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Abstract
Aspheric cylinders are more advantageous than cylinder with spherical cross section in optical
design and aberration correction of high-energy laser systems because additional shape
parameters can be introduced. To overcome the limited test accuracy and the insufficient
research on the testability of the flexible null test method for aspheric cylinders, a near-null
interferometric test method for aspheric cylinders was developed utilizing a partial null lens. A
coaxial configuration design was employed. Accordingly, only one translation motion was
required for testing various aspheric cylinders in one shot. Using the proposed test configuration
and the developed near-null data processing method, test accuracy about λ/20 (λ = 632.8 nm)
root-mean-square are easier to guarantee compared with those of the existing stitching-required
method with off-axis configuration. Further, the testability of the proposed method was
analyzed following the development of the partial null theory. The analysis shows the testable
surfaces are equidistant surfaces with nearly constant k∙R products (k∙R = 211.625 mm). The
testability results can serve as a good reference for engineers who intend to use aspheric
cylinders in high-energy laser systems and can further promote the development of high-energy
laser systems. A near-null test system was established. Its simple configuration, moderate test
accuracy, and flexible test capacity were successfully demonstrated based on aspheric cylinders
measurements.

Keywords: interferometric surface figure test, high-energy laser, aspheric cylinders, non-null test

(Some figures may appear in colour only in the online journal)

1. Introduction

Cylindrical optics are generated by the parallel translation of a
straight line along a curve. Owing to the different focal powers
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of the meridional and sagittal planes, cylindrical optics are
extensively utilized to correct astigmatism in laser resonators
[1, 2] and beam shaping units [3] in high-energy laser sys-
tems. Similar to the terms of spherical surfaces and aspheric
surfaces, cylinder with aspheric cross section can be termed
as aspheric cylinders. The term ‘acylindrical surfaces’ should
never be used: The prefix ‘a’ (latin origin) means ‘non’, there-
fore making from a ‘spheric’ an ‘aspheric’, i.e. a ‘non-spheric’
surface. That makes sense. The word ‘acylindrical’ means
‘non-cylindrical’, which is nonsense. Aspheric cylinders are
more advantageous than cylinder with spherical cross section
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for optical design and aberration correction because additional
shape parameters can be introduced. Aspheric cylinders are
increasingly preferred by engineers who design and construct
high-energy laser systems to achieve better performance in
terms of higher energy, better focusing, and compact struc-
ture. The typical desired surface figure accuracy of aspheric
cylinders in high-energy laser systems is better (smaller) than
0.1 µm peak-to-valley (PV). With the development of fab-
rication techniques for aspheric cylinders, such as the slow
tool servo diamond turning process [4] and magnetorheolo-
gical finishing [5], it is envisaged that aspheric cylinders will
be widely used in high-energy laser systems. To guide the iter-
ative fabrication process, surface figure test of the aspheric cyl-
inders is required. As the most commonly used high-accuracy
testing method, interferometric testing of cylindrical surfaces
requires a customized computer-generated hologram (CGH)
[6, 7] to transform standard flat or spherical wavefronts into
wavefronts with the same shape as that of the test surface.
The CGH test method for cylindrical surfaces can adaptive for
testing cylindrical surfaces with different radius of curvature
(ROC) and aperture [8–14] because the shape of cylindrical
wavefront is also cylindrical wavefront after transmitted for a
distance. However, CGH is unique to a single specific aspheric
cylinder. Moreover, CGH is expensive and has a long lead
time. Hence, the CGH null method is cost-prohibitive for vari-
ous aspheric cylinders. Developing a flexible interferometric
test method for testing various aspheric cylinders is import-
ant for the enhancement of the test efficiency and reduction of
cost.

Peng et al conducted excellent and pioneering work on
breaking down the static test mode for interferometric tests of
aspheric cylinders [15]. By yawing the cylinder null (designed
for a circular cylindrical surface) at different angles, variable
wavefronts can be generated to compensate for most of the
aberrations for different off-axis subapertures of the aspheric
cylinder. After stitching the test results of the subapertures, the
full aperture of the aspheric cylinder can be acquired. Peng
et al successfully tested an aspheric cylinder with a departure
of up to 81 µm from the best-fitting circular cylinder with the
use of the reported method. The test accuracy was verified by
a contact three-dimensional (3D) profilometer (Talysurf PGI
Freeform). However, the nominal test accuracy of Talysurf
PGI Freeform is only ±0.15 µm. Further, the PV value dif-
ference between the test result of the yawing CGH method
with that of the Talysurf PGI Freeform method is 0.159 µm.
Moreover, the phase distribution of the two test results is not
quantitively compared. Therefore, the measurement accuracy
of the yawing CGH method is not clearly identified.

Research on flexible tests for aspheric cylinders has been
scarce. However, many studies have focused on flexible null
tests for aspheric surfaces. The basic idea of using a null to test
various aspheric surfaces is to violate the null condition and
use non-null configurations. Null fringes are not required, and
the surface is testable if the deviation between the test wave-
front and the test surface is within the dynamic range of the
interferometer. Liu and Hao et al used a doublet as a partial
null to conduct a non-null test for aspheric concave surfaces.
The adaptable departure for aspheric surfaces is in the range of

92.8–121.7λ (λ = 632.8 nm) [16, 17]. Yang et al [18, 19] and
Greivenkamp et al [20, 21] used a singlet collimated for partial
null tests of aspheric surfaces. Because of the violation of the
null condition, rays from the test and reference arms will not
follow the same path, and the surface figure error of the test
surface can be coupled with the retrace error. Yang et al, Liu
et al, Tian et al, He et al, Shi et al, and Zhang et al developed
a retrace error calibration method to determine the useful sur-
face figure error from the test results [18–25].

Compared with the mature flexible null test method for
aspheric surfaces, the current flexible null test method for
aspheric cylinders is difficult to guarantee the test accuracy
within ∼λ/20 root-mean-square (RMS). The current flexible
null test method for aspheric cylinders is complex in terms of
optical configuration; the optical system has an off-axis con-
figuration, and the aspheric cylinders can only be measured by
stitching. The off-axis configuration and stitching test scheme
make it difficult to align the test surface and the CGH in the
non-null test. Stitching is required to obtain the full aperture
figure error, which further complicates the test system and
decreases the test accuracy. Furthermore, the current method
for flexible tests of aspheric cylinders does not explain why
the test system can generate variable aberrations. The meas-
urable range of aspheric cylinders has not been clearly identi-
fied. The relations among the testable surfaces were also not
expounded. Engineers who design and construct high-energy
systems may hesitate to adopt an aspheric cylinder that can be
tested by the flexible test method rather than spending more
time and money to design and manufacture a specific CGH
for testing. The insufficient research on the testability of the
flexible null test method for aspheric cylinders hinders the
application of aspheric cylinders in high-energy laser systems.
Briefly, developing a flexible null test method with an accur-
acy about λ/20 RMS, whereby the test can be performed in one
shot rather than by stitching, in coaxial configuration rather
than in off-axis configuration, and thorough analyses of the
testability remain challenging.

