
approaches like QR decomposition will also work—as long as the operations are differentiable for autograd
computation. The embeddings from the linear projection, y= PTx, are then used for predicting the response
f using a non-linear mapping g. The detailed steps of FPP are summarized in Algorithm 1. Note that for
small d, i.e. d= 2 the SVD step is computationally efficient and consequently FPP scales to tens of millions of
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Figure 2. Here we investigate the trustworthiness of the captured pattern in respect to different dimension and sample size
combinations. In this example, we focus on the setup utilizing a 2D polynomial regressor (degree 4). By examining the potential
patterns in totally random data, we can estimate how likely the observed pattern is spurious correlation rather than salient
structure. In (a), we show the average R2 score of the fitted regressors on random datasets at different conditions. We can then
utilize the R2 score samples on random datasets to estimate a p-value for a given data and its corresponding projection. In (b), we
show the p-value assuming a projection gives an R2 score of 0.5 for each of the dimension and sample size combinations.

samples and tens of thousands of dimensions. Our implementation can be found at
https://github.com/LLNL/fpp.

Algorithm 1: Function Preserving Projections.

Input: Domain X ∈ RD×N and response function f ∈ RN; Scoring function S ; Learning rate γ, mini-batch size b
Output: Projection matrix: P̂ ∈ R2×D; Parameters θ̂ for g
Initialize Randomly initialize θ̂ and P̂ (orthonormal matrix)

while exist mini-batch X̃, f̃ from X, fdo
// project input HD data onto 2D
ỹi←− P̂Tx̃i,∀i= 1 · · ·b;
// predict response function and compute goodness of fit
L←−

∑b
i=1S [̃fi,g(ỹi; θ̂)];

// update parameters
θ̂←− θ̂− γ∇θ(L);
P̂←− P̂− γ∇P(L);
// enforce orthonormality constraint
U,Σ,VT←− SVD(P̂);
P̂←− U;

end
return P̂

3.2. Evaluation schemes for visual patterns
For any pattern-finding scheme, it is imperative to evaluate the trustworthiness of the identified pattern. FPP
provides an end-to-end solution that consists of both a linear projection and a 2D regression/classification
model. So, it can and will overfit to the datasets if there is a large number of dimensions, i.e. a large number
of parameters in the projection matrix, with limited number of samples. We address this challenge from two
perspectives: First, like all statistical inference problems, we can split the data into training and testing set, fit
the projection using training data, and compare the results on both the training and testing set. If the
identified pattern is due to a salient correlation we expect both projections to result in a very similar
structure. Alternatively, we can consider the problem as a hypothesis test, by defining a confidence value
(analog to a p-value), which describes how likely a pattern of similar strength can be found in random data.
However, different from the standard way of computing p-value for linear regressor, we measure such a
probability by repeatedly generating randomness in the input data through shuffling of function values and
then compute FPP on these randomized inputs.

Such a test can also provide us with general guidelines on whether we should be concerned about
potential overfitting at a given sample count and data dimension. As illustrated in figure 2(a), for the given
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Figure 3. Synthetic data. The top and bottom rows are results from a 5D and 30D function, respectively. Here we show that the
function preserving projection (FPP) reliably identifies the circle structure in both the 5 and 30-dimensional dataset, whereas the
partial least square (PLS) and sliced inverse regression (SIR) fail. The rightmost column illustrates the p-value estimation scheme
for the observed pattern in the projections. Here, we show the distribution of the regression loss values of fitted models on
randomized data and then compared it against the loss value obtained from the original function. In the plot, the x-axis is the
regression loss value. The regression loss for the given function is highlighted by the red line, where as the loss value distribution
on the randomized data is shown in blue. The separation between them indicate that the patterns we observed in the projection
are statistically significant.

2D polynomial (degree 4) regressor, we show its R2 score when fitted to randomly generated data of different
dimension and size. As expected, overfitting is more likely to happen as the dimension increases or as sample
count decreases. Subsequently, we utilize the R2 score samples on random datasets to estimate a p-value for a
given projection. As illustrated in figure 2(b), we show p-values assuming the projection give a R2 score of 0.5
for configurations. The colormap is clamped at p= 0.05, which reveals a clear line separating the significant
and non-significant sides. Such an observation indicates that a constant factor exists between sample size and
dimension size for finding a trustworthy pattern of the regression problem (in this case, the sample size
should be at least ten times larger). For a more general setup, we can also obtain the p-value estimation from
the training/evaluation loss of FPP (instead of R2), which can be used for both the regression and
classification scenarios. In case of the regression setup, we adopt a mean squared error (MSE) loss, and for
the classification case utilize a cross-entropy loss.

