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Abstract 
 

In this paper, we study the positive solutions of nonlinear singular two-point boundary value 
problems for second-order impulsive differential equations. The existence of positive solutions 
is established by using the fixed point theorem in cones. 
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1 Introduction 
 
Impulsive and singular differential equations play a very important role in modern applied 
mathematics due to their deep physical background and broad application. In this paper, we 
consider the existence of positive solutions of  
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In recent years, boundary problems of second-order differential equations with impulses have 
been studied extensively in the literature (see for instance [1-9] and their references). In [1], Lin 
and Jiang studied the second-order impulsive differential equation with no singularity and 
obtained two positive solutions by using the fixed point index theorem in cones. However they did 
not consider the case when the function is singular. Motivated by the work mentioned above, we 
study the positive solutions of nonlinear singular two-point boundary value problems for second 
order impulsive differential equations (1.1) in this paper. Our argument is based on the fixed point 
theorem in cones. 
  
Moreover, for the simplicity in the following discussion, we introduce the following hypotheses.  
 

1( )H :      There exists an 0 0ε >  such that ( )f t x,  and ( )kI x  are nonincreasing in 0x ε≤ , for 

each fixed [0 1]t ∈ ,   

2( )H :      For each fixed 00 θ ε< ≤   
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Theorem 1. Assume that 1 4( ) ( )H H−  are satisfied. Then problem (1.1) has at least one positive 

solution x .Moreover, there exists a 0θ ∗ >  such that  
 

 

 

2 Preliminary    
 
In order to define the solution of (1.1) we shall consider the following space.  

Let ,  
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Definition 2.1:  A function 2( ) ( )x PC J R C J R′ ′∈ , ∩ ,  is a solution of (1 1).  if it satisfies the 

differential equation 
  

 

 

and the function x  satisfies the conditions ( ) ( ) ( ( ))
kt t k k k kx x t x t I x t+ −

=′ ′ ′∆ | = − = − ,  and the 

Dirichlet boundary conditions (0) (1) 0x x= = .   
 

Lemma 2.1[9] : If x  is a solution of the equation  
 

                     (2.1) 

 
then x  is a solution of (1.1), where G(t,s) is the Green’s function to the Dirichlet boundary value 
problem 0, (0) (1) 0,x x x′′− = = =   
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One can find that   
 

                 (2.2) 
 

By using (2.1)and (2.2),we know that for every solution of problem(1.1) .One has 
 

 

 

 

 

 

 

3 Main Results   
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( )i  Ax x|| ||> ,  for   

( )ii  ( )x A xµ≠ ,  for [0 1)µ ∈ ,  and Rx K∈∂Ω ∩   

 

Then A has a fixed point in .  

 
Proof.  In applications below, we take ( )E C I R= ,  and define  
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One may readily verify that K  is a cone in E . Now, let 0r >  such that 
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and let R r>  be chosen large enough later.  
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i.e. Ax K∈  so ( )R rA \ K K: Ω → .Ω ∩   

 

It is clear that A is continuous and completely continuous.  
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Next we show that if R is large enough ,thenAx xµ ≠  for any Rx K∈ ∂Ω∩  and 0 1µ≤ < .  

If this is not true ,then there exist  and 00 1µ≤ <  such that 0 0 0Ax xµ = .  Thus 

0x R r|| ||= >  and 0( ) (1 )x t t t R≥ − .  Note that 0( )x t  satisfies  
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Consequently, we obtain that  
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of Theorem 1.  
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