To this end, we propose a near-null interferometric test
method for aspheric cylinders utilize a partial null lens. To
achieve test accuracy of ∼λ/20 RMS, a simple test configura-
tion and the near-null data processing method is developed.
The proposed flexible null test is achieved by moving the
aspheric cylinders back and forth relative to a cylindrical par-
tial null lens. At the best fitting position, the cylindrical par-
tial null lens can partially null the aberration of the aspheric
cylinder. The test configuration was coaxial, and the aspheric
cylinders could be tested by a single shot rather than by stitch-
ing. The alignment of the proposed test system and the test
accuracy are easier to guarantee compared with those of the
existing off-axis configuration and stitching method. Further-
more, near-null data processing method to recover the sur-
face figure error of the test aspheric cylinder from the near-
null test result with high accuracy was developed. To evaluate
the testability of the proposedmethod, theoretical analysis was
conducted. The results of the theoretical analysis indicate that
the testable surfaces are equidistant surfaces with nearly con-
stant k∙R products (k∙R = 211.625 mm), where k is the conic
constant and R is the ROC. The testable aspheric cylinders
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have nearly constant one-dimensional spherical aberrations. A
concave aspheric cylinder with R = 200 mm, k = −1 and an
aperture of 85× 52 mm2 (arc direction× linear direction) was
tested to validate the feasibility of the proposed method. The
test accuracy is ∼λ/20 RMS, as verified by the stigmatic null
test method and evaluated by the structural similarity index
(SSIM index). The proposed method can help enhance the test
efficiency for aspheric cylinders. The test accuracy verifica-
tion and testability analyses can serve as a reference for engin-
eers who intend to use aspheric cylinders in high-energy laser
systems, and promote the application of aspheric cylinders in
high-energy laser systems.

The remainder of this paper is organized as follows.
Section 2 presents the test principles of the proposed method.
A theoretical analysis of the testability of the proposed method
is then presented. Section 3 describes the experimental valid-
ation, and the discussion is presented in section 4. Finally, the
paper is concluded in section 5.

2. Material and methods

The basic principle of the near-null test method for aspheric
cylinders, which utilizes a partial null lens, is shown in
figure 1. The collimated beam from the interferometer is con-
verted to a wavefront by a partial null lens. For demonstra-
tion purposes, a plano-convex cylindrical lens was used. The
wavefront is not required to have the same shape as the nom-
inal test surface; however, the departure of the wavefront from
the nominal test surface must be within the dynamic range of
the interferometer. The distance from the flat surface of the
near-null to the test surface was optimized to meet the near-
null condition. The distance from the flat surface of the near-
null to the test surface was maintained through low-coherence
interferometry. The test beam was then converted to a nearly
collimated beam after it was reflected from the test surface.
The nearly collimated beam comprises the surface figure of
the test surface, the departure of the wavefront from the nom-
inal test surface, the retrace error due to the near-null test, and
misalignment aberration. Notably, owing to the deviation from
the null configuration, rays from the test and reference arms do
not follow the same path, and retrace errors exist. The nearly
collimated beam interferes with the reference beam within the
interferometer, and an interferogram that can be resolved by
the charge-coupled device (CCD) of the interferometer is gen-
erated. The wavefront error can be acquired after phase shift-
ing and unwrapping. The surface figure of the test surface can
be reconstructed from the wavefront error test result after data
processing of the near-null test for aspheric cylinders. The two
key points of the partial null test for aspheric cylinders involve
partial null theory for aspheric cylinders and data processing
of near-null tests for aspheric cylinders.

2.1. Partial null theory for aspheric cylinders

The partial null theory for aspheric cylinders reveals the rela-
tions between the partial null parameters and testable surface
parameters, and the test ability of a certain partial null. To

establish the partial null theory, the paraxial aberration bal-
ance of the partial null configuration shown in figure 1 was
analyzed as follows.

An aspheric cylinder (equation (1)) was considered

z=
cy2

1+
√

1− (k+ 1)c2y2
+

N∑
i=1

αiy
2i, (1)

where z denotes the surface sag, y denotes the lateral coordin-
ate along the y-axis, k represents the conic constant, c repres-
ents the vertex curvature, N denotes the number of high-order
aberration terms, and αi denotes the coefficients of high-order
aberrations. The dominant aberration of the aspheric cylinder
compared with the corresponding best-fit cylindrical surface is
one-dimensional primary spherical aberration (1D-PSA). The
basic idea of a near-null test for aspheric cylinders is to balance
the majority of the 1D-PSA of the test surface using a null. In
the paraxial region, the coefficient of 1D-PSA for an aspheric
cylinder can be expressed as [26–28]:

SI
(t) = 2kRu4, (2)

where SI
(t) denotes the coefficient of 1D-PSA,R represents the

vertex ROC, and u represents half of the aperture angle.
Based on the Seidel aberration theory [26–28], the coeffi-

cient of 1D-PSA for a thin lens located in a collimated beam
can be expressed as

S(n)I =

[
n+ 2
n

1
r21
φ− 2n+ 1

n− 1
1
r1
φ2 +

n2

(n− 1)2
φ3

]
h4, (3)

where h denotes the aperture height of the thin lens, r1 and
is the Roc of the left surface of the thin lens, n denotes the
refractive index, and φ is the power of the thin lens. For the
thin lens,

φ= (n− 1)(1/r1 − 1/r2), (4)

where r2 is the Roc of the right surface of the thin lens.
For a plano-convex lens with a convex surface facing the
interferometer,

r2 = ∞. (5)

In the paraxial region, u = tan u. Therefore,

h= fu, (6)

where f denotes the focal length, as shown in figure 1.
Moreover, f and φ adhere to the following equation

φ= 1/f. (7)

Substitution of equations (4)–(7) into equation (3) yields

S(n)I = Pfu4, (8)

where

P=
n2(n− 2)+ 2

n(n− 1)2
, (9)
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Figure 1. Optical layout of the near-null test for aspheric cylinders.

and

f=
r1

(n− 1)
. (10)

The near-null test means that the 1D-PSAs of the thin lens and
the test surface should be balanced, that is,

SI
(t) + 2SI

(n) = 0. (11)

Substitution of equations (2) and (8) into equation (11) yields

kR=−Pf. (12)

Equation (10) shows that for a certain null lens with paramet-
ers f and P, a range of aspheric cylinders with parameters k and
R such that kR=−Pf can be tested in the paraxial sense. The
testable aspheric cylinders had an appropriate constant coeffi-
cient for 1D-PSA. Furthermore, these testable aspheric cylin-
ders are equidistant.