Finally, the proposed framework is not limited to any particular 2D regressor or classifier, provided they
are differentiable in order to utilize the existing SGD optimization framework. Polynomial regressors are
effective for capturing the non-linear and low-frequency pattern human can easily comprehend, but other
regressors likely will work as well. One thing to note is that different types of regressors will impose different
priors on the patterns. Therefore, we can utilize the selection of regressor and their setup, i.e. the degree of
the polynomial regressor, as a tunable knob in the system to focus on different types of pattern or complexity.
However, we should expect to see potentially different overfitting behaviors due to the choice of the model.
For certain datasets with high extrinsic but low intrinsic dimension, one can also utilize random projections
as a pre-process to lower the dimensionality of the problem. By its nature, random projections are highly
unlikely to cause overfitting but the resulting lower dimensionality significantly reduces the overfitting risk
for the subsequent FPP projection.

4. Results

In this section, we demonstrate the applicability of the proposed method to synthetic data as well as to
dataset from real-word applications for both regression and classification problems.

4.1. Synthetic dataset
As a synthetic experiment, we define a scalar function on a uniformly sampled high-dimensional domain.
Here, the function has a circular pattern (see the third column of the figure 3) in a 2D subspace of a 5D and
30D domain, respectively. The synthetic data is generated with the following steps: (1) generate uniform
random samples in 2D (between−1.0 to 1.0 for each dimension); (2) assign the function pattern by
computing the distances from samples to a circle in 2D; (3) populate uniform random values (between−1.0
to 1.0) to the rest of the dimensions to lift the original 2D domain into a higher-dimensional space, in which
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Figure 4. A demonstration of multi-function projection capability on a physical simulation ensemble dataset. In this ensemble
dataset, we have 5 input parameter and 15 output scalar functions. Here, we aim to identify a single 2D embedding, in which all
functions’ variation can be explained. The plot on the left shows the subspace identified by FPP, in which all subplots have the
same embedding configuration and colored by the values of the 15 outputs, respectively. The configuration can be simplified by
making an in-plane rotation, as shown on the right plot. The two directions in these plots correspond to two of the input
parameters.

the sample are uniformly sample in each of the dimensions; (4) apply random rotation to high-dimensional
points, so the pattern of interest is not in an axis-aligned subspace. The last step is to ensure we can uncover
the pattern in an arbitrary linear subspace.

The top row of figure 3 shows projections from the 5D dataset and the bottom row are from the 30D
dataset. Due to the linear assumption, both partial least square (PLS) and sliced inverse regression (SIR) fail
to capture the circular pattern. By focusing on the visual domain and relying on a non-linear regressor (in
this case, a polynomial regressor of degree 3), the proposed FPP approach can easily reveal the pattern in
both the 5D and 30D domain. On the rightmost column, we illustrate the significance estimation (p-value)
of the pattern captured by the proposed technique. The blue histogram shows the regression loss value
distribution for a sample of 300 randomized functions (i.e. a random shuffle of the function values), whereas
the red line marker indicates the loss value for the input function. This plot provides insights on whether we
overfit to the data by illustrating how likely we will be able to find a pattern of similar strength in the random
function. The clear separation between the randomized function regression loss distribution and the input
function loss distribution lead to an estimated of p-value 0.0, which indicates a strong evidence against the
hypothesis that the observed pattern is from spurious correlation.

4.2. Application to multi-variate physical simulation dataset
In the synthetic dataset, we use FPP to produce a 2D embedding based on one function of interests. However,
in many applications, we are interested in the joint behavior of multiple scalar function, i.e. output
properties of simulation ensembles. As discussed in section 3, we can easily extend the single function
formulation to multiple ones. In the following example, we give an example of a multi-function projection,
where we produce a single 2D embedding that explains all major variation of the functions. The application
is a physical simulation ensemble (1 M samples) produced by a recently proposed semi-analytic simulation
model (Gaffney et al 2014, Springer et al 2013) for inertial confinement fusion (ICF) (Gaffney et al 2020).
The simulator has a 5-dimensional input parameter space and produces several images of the implosion as
well as 15 diagnostic scalar outputs. Among the five input parameters, three of them describe the shape of the
implosion, whereas the rest two are aggregated parameter that represents other conditions of the experiment.
The 15 scalars capture physical measures pertinent to analyze various aspects of the ICF process, including
energies in different spectra, pressures, etc. For this example, we want to understand what are the main
driving factors for not one but all 15 scalar outputs.