The partial null testing theory for aspheric cylinders can
also be interpreted from the viewpoint of wavefront propaga-
tion. Suppose a wavefront W1 with shape parameters k0 and
R0. The shape parameters kt and Rt of wavefrontW2, which is
the wavefront in which W1 propagates forward with a minor
distance t satisfy the relation [29]

ktRt = k0R0. (13)

Equation (13) implies that if an aspheric cylinder with the
shape parameters k0 and R0 can be tested by wavefront W1,
another aspheric cylinder with shape parameters kt and R0+t

can be tested by W2.
Based on the theoretical analysis presented above, it can

be summarized preliminarily that a partial null can adapt to a
range of aspheric cylinders in the sense of paraxial theory. Fur-
thermore, the testable aspheric cylinders are equidistant sur-
faces with constant shape parameters kR and an appropriate
1D-PSA constant coefficient SI

(t). Moreover, the shape con-
stant of the testable surfaces is determined by the shape para-
meters of the partial null lens, that is, kR=−Pf.

Simulations were conducted to verify the above theoret-
ical analysis with the use of a typical concave aspheric cyl-
inder as the test surface with k = −1 and R = 200 mm.
The clear aperture was Da × Dl = 85 × 52 mm2 (arc
direction × linear direction). Figure 2 shows the departure
of the test surface from its best-fitted cylindrical surface

Figure 2. Deviation of the test surface from its best fitted
cylindrical surface.

(Roc= 202.675 mm) is mainly 1D-PSAwith a PV of 26.941λ
(λ = 632.8 nm). By substituting n ≈ 1.516 (refractive index
of K9 glass), k = −1, and R = 200 mm in equations (9),
(10) and (12), the initial shape parameters of the partial null
can be obtained as r1 = 46.929 mm. The aperture of the par-
tial null can be obtained as D = Da/R × f = 38.653 mm.
After searching for the stocks of the lens supplier, the para-
meters of the partial null are determined as r1 = 54.274 mm,
Dan × Dln = 52 × 52 mm2 (arc direction × linear direction),
and center thickness T = 18.5 mm. A test scheme using the
above partial null for testing the test surface was then estab-
lished using the optical design software. A schematic of the
optical model of the test system is shown in figure 3. Optim-
ization was conducted to meet the near-null condition. The
optimization variable is the distance l from the vertex of the
test surface to the flat surface of the partial null. The optimiza-
tion goal involved the minimization of RMS value of the resid-
ual wavefront error. After the optimization was completed,
l = 293.032 mm. Figure 4 shows the residual aberration with
PV = 1.1929λ and RMS = 0.3869λ. The maximum slope of
the residual aberration is within the dynamic range of a typical
interferometer equipped with a CCD of 1000 pixels × 1000
pixels resolution. Notably, the dynamic range indicates the
maximum frequency of the interference fringes, which is equal
to the Nyquist frequency of the CCD. The nominal inter-
ferogram fringes are shown in figure 5. These fringes can be
resolved using a common interferometer. Simulations were
conducted to verify that the partial null can test a series of
equidistant aspheric cylinders, and these surfaces were found
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Figure 3. Optical model of the test system.

Figure 4. Residual aberration.

to have nearly constant shape parameters kR. During the simu-
lations, the distance from the test surface to the paraxial focus
of the partial null lens l′ was varied from 50 mm to 1000 mm
with increments of 1 mm. For each l′ value, optimization was
conducted to determine the testable aspheric cylinder. The
optimization variables are k and R of the test surface. The
optimization goal is to minimize the RMS value of the residual
wavefront error. The testability criterion is that the maximum
slope of the residual aberration is within the dynamic range
of a typical interferometer equipped with a CCD with a resol-
ution of 1000 × 1000 pixels. The k∙R, k, and R values of the
testable surface with l′ are presented in figure 6. The mean and
variance of the k∙R values were 211.625 mm and 1.038 mm,
respectively. The testable surfaces had an approximately con-
stant k∙R value.

2.2. Data processing of near-null test for aspheric cylinders

Near-null data processing comprises coordinates mapping and
phase correction. Phase correction should first be conducted.
The surface figure of the test surface is coupled with the depar-
ture of the test wavefront from the nominal test surface, the

Figure 5. Nominal interferogram fringes.

retrace error due to the near-null test, and the misalignment
aberration, that is,

Wn = f(Wt,Wd,Wr,Wm) , (14)

whereWn denotes the near-null test result,W t denotes the sur-
face figure error of the test surface,Wd denotes the theoretical
departure of the test surface,W r denotes the retrace error,Wm

denotes the misalignment aberration, and f represents the rela-
tionship between (W t,Wd,W r,Wm) andWn. The function f is
determined by the wavefronts/aberrations in the optical system
and the configuration of the optical system. For a flat wavefront
that transmits in a flat optical window system, the analytical
form of f is straightforward. However, complex wavefronts
(i.e. wavefronts that are not flat or spherical) do not propagate
linearly in complex optical systems; therefore, the analytical
form of f is nonlinear and is difficult to establish.

Two methods can be used for mitigating this issue. The
first method is the optimization based on modeling. First, the
optical model of the test system, as presented in figure 3, is
established. Legendre polynomials [29] are commonly used to
characterize the wavefronts and surfaces. The first ten terms of
the Legendre polynomials are listed in table 1 and are shown
in figure 7. Furthermore, Legendre polynomials are orthogonal
in the rectangular region, which is the typical aperture shape
of aspheric cylinders. Therefore, Wn and W t are represented
as the Legendre phase in the model, that is,

Wn =
N∑
i=1

AiLi, (15)

Wt =
M∑
i=1

BiLi. (16)

where Li denotes the ith Legendre polynomial.N andM denote
the number of Legendre coefficients in the series for Wn and
W t, respectively. Ai and Bi represent the coefficients of the
ith Legendre polynomial for Wn and W t, respectively. Not-
ably, the Legendre phase does not correspond to a common
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Figure 6. K∙R, k, and R values of the testable surface as a function of l′.

Table 1. Definitions of Legendre polynomials.

Order Aberration name Polynomials

Q1 Piston 1
Q2 x-tilt

√
3x

Q3 y-tilt
√
3y

Q4 x-power
√
5/2(3x2 − 1)

Q5 Astigmatism 3xy
Q6 y-power

√
5/2(3y2 − 1)

Q7 0◦ coma
√
7/2(5x3 − 3x)

Q8 90◦ trefoil
√
15/2(3x2 − 1)y

Q9 0◦ trefoil
√
15/2(3y2 − 1)x

Q10 90◦ coma
√
7/2(5y3 − 3y)

surface in optical design software, and a user-defined surface
is required.

The misalignment aberrations for testing the aspheric cyl-
inders are those of the piston, x-tilt, y-tilt, y-power, and twist
[30, 31], which are introduced by six degree-of-freedom mis-
alignment of the test surfaces, that is,

Wm = a+ bx+ cy+ dy2 + exy= gt(tx, ty, tz, dx, dy, dz). (17)

where a, b, c, d, and e denote the coefficients of the piston,
x-tilt, y-tilt, y-power, and twist, respectively. tx, ty, tz, dx, dy, and
dz denote the tilt around the x-, y-, and z-axes, and the trans-
lation along the x-, y-, and z-axes, respectively. gt (∙) denotes
the posture and position of the test surface in the model of the
test system. Wd and W r can be automatically generated after
Wm and W t are determined in the model. Optimizations were
conducted to obtain W t from Wn. The optimization variables
were B1, B2, …, BM, tx, ty, yz, dx, dy, and dz. The optimization
goal involved the setting of the Legendre coefficients of the
wavefront received on the image plane to A1, A2, …, AN. W t

can be obtained using equation (16) after the optimization was

Figure 7. Maps of Legendre polynomials.

completed. The method considered the propagation effects of
W t, Wd, W r, and Wm; hence, it can be used in situations in
which the surface figure error and/or theoretical residual wave-
front are relatively large [25].

When W t is relatively small and the theoretical residual
wavefront is moderate, a simpler method can be adopted to
recoverW t. Equation (14) can be simplified as

Wn =Wt + g(Wd,Wr) +Wm, (18)

where g(Wd, W r) is the residual aberration of the theoretical
test system, that is, the wavefront on the image plane of the
theoretical test system. W t can be obtained by subtracting the
residual aberration and best-fitted misalignment aberrations
from the near-null test result, that is,

6
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Wt =Wn − g(Wd,Wr)− a+ bx+ cy+ dy2 + exy, (19)

where a, b, c, d, and e are obtained by fitting Wn−g(Wd, W r)
with polynomials a+ bx+ cy+ dy2 + exy.

After phase correction is completed, mapping correction
[32, 33] should be conducted. The acquired near-null test data
were presented in the imaging coordinate frame. The pixel
coordinates are transformed into the workpiece coordinate
frame. Aspheric cylinders have different curvatures along the
linear and arc directions. Thus a nonlinear mapping relation-
ship is established between the pixel coordinates (u, v) and the
workpiece transverse coordinates (x0, y0). Furthermore, rays
from the test and reference arms do not follow the same path,
which exacerbates the nonlinear mapping effect. We denote
the mapping function between (u, v) and (x0, y0) as h

(x0,y0) = h(u,v) . (20)

To obtain h, a bundle of rays was traced from the imaging plane
to the test surface. Ray tracing was conducted based on macro
programming with the use of the optical design software. The
ray-tracing results presented in the form of four columns of
data (u, v, x0, y0) serve as a numerical form of h. Coordinates
(x0, y0) on the test surface of any ray with transverse coordin-
ates (u, v) on the imaging plane can be determined via inter-
polation.

Simulations were conducted to verify the proposed data
processing method for the near-null test of aspheric cylinders.
The test surface and partial null are the same as those described
in section 2.1. Furthermore, the theoretical test system is the
same as that shown in figure 3. A practical test system was
established to simulate the practical test result Wn. The prac-
tical test system in the simulation is similar to that shown in
figure 3, but the differences are that the surface figure error
is added up to the test surface and the posture of the test sur-
face deviates from its nominal posture. In the simulation of
the practical test system, the surface type of the test surface is
a biconic Zernike and is defined as [34]

z=
cxy2 + cyy2

1+
√
1− (kx+ 1)cx2x2 − (ky+ 1)cy2y2

+
16∑
i=1

αix
i+

16∑
i=1

βiy
i+

N∑
i=1

CiZi(ρ,φ), (21)

where cx and cy are the vertex curvatures along the x-and
y-axes, respectively, kx and ky are conic constants along the
x-and y-axes, respectively, and Zi are the Zernike terms [35].
N denotes the number of Zernike coefficients in the series, Ci
represents the coefficient of the ith Zernike standard term, ρ
denotes the normalized radial ray coordinate, and φ denotes
the angular ray coordinate. Coefficient Ci has units of mm.
The Zernike term was used to simulate the surface figure error
of the test surface. For the test surface, cy = 1/200 mm–1,
ky = −1, cx = kx = 0, Z7 = 1e − 4 mm, Z8 = 1e − 4 mm.
The normalization radius for the Zernike terms was set to
55 mm. The misalignments of the test surface are tx = 0.001◦,

Figure 8. Theoretical surface error of the test surface.

ty = 0.001◦, tz = 0.005◦, dz = 0.001 mm. The theoretical sur-
face error (along the normal direction) of the test surface is
shown in figure 8 with an RMS 0.122λ. The near-null test
results obtained from the simulated practical test system are
shown in figure 9 with an RMS of 0.335λ. Evidently, the
phase distribution and transverse coordinate mapping of the
surface figure severely deviate from the theoretical surface
figure shown in figure 2. To reconstruct the surface figure error
from the near-null test result, as shown in figure 9, phase cor-
rection and mapping correction were conducted. The residual
aberration of the theoretical test system shown in figure 2 is
first subtracted from the test result to separate the deviation of
the test surface and the retrace error. The results are presen-
ted in figure 10. Notably, the misalignment aberrations were
coupled. The piston, x-tilt, y-tilt, y-power, and twist terms are
fitted and subtracted from the surface height map shown in
figure 10. The surface height map obtained after the phase cor-
rection is shown in figure 11. As shown in figure 11, the sur-
face height map is in the CCD frame. To transform the pixel
coordinates into the workpiece coordinate frame, an array
(1024 × 1024) of rays is traced from the imaging plane to the
test surface. The footprints of the rays on the imaging plane
and on the test surface are shown in figure 12. The transverse
coordinates (x0, y0) on the test surface corresponding to the
pixel coordinates of the surface height map shown in figure 11
can be determined via interpolation using ray tracing data. The
recovered surface figure after the phase and mapping correc-
tions is shown in figure 13 with an RMS of 0.126λ. The phase
distribution and the PV and RMS values were very similar to
those of the theoretical surface figure error. The point-to-point
difference between the recovered surface figure and the theor-
etical surface figure is shown in figure 14 with RMS= 0.006λ.
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Figure 9. Near-null test result obtained from the simulated practical
test system.

2.3. Error analyses

The error sources of the partial null test methodmainly include
misalignment error, imperfectmanufacturing error, and retrace
error calibration. These are analyzed as follows.

Misalignment error include misalignment of the partial null
and the test surface. As for the partial null, misalignment
degrees of freedoms (dofs) are tilt. The tilt of the partial null
can be adjusted by nulling the fringes of the interferogram
formed by the reflected beams from the center region of the
cylindrical surface of the partial null (can be regarded as a
small flat) and the flat surface of the partial null. Simula-
tions show that, to control the misalignment-induced aberra-
tions within 0.01λ RMS (the test surface and partial null are
the same as those described in section 2.1), mean tolerance
requirement on tilt of the partial null is about ±50′′. This can
be easily accomplished by nulling the fringes.