We can explore such a relationship by producing a simple 2D projection that would best capture the
changes and pattern of the 15 scalars. As illustrated in figure 4(a), by utilizing a degree-3 polynomial
regressor for each function, we identify a single 2D projection (colored by 15 different scalar values with a
shared color bar and all output scalars are normalized to 0-1) that explains most of the variation of all scalar
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Figure 5. FPP projection examples where the function is the class labels. In (a), the MNIST image data with 10 labels is illustrated,
whereas the RNA sequence (RNA-seq) data with 5 labels is shown in (b). The proposed method generates more clearly separation
for each class for both data. In particular, the proposed method also produces a more robust projection for the RNA-seq example,
where the LDA is overfitted to the training data and fails to generalize to test set.

outputs in the simulation ensemble. As it returns out, as shown in figure 4(b), if we apply in-plane rotation,
the two dominating directions corresponds to two of the input parameters. According to the physicists, the
other three parameters (out of five input parameters) are shape parameters, therefore, they will mostly
impact the generated image instead of the scalars. For example,MAXpressure is equally influenced by both of
the non-shape parameters. This example provides a real word verification of the proposed ability to capture a
shared configuration, which helps interpret a set of functions defined in the same domain. The fitted model
has a loss of 0.037 4. To estimate the p-value, we obtain the mean and variance of the loss distribution on
randomized function computed from 300 samples, which lead to an estimated p-value of 0.0.

4.3. Application to labeled datasets
In previous examples, we have demonstrated the effectiveness of FPP for projecting continuous,
high-dimensional functions, i.e. for regression problems. For classification problems, i.e. find the 2D
projection that best separate samples with different labels, we can simply replace the 2D regressor with a 2D
classifier. Here, we utilize a 2D logistic regression classifier (with an additional non-linear layer) to drive the
selection of the linear projection. In figure 5(a), we compare the proposed FPP with linear discriminant
analysis (LDA) (Fisher 1936) on the MNIST dataset 1 that consists of 60 K sample of 28 by 28 grey scaled
images of handwritten digits from 0-9. We can see that FPP finds a 2D linear projection that separates
different digits’ images better than the LDA result. We also apply the method to high-dimensional RNA
sequence data 2, which has more than 20 531 feature dimensions yet only 801 samples. Due to the extremely
high-dimensional and the very low sample count, there is a high potential for overfitting. As discussed in
previous examples, we can obtain the p-value 2.027e−07, which give high confidence on the captured
structure. Alternatively, we can validate the trustworthiness of both the FPP and LDA results by split the
datasets into training and test and then evaluate the trained models on the test set. As shown in figure 5(b),
not only does FPP separate the class better than LDA, but it also produces a more robust projection that
generalizes well to the test set, unlike the LDA projection which entirely fails on the test set. When examining
the LDA projection matrix, we notice only 3 of the 20 K dimensions are contributing to the projection, which
leads to a degenerate projection for the test set. The reason LDA produces worse results than FPP is due to
the fundamental difference in their formulations. Firstly, LDA captures linear separability and assumes each
class has a Gaussian distribution, which can be restrictive, e.g. such assumptions lead to more tendency for
the LDA to overfit to the training dataset, result in a very sparse and less generalizable model. For the
proposed FPP, we not only did not assume the distribution of each class but also did not require linear
separability in 2D (by adding a hidden neural network layer before the cross-entropy computation), which
led to better separation in terms of human perception for a linear projection.

1http://yann.lecun.com/exdb/mnist/.
2https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq.
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Table 1. Quantitative Comparison with Linear Discriminant Analysis.

Dataset Silhouette Davies-Bouldin Homoge-neity Complete-ness Mutual-Information Timing(s)

MNIST train FPP 0.139 1.589 0.575 0.574 0.575 17.7
MNIST train LDA 0.069 8 6.339 0.503 0.480 0.491 9.93
MNIST test FPP 0.138 1.595 0.571 0.570 0.570 N/A
MNIST test LDA 0.063 5 4.642 0.487 0.478 0.483 N/A
RNA-Seq train FPP 0.781 0.307 1.0 1.0 1.0 1.18
RNA-Seq train LDA 0.652 0.509 0.926 0.928 0.927 3.19
RNA-Seq test FPP 0.695 0.401 0.984 0.979 0.981 N/A
RNA-Seq test LDA -0.766 4.121 0.278 0.00 694 0.013 5 N/A

Table 2. Performance.