As for the test surface, misalignment dofs are tilt around
the x-, y-, and z-axes, and the translation along the y-, and
z-axes. The distance between the partial null and the test
surface is monitored by a distance measuring set LenScan
LS600. LenScan LS600 can measure center thickness of
optical elements and air gaps along the optical axis based
on low coherence interferometry. Its measurement range is
600 mm with absolute accuracy of ±1 µm. Simulation shows
the misalignment aberration is smaller than 0.01λ RMS if the
distance error is ±1 µm. As shown in table 2, the misalign-
ment aberration introduced by tx (and dy), ty, tz, and dz are
tilt-y, tilt-x, twist, and power-y, respectively [36]. As these
aberrations can be subtracted according to equation (19), the

Figure 10. Results associated with the subtraction of residual
aberration of the theoretical test system from the near-null test
result.

error introduced the misalignment is determined by the per-
formance of the misalignment removal method. This has been
investigated in [30]. For a test surface with F/1.5, 45 mm aper-
ture and 69 mm Roc, the residual errors after subtracting the
misalignment aberration induced by ty = 0.001◦, tz = 0.01◦,
dy = 0.001mm, dz = 0.01 mm are smaller than 0.0058λRMS.
When the tested surface is seriously misaligned or has a fast
F/# or has a large surface figure error, high-order misalignment
aberrations compensation method can be used for achieving
higher accuracy [31]. The detailed error analysis on the mis-
alignment aberration removal method can be referred to [30]
and [31]. Therefore, using the nulling fringes method (for tilt
of the partial null), low coherence interferometry (for dz of
the test surface), and the misalignment aberrations removal
method (for tx, dy, ty, tz, and dz of the test surface), the influ-
ences of alignment errors can be controlledwithin 0.01λRMS.

Imperfect manufacturing error include the surface shape
and glass homogeneity errors of the partial null lens. The
surface figure error of the cylindrical surface of the par-
tial null is tested by a Zygo interferometer with a CGH.
The test result is about 0.03λ RMS. Because the test beam
refracts at this surface, its contribution to test result is about
(n−1)∙0.03λ ≈ 0.015λ RMS, where n is the refractive index
n ≈ 1.516. The surface figure error of the flat surface of the
partial null is about 0.008λ RMS. Similarly, its contributions
to test result is about 0.004λ RMS.

For glass with homogeneity quality ∆n = 0.2 × 10−6, its
contribution to test result is about∆W =∆n× L= 0.2× 10−6
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Figure 11. Results obtained after the elimination of the
misalignment aberration from figure 10.

Figure 12. Footprints of rays on the imaging plane (blue) and those
on the test surface (red).

× 18.5 mm = 0.0058λ PV, where L is the central thickness of
the partial null. Therefore, the glass homogeneity error can be
neglected.

For wedge errors in the plane-convex lens, simulations
are conducted to investigate its contributions to test result.
Figure 15 shows the influence when the wedge errors is 23′′. It
shows that to limit the test error within 0.01λ RMS, the wedge
error of the partial null should be smaller than ±23′′.

Figure 13. Plot of the recovered surface after phase and mapping
corrections.

Figure 14. Point-to-point difference between the recovered and the
theoretical surfaces figures.

Retrace error correction accuracy is determined by the
modeling accuracy of the test system. The modeling error
includes inaccurate modeling of the partial null and the test
surface, which include the inaccurate element structure para-
meters and element position inconsistences with the actual
system. The influence of surface figure error of the cylindrical

9
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Table 2. Misalignment aberration for testing aspheric cylinders.

Misalignment Interferogram Misalignment aberration Aberration type

tx Tilt-y

ty Tilt-x

tz Twist

dy Tilt-y

dz Power-y

Figure 15. Influence of wedge errors in the partial null.

surface of the partial null, the surface figure error of the flat
surface of the partial null, and the wedge error of the par-
tial null on the test result is 0.015λ RMS, 0.004λ RMS, and
0.01λ RMS, respectively. As for the position modeling error,

their contribution is about 0.01λ RMS as analyzed above. To
sum up, the total modeling error influence is about λ/50 RMS.
Modeling error is the dominant error source of the method.
The contributions of other error sources such as reference error
and noise error are weak. Therefore, measuring accuracy of the
method is about λ/50 RMS.

3. Results

To verify the feasibility of the proposed method, an aspheric
cylinder with k = −1 and R = 200 mm was measured
with the use of the proposed method. The clear aperture of
the test method was Da × Dl = 85 × 52 mm2 (arc direc-
tion × linear direction). The parameters of the partial null
were r1 = 54.274 mm, Dan × Dln = 52 × 52 mm2 (arc direc-
tion × linear direction), BK7 glass material, and center thick-
ness T = 18.5 mm. Notably, the parameters of the test sur-
face and partial null are the same as those in the principal part.
The test system was designed as shown in figure 3. The dis-
tance from the flat surface of the near-null to the test surface
was 293.032 mm. A near-null test system was established, as
shown in figure 16. The interferometer was a ZygoGPI 4”with
a transmissive flat (TF). The near-null test result was obtained
with a PV 5.951λ and an RMS 1.011λ, as shown in figure 17.
After phase and mapping corrections, the surface figure was
recovered, as shown in figure 18, with a PV of 3.053λ and an
RMS of 0.677λ.

For the cross-test, the surface was tested using the stigmatic
null test method with a high-accuracy retro-flat. The test sys-
tem was designed as shown in figure 19. Tracing one ray (the
ray marked in red in figure 19) emitted from the interfero-
meter can help explain the principle of operation of the test

10
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Figure 16. Experimental layout.

Figure 17. Near-null test result.

system. The collimated beam, which is emitted from the inter-
ferometer with a standard TF, hits the test surface. The reflec-
ted beam converges to the focus line of the test surface. The
focus distance of the aspheric cylinder was R/2 = 100 mm.
The reference surface of the TF was located at the focus line.
The normal direction of the TF was the same as the normal dir-
ection of the center of the test surface. Hence, the beam was
reflected at the TF and hit the test surface. The beam was con-
verted to a collimated beam after it was reflected at the test sur-
face, and was transmitted back to the interferometer to inter-
fere with the reference beam in the interferometer. Notably,
the collimated beam that was transmitted back to the interfer-
ometer was flipped about the y-axis compared with the emer-
gent beam from the interferometer. The experimental layout
is illustrated in figure 20. The test results of the stigmatic null
test are shown in figure 21 with a PV of 2.486λ and an RMS of
0.526λ. In the test result, the component of the surface figure

Figure 18. Recovered surface figure.

that is symmetric along the y-axis is doubled, and the compon-
ent of the surface figure that is antisymmetric along the y-axis
is eliminated. The test data of the near-null test are added to
the component that is flipped about the y-axis to compare them
with those of the stigmatic null test. The reconstructed test data
of the near-null test are shown in figure 22 with a PV of 2.903λ
and an RMS of 0.577λ.

The RMS difference of the results shown in figures 21 and
22 is about λ/20. Furthermore, to quantitatively evaluate the
similarity of error distribution of the two results, SSIM index
[37] proposed for image quality assessment was introduced to
compare the two test results. The SSIM index is defined as

Sk(m,n) =
(2µmµn+C1)(2σmn+C2)

(µm2 +µn2 +C1)(σm2 +σn2 +C2)
, (22)

where µm and µn are the grayscale means of two images,
respectively, and σm and σn are the grayscale standard
deviations of the two images, respectively. The constant
C1 = (K1L)2, C2 = (K2L)2„ K1 ≪ 1, K2 ≪ 1, set the val-
ues of K1 = 0.01 and K2 = 0.03. L is the grayscale range for
the 8-bit grayscale image, such that L = 255. The index was
equal to one for two identical images. The SSIM index of the
two test results was S = 0.906. This indicates that the similar-
ity between the surface figure distribution of the two results is
relatively high. Thus, the test accuracy of the proposed near-
null test method was verified.

4. Discussion

Compared with the state-of-the-art flexible null test methods
for testing aspheric cylinders, that is, the yawing CGHmethod
[30], the proposed method is proven to have merits regard-
ing the coaxial design of the test system. The alignment of the
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Figure 19. Test system of the stigmatic null test. (a) Front and (b) top views.

Figure 20. Experimental layout of the stigmatic null test.

Figure 21. Test result of the stigmatic null test.

test surface and null was much easier. Furthermore, only one
translational motion was required to test various aspheric cyl-
inders. The translation motion was easier to conduct, and the
motion accuracy could be controlled by low-coherence inter-
ferometry within±1 µm. In contrast, it is difficult to guarantee
the yaw accuracy in the flexible null-test method by yawing
the CGH. The proposed method can obtain a full aperture sur-
face figure error map using one shot. In contrast, stitching is

Figure 22. Reconstructed test data of the near-null test.

required to obtain the full aperture figure error in the flexible
null-test method by yawing the CGH,which further complexes
the test system and decreases the test accuracy. Moreover, the
proposedmethodwas used to investigate the partial null theory
for aspheric cylinders and the relationship between the partial
null parameters and testable surface parameters. The test abil-
ity of a certain partial null was clearly identified, which has
not been reported in previous methods. The testable aspheric
cylinders were equidistant surfaces with constant shape para-
meters k∙R. These were determined by the shape parameters
of the partial null lens, that is, based on the solution of the
equation kR=−Pf. The investigation in partial null theory
and testability analysis provides an efficient aspheric cylinder
design guide for engineers, who typically construct prototypes
of high-energy laser systems to design a series of aspheric cyl-
inders that can be conveniently and rapidly tested by a certain
partial null. It can also help metrologists design a single par-
tial null or a series of partial nulls for testing various aspheric
cylinders. Therefore, the proposed method can serve as a ref-
erence for engineers who want to use aspheric cylinders in
high-energy laser systems. We believe that this will further
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promote the application of aspheric cylinders in high-energy
laser systems.

The proposed method, however, has a few drawbacks; for
example, only aspheric cylinders with a nearly constant kR
value can be tested by a certain partial null. The measurable
range is relatively narrow. However, additional work, such as
the design of a series of nulls, canmitigate this issue. Prospects
for further development of the proposed method are described
as follows.

(a) One partial null has very limited flexibility. Once the null
optic has been chosen, there is basically no flexibility apart
from the trivial ones: The selection of the position of the
surface under test (which is more or less determined by
the Roc of the surface under test) and the non-null test-
ing capability of the basic interferometer. In that sense,
the advantage of the method compared to state of the art
(CGH) is the better availability of the null optic and the dis-
advantage is that the compensation is not complete. The
partial null was reported herein as a positive cylindrical
lens for testing concave parabolic aspheric cylinders and
near parabolic aspheric cylinders. For aspheric cylinders
with oblate cross-sections, a negative cylindrical lens can
be designed following the processes described in section 2.
To overcome the limited measurement range of the pro-
posed method, a series of partial nulls can be designed to
cover the common k∙R range of aspheric cylinders in cer-
tain applications. This will further improve the flexibility
and measurement efficiency of the aspheric cylinders.

(b) Another method can efficiently broaden the measurement
range of the proposed method instead of using a series
of partial nulls. A CGH can be inserted between the TF
and cylindrical lens to transform the flat wavefront to a
convergent cylindrical wavefront. The cylindrical lens was
located between the focus line of the CGH and the test
surface. By moving the cylindrical lens back and forth rel-
ative to the focus line and varying the distance from the
test surface to the cylindrical lens, a much wider range of
aspheric cylinders can be tested in the near-null test condi-
tion. Various aspheric cylinders with different k∙R values
can be tested without changing the cylindrical null lens. By
optimizing the parameters of the cylindrical null lens, dif-
ferent equidistant surface groups with considerable vari-
ations in the k∙R values can be tested. The method was
verified by testing aspheric surfaces [38]. The application
of the method for testing aspheric cylinders is currently
under investigation. We hope to report our findings on this
matter in the future

(c) Commonly, the residual aberrations existing in near-null
tests are within the phase modulation range/strokes of
the adaptive optics (AO) elements. Introducing AO ele-
ments, such as spatial light modulators and deformative
mirrors, to null the residual aberration of the proposed
method will further turn the near null test to a null test.
The retrace error of near-null tests can be eliminated. Fur-
thermore, the AO elements can enhance the testability of
the proposed method. Near aspheric cylinders, such as free

forms having a base with the shape of an aspheric cylin-
der, can be tested. Moreover, in-process aspheric cylinders
with unknown severe local surface figure errors beyond
the dynamic range of commercial interferometers can be
tested. This is possible if we use an optimization algorithm
to control the AO elements to iteratively generate adaptive
nulls until the interferogram fringes can be resolved. This
adaptive null method for testing aspheric surfaces and free-
form surfaces with base shapes of aspheric surfaces has
already been investigated [39–52]. However, to the best of
our knowledge, the application of the adaptive null method
for testing aspheric cylinders or free-form surfaces with
base shapes of aspheric cylinders has never been reported
previously. This method is currently being researched

5. Conclusions

The proposed method successfully advances the flexible null
test for aspheric cylinders from the stitching to the one-shot
mode, from off-axis and complex configurations to coaxial
and simple configurations. The simple configuration and the
developed near-null data processing method guarantee the
test accuracy of ∼λ/20 RMS. The theoretical analysis shows
the testable aspheric cylinders are equidistant surfaces have a
nearly constant shape parameter k∙R. A practical near-null test
system was developed. Its flexible test capacity, simple con-
figuration, and test accuracy were successfully validated by
testing a concave aspheric cylinder with R= 200 mm, k =−1
and an aperture of 85 × 52 mm2. The proposed method can
help enhance the test efficiency for aspheric cylinders. The
test accuracy verification and testability analyses can serve as
a reference for engineers who intend to use aspheric cylinders
in high-energy laser systems, and promote the application of
aspheric cylinders in high-energy laser systems. However, our
method also has a few drawbacks; for example, a partial null
can only adapt surfaces with a constant shape parameter k∙R,
which is a very narrow test range. Serial partial null, which
enlarges the test range, requires further studies.

Data availability statement

The data generated and/or analysed during the current
study are not publicly available for legal/ethical reasons but
are available from the corresponding author on reasonable
request.

Funding

This work was supported by National Natural Science
Foundation of China (Grant Nos. 52105567, 51835013,
51991371), and Open Project of State Key Laboratory of
Digital Manufacturing Equipment and Technology (Grant No.
DMETKF2020023).

Conflict of interest

The authors declare no conflicts of interest.