Dataset Sample Domain Range Size Epoch Batch Timing(s)

Circle (5D) 3000 5 1 0.14 (MB) 50 50 2.98
Circle (30D) 3000 30 1 0.74 (MB) 50 50 3.39
ICF simulator 1 M 5 15 152.6 (MB) 1 200 24.7
RNA-Seq 801 20 531 1 125.5 (MB) 10 30 1.18
MNIST 60 K 784 1 179.4 (MB) 20 100 17.75
ResNet ImageNet Sub 611 K 2048 1 9.3 (GB) 10 200 184.5
ResNet ImageNet Full 1.28 M 2048 1 19.6 (GB) 10 200 404.8
AlexNet ImageNet Sub 611 K 4096 1 18.7 (GB) 10 200 283.7
AlexNet ImageNet Full 1.28 M 4096 1 39.1 (GB) 10 200 640.1

To quantitatively compare the 2D embedding results between FPP and LDA, we compute ‘unsupervised’
quality scores (i.e. only require one set of labels, instead of both prediction and ground truth) such asmean
silhouette coefficient (Rousseeuw 1987) (a higher value indicates better cluster separation) and
Davies-Bouldin score (Davies and Bouldin 1979) (a lower value indicates a more coherent cluster pattern).
Alternatively, we can measure the quality of the grouping pattern in 2D by estimate which configuration can
be more easily learned by a 2D classifier. To achieve this, we train a kernel support vector machine (Platt et al
1999) to identify localized clusters in both of the 2D embeddings obtained from FPP and LDA. We then
estimate their quality by examining the predicted and ground truth label via metrics such as homogeneity,
completeness and the normalized mutual information scores (Rosenberg and Hirschberg 2007). The results for
both types of quantitative analysis are summarized in table 1, in which the more desirable quantities are
highlighted in bold font. As we can see all the measures indicate FPP produces 2D embeddings with better
cluster separation. For these small datasets, the computation times are comparable for FPP and LDA.
However, as illustrated in the following example, FPP can easily handle extremely large dataset that often not
viable for traditional methods such as LDA.

The 2D loss function combined with the SGD based implementation allows FPP to scale to data sizes
significantly beyond the ability of most traditional projection/dimensionality reduction approaches. In the
following example, we use FPP to probe into feature representations of two popular deep learning
architecture (AlexNet, ResNet) on the entire ImageNet challenge (Deng et al 2009) training dataset, which
consists of more than 1.28 million images and 1000 classes. We use the last layer before the softmax as the
feature representation for both networks resulting in a 2048- and 4096-dimensional feature space for ResNet
and AlexNet, respectively. Combined with a large number of samples this results in datasets of more than 40
GB. Despite their massive size, we can generate projections for each of these 1.28 M sample datasets within
minutes (between 3 to 10 minutes). The detailed timing results and parameter setups for all our examples are
in listed in table 2. For the first five datasets, we compute the results on a laptop with an Intel Core
i7-6820HQ processor (2.9 GHz), whereas the last four are computed on a server (due to limited memory on
the laptop) with an Intel Xeon E5-2695 processor (2.1 GHz).

For the experiments, we first group the entire 1.28 M images (1000 classes) into 5 coarse categories,
namely, ‘living thing’, ‘natural object’, ‘food’, ‘artifact’, ‘misc’, where the first 4 categories consists 984 of the
1000 classes available in the imageNet challenge. We then project all the images feature representations with
the categories as the label. As shown in figure 6(a), we can see that the AlexNet’s representation has trouble
distinguishing the purple samples (‘misc’ category) from the rest, whereas the ResNet’s representation,
despite being lower-dimensional, can. For visualizing more detailed category separability, we generate 10
categories with more concrete and meaningful labels (i.e. ‘fish’, ‘bird’, ‘mammal’, ‘invertebrate’, ‘food’, ‘fruit’,
‘vehicle’, ‘appliance’, ‘tool’, ‘instrument’), which consists of 611k images of the 1.28 M. As we can see in
figure 6(b), the feature representation of ResNet again seems to be able to better separate these categories

9
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Figure 6. Projections of imageNet image feature representations from different neural network architectures. From the
comparison, we can see that the representation produced by ResNet-101 is easier to separate by categories in the linear projection
than that of the AlexNet.

compared to AlexNet’s representations, which may explain the gap in their predictive performances (AlexNet
and ResNet have Top-5 errors of 20.91% and 6.44%, respectively).

5. Conclusion

In this work, we introduce a novel class of linear projection methods for visualizing interesting and
interpretable visual patterns of the function in 2D subspaces of the function domain. The combination of
linear projection and non-linear pattern searching schemes (i.e. a polynomial regressor, or a non-linear
classifier in 2D) allows us to exploit our innate ability to perceive complex (and potentially non-linear) visual
pattern in 2D while compensating for our inability to comprehend non-linear transformation by focusing
only on a linear transformation from high-dimensional space to 2D. The efficient formulation also allows us
to easily scale the problem beyond million of samples and tens of thousands of dimensions that is infeasible
for most existing dimensionality reduction methods.
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