13



Meas. Sci. Technol. 32 (2021) 125016 S Xue et al

Author contributions

Shuai Xue: Conceptualization, Methodology, Software, Visu-
alization, Investigation, Writing- Original draft prepara-
tion. Lingwei Kong: Data curation. Yifan Dai: Supervision.
Shanyong Chen: Writing- Reviewing and Editing. Zhifan Lin:
Writing- Reviewing and Editing.

ORCID iD

Shuai Xue https://orcid.org/0000-0002-7390-2326

References

[1] Hodgson N and Weber H 2005 Laser Resonators and Beam
Propagation: Fundamentals, Advanced Concepts and
Applications (Berlin: Springer)

[2] Lü B, Xu S, Hu Y and Cai B 1992 Matrix representation of
three-dimensional astigmatic resonators Opt. Quantum
Electron. 24 619–30

[3] Gu D, Liu W and Zhou Q 2013 The research of wavefront
compensation of a reflective beam shaping system Proc.
SPIE 8904 890415

[4] Huang P, Wu X, To S, Zhu L and Zhu Z 2020 Deterioration of
form accuracy induced by servo dynamics errors and
real-time compensation for slow tool servo diamond turning
of complex-shaped optics Int. J. Mach. Tool Manuf.
154 103556

[5] Kordonsky W, Prokhorov I, Gorodkin G, Jacobs S,
Puchebner B and Pietrowski D 1993 Magnetorheological
finishing Opt. Photon. News 4 16–17

[6] Wyant J and MacGovern A 1970 Computer generated
holograms for testing aspheric optical elements Int. Symp.
Appl. de I’Holographie pp 13–18

[7] Dresel T, Schwider J, Wehrhahn A and Babin S 1995 Grazing
incidence interferometry applied to the measurement of
cylindrical surfaces Opt. Eng. 34 3531–5

[8] Peng J, Xu H, Yu Y and Chen M 2015 Stitching interferometry
for cylindrical optics with large angular aperture Meas. Sci.
Technol. 26 025204

[9] Peng J, Wang Q, Peng X and Yu Y 2015 Stitching
interferometry of high numerical aperture cylindrical optics
without using a fringe-nulling routine J. Opt. Soc. Am. A
32 1964–72

[10] Peng J, Chen D and Yu Y 2017 Stitching interferometry of a
full cylinder without using overlap areas Meas. Sci.
Technol. 28 085001

[11] Chen D, Peng J, Valyukh S, Asundi A and Yu Y 2018
Measurement of high numerical aperture cylindrical surface
with iterative stitching algorithm Appl. Sci. 8 2092

[12] Chen D, Wang C, Valyukh S, Wu X and Yu Y 2020 Bayesian
uncertainty evaluation of stitching interferometry for
cylindrical surfaceMeasurement 157 107626

[13] Reardon P, Liu F and Geary J 2010 Schmidt-like corrector
plate for cylindrical optics Opt. Eng. 49 053002

[14] Xue S, Dai Y, Zeng S, Chen S, Tian Y and Shi F 2021
Interferometric stitching method for testing cylindrical
surfaces with large apertures Opt. Express 29 19767–89

[15] Peng J, Chen D, Guo H, Zhong J and Yu Y 2018 Variable
optical null based on a yawing CGH for measuring steep a
cylindrical surfaces Opt. Express 16 20306–18

[16] Liu H, Hao Q, Zhu Q and Sha D 2004 Testing an aspheric
surface using part-compensating lens Trans. Beijing Inst.
Technol. 24 625–8

[17] Hao Q, Li T, Hu Y, Wang S, Ning Y, Tan Y and Zhang X 2017
Vertex radius of curvature error measurement of aspheric
surface based on slope asphericity in partial compensation
interferometry Opt. Express 25 18107–21

[18] Liu D, Yang Y, Tian C, Luo Y and Wang L 2009 Practical
methods for retrace error correction in nonnull aspheric
testing Opt. Express 17 7025–35

[19] Liu D, Shi T, Zhang L, Yang Y, Chong S and Shen Y 2014
Reverse optimization reconstruction of aspheric figure error
in a non-null interferometer Appl. Opt. 53 5538–46

[20] Greivenkamp J and Gappinger R 2004 Design of a non-null
interferometer for aspheric wavefronts Appl. Opt.
43 5143–51

[21] Gappinger R and Greivenkamp J 2004 Iterative reverse
optimization procedure for calibration of aspheric
wave-front measurements on a nonnull interferometer Appl.
Opt. 43 5152–61

[22] Tian C, Yang Y and Zhuo Y 2012 Generalized data reduction
approach for aspheric testing in a non-null interferometer
Appl. Opt. 51 1598–604

[23] Zhang L, Liu D, Shi T, Yang Y and Shen Y 2013 Practical and
accurate method for aspheric misalignment aberrations
calibration in non-null interferometric testing Appl. Opt.
52 8501–11

[24] He Y, Hou X, Quan H and Song W 2015 Retrace error
reconstruction based on point characteristic function Opt.
Express 23 28216–23

[25] Shi T, Liu D, Zhou Y, Yan T, Yang Y, Zhang L, Bai J, She Y,
Miao L and Huang W 2017 Practical retrace error
correction in non-null aspheric testing: a comparison Opt.
Commun. 383 378–85

[26] Malacara D 2007 Optical Shop Testing (New York: Wiley)
[27] Dall H 1947 A null test for paraboloids J. Br. Astron. Assoc.

57 201–5
[28] Wu F 1997 Design of compensator for null test of aspherical

surface interferometer J. Appl. Opt. 18 10–13
[29] Mahajan V 2010 Orthonormal aberration polynomials for

anamorphic optical imaging systems with rectangular
pupils Appl. Opt. 49 6924–9

[30] Peng J, Ge D, Yu Y, Wang K and Chen M 2013 Method of
misalignment aberrations removal in null test of cylindrical
surface Appl. Opt. 52 7311–23

[31] Peng J, Yu Y and Xu H 2014 Compensation of high-order
misalignment aberrations in cylindrical interferometry
Appl. Opt. 53 4947–56

[32] Zeng X, Zhang X, Xue D, Zhang Z and Jiao J 2018 Mapping
distortion correction in freeform mirror testing by
computer-generated hologram Appl. Opt. 57 F56–61

[33] Novak M, Zhao C and Burge J 2008 Distortion mapping
correction in aspheric null testing Proc. SPIE 7063 706313

[34] Zemax Corp., Zemax OpticsStudio 20.2 User Manual
[35] Noll R 1976 Zernike polynomials and atmospheric turbulence

J. Opt. Soc. Am. 66 207–11
[36] Xue S, Chen S, Shi F and Lu J 2016 Sub-aperture stitching test

of a cylindrical mirror with large aperture Proc. SPIE
9684 96840C

[37] Wang Z, Bovik A, Sheikh H and Simoncelli E 2004 Image
quality assessment: from error visibility to structural
similarity IEEE Trans. Image Process. 13 600–12

[38] Xue S, Chen S and Tie G 2018 Near-null interferometry using
an aspheric null lens generating a broad range of variable
spherical aberration for flexible test of aspheres Opt.
Express 26 31172–89

[39] Pruss C and Tiziani H 2004 Dynamic null lens for
aspheric testing using a membrane mirror Opt. Commun.
233 15–19

[40] Fuerschbach K, Thompson K and Rolland J 2014
Interferometric measurement of a concave, φ-polynomial,
Zernike mirror Opt. Lett. 39 18–21

14

https://orcid.org/0000-0002-7390-2326
https://orcid.org/0000-0002-7390-2326
https://doi.org/10.1007/BF00619621
https://doi.org/10.1007/BF00619621
https://doi.org/10.1016/j.ijmachtools.2020.103556
https://doi.org/10.1016/j.ijmachtools.2020.103556
https://doi.org/10.1364/OPN.4.12.000016
https://doi.org/10.1364/OPN.4.12.000016
https://doi.org/10.1117/12.215456
https://doi.org/10.1117/12.215456
https://doi.org/10.1088/0957-0233/26/2/025204
https://doi.org/10.1088/0957-0233/26/2/025204
https://doi.org/10.1364/JOSAA.32.001964
https://doi.org/10.1364/JOSAA.32.001964
https://doi.org/10.1088/1361-6501/aa6f8d
https://doi.org/10.1088/1361-6501/aa6f8d
https://doi.org/10.3390/app8112092
https://doi.org/10.3390/app8112092
https://doi.org/10.1117/1.3421652
https://doi.org/10.1117/1.3421652
https://doi.org/10.1364/OE.428713
https://doi.org/10.1364/OE.428713
https://doi.org/10.1364/OE.26.020306
https://doi.org/10.1364/OE.26.020306
https://doi.org/10.1364/OE.25.018107
https://doi.org/10.1364/OE.25.018107
https://doi.org/10.1364/OE.17.007025
https://doi.org/10.1364/OE.17.007025
https://doi.org/10.1364/AO.53.005538
https://doi.org/10.1364/AO.53.005538
https://doi.org/10.1364/AO.43.005143
https://doi.org/10.1364/AO.43.005143
https://doi.org/10.1364/AO.43.005152
https://doi.org/10.1364/AO.43.005152
https://doi.org/10.1364/AO.51.001598
https://doi.org/10.1364/AO.51.001598
https://doi.org/10.1364/AO.52.008501
https://doi.org/10.1364/AO.52.008501
https://doi.org/10.1364/OE.23.028216
https://doi.org/10.1364/OE.23.028216
https://doi.org/10.1016/j.optcom.2016.09.034
https://doi.org/10.1016/j.optcom.2016.09.034
https://doi.org/10.1364/AO.49.006924
https://doi.org/10.1364/AO.49.006924
https://doi.org/10.1364/AO.52.007311
https://doi.org/10.1364/AO.52.007311
https://doi.org/10.1364/AO.53.004947
https://doi.org/10.1364/AO.53.004947
https://doi.org/10.1364/AO.57.000F56
https://doi.org/10.1364/AO.57.000F56
https://doi.org/10.1364/JOSA.66.000207
https://doi.org/10.1364/JOSA.66.000207
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1364/OE.26.031172
https://doi.org/10.1364/OE.26.031172
https://doi.org/10.1016/j.optcom.2004.01.030
https://doi.org/10.1016/j.optcom.2004.01.030
https://doi.org/10.1364/OL.39.000018
https://doi.org/10.1364/OL.39.000018


Meas. Sci. Technol. 32 (2021) 125016 S Xue et al

[41] Zhang L, Zhou S, Li D, Li J and Yu B 2018 Model-based
adaptive non-null interferometry for freeform surface
metrology Chin. Opt. Lett. 16 081203

[42] Zhang L, Zhou S, Li D, Liu Y, He T, Yu B and Li J 2018 Pure
adaptive interferometer for free form surfaces metrology
Opt. Express 26 7888–98

[43] Zhang L, Zhou S, Li J and Yu B 2019 Deep neural network
based calibration for freeform surface misalignments in
general interferometer Opt. Express 27 33709–23

[44] Zhang L, Li C, Xiao Huang Y, Zhang S Z, Li J and Yu B
2020 Compact adaptive interferometer for unknown
freeform surfaces with large departure Opt. Express
28 1897–912

[45] Huang L, Choi H, Zhao W, Graves L and Kim D 2016
Adaptive interferometric null testing for unknown freeform
optics metrology Opt. Lett. 41 5539–42

[46] Kacperski J and Kujawinska M 2006 Active, LCoS based laser
interferometer for microelements studies Opt. Express
14 9664–78

[47] Cashmore M, Hall S and Love G 2014 Traceable
interferometry using binary reconfigurable holograms Appl.
Opt. 53 5353–8

[48] He Y, Huang L, Hou X, Fan W and Liang R 2017 Modeling
near-null testing method of a freeform surface with a
deformable mirror compensator Appl. Opt. 56 9132–8

[49] Cao Z, Xuan L, Hu L, Liu Y, Mu Q and Li D 2005
Investigation of optical testing with a phase-only liquid
crystal spatial light modulator Opt. Express 13 1059–65

[50] Xue S, Chen S, Fan Z and Zhai D 2018 Adaptive wavefront
interferometry for unknown free-form surfaces Opt.
Express 26 21910–28

[51] Xue S, Chen S, Tie G and Tian Y 2019 Adaptive null
interferometric test using spatial light modulator for
free-form surfaces Opt. Express 27 8414–28

[52] Xue S, Chen S, Tie G, Tian Y, Hu H, Shi F, Peng X and
Xiao X 2019 Flexible interferometric null testing for
concave free-form surfaces using a hybrid refractive and
diffractive variable null Opt. Lett. 44 2294–7

15

https://doi.org/10.3788/COL201816.081203
https://doi.org/10.3788/COL201816.081203
https://doi.org/10.1364/OE.26.007888
https://doi.org/10.1364/OE.26.007888
https://doi.org/10.1364/OE.27.033709
https://doi.org/10.1364/OE.27.033709
https://doi.org/10.1364/OE.380889
https://doi.org/10.1364/OE.380889
https://doi.org/10.1364/OL.41.005539
https://doi.org/10.1364/OL.41.005539
https://doi.org/10.1364/OE.14.009664
https://doi.org/10.1364/OE.14.009664
https://doi.org/10.1364/AO.53.005353
https://doi.org/10.1364/AO.53.005353
https://doi.org/10.1364/AO.56.009132
https://doi.org/10.1364/AO.56.009132
https://doi.org/10.1364/OPEX.13.001059
https://doi.org/10.1364/OPEX.13.001059
https://doi.org/10.1364/OE.26.021910
https://doi.org/10.1364/OE.26.021910
https://doi.org/10.1364/OE.27.008414
https://doi.org/10.1364/OE.27.008414
https://doi.org/10.1364/OL.44.002294
https://doi.org/10.1364/OL.44.002294

	Near-null interferometric test of aspheric cylinders utilizing a partial null lens
	1. Introduction
	2. Material and methods
	2.1. Partial null theory for aspheric cylinders
	2.2. Data processing of near-null test for aspheric cylinders
	2.3. Error analyses

	3. Results
	4. Discussion
	5. Conclusions
	References


