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Abstract 

To remove the confusion of concepts about different sorts of geographical space and dimension, a new 
framework of space theory is proposed in this paper. Based on three sets of fractal dimensions, the geographical 
space is divided into three types: real space (R-space), phase space (P-space), and order space (O-space). The 
real space is concrete or visual space, the fractal dimension of which can be evaluated through digital maps or 
remotely sensed images. The phase space and order space are both abstract space, the fractal dimension values of 
which cannot be estimated with one or two maps or images. The dimension of phase space can be computed by 
using time series, and that of order space can be determined with cross-sectional data in certain time. Three 
examples are offered to illustrate the three types of spaces and fractal dimension of geographical systems. The 
new space theory can be employed to explain the parameters of geographical scaling laws, such as the scaling 
exponent of the allometric growth law of cities and the fractal dimension based on Horton’s laws of rivers. 

Keywords: Generalized space, Fractal dimension, Allometric growth, Scaling relation, River systems, Urban 
systems, Symmetry 

1. Introduction 

Fractals provide a new ways of looking at geographical phenomena and a new tool for geographical spatial 
analysis. Since fractal geometry came out, many of our theories in human and physical geography have been 
being reinterpreted by using concepts from fractals (Batty, 1992). Though we make great progress in theoretical 
exploration of geographical fractals, we meet many puzzling questions which cannot be answered in terms of 
traditional notion of space. For example, if the dimension of urban boundaries is estimated by means of the 
area-perimeter scaling relation, the value is expected to come between 1 and 2. However, some cases make 
exceptions, and the results are less than 1 or greater than 2. The fractal dimension of river systems is another 
pending question (Chen, 2009). Evaluating the fractal dimension of a river network with Horton’s laws, we can 
find that the values sometimes go beyond the lower limit 1 and upper limit 2 (LaBarbera and Rosso, 1989). In 
short, lots of dimension problems associated with power laws in geography such as the law of allometric growth 
have been puzzling geographers for a long time. 

The root of the problems lies in the concept of geographical space. We confuse the real space which can be 
recognized directly and the abstract space which cannot be perceived directly. When we calculate the fractal 
dimension of a city’s form through a digital map, we face a real geographical space, which can be felt visually. 
However, if we study the rank-size distribution of cities, we will meet fractal dimensions which are not subject to 
real geographical space. Similarly, the fractal dimension of river systems based on Horton’s laws is actually 
defined in an abstract space rather than in real space. Therefore, the fractal dimension values cannot be always 
confined by the topological dimension and Euclidean dimension of the embedding space in which a fractal body 
exists (see Vicsek, 1989 for the concept of embedding space). 

In a sense, geography is a science on geographical space. Geographical space used to be defined by distance 
variable (Johnston, 2003). However, because of scaling invariance of geographical phenomena, distance is not 
always sufficient for us to define a space. It is necessary to employ the concept of dimension to make spatial 
analyses. Space and dimension are two conjugated concepts. Where there is a concept of space, there is a 
concept of dimension, and vice versa. Fractal dimension is the dimension of space, and geographical space is the 
space with certain dimension. The notion of dimension used to be in the domain of theoretical science. However, 
because of fractal geometry, the dimension concept evolves from theoretical sciences into empirical sciences. 
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Many geographical phenomena or even geography itself have fractal nature (Goodchild and Mark, 1987; Batty, 
1992). It is essential for us to make geo-spatial analyses by using the ideas of fractal dimension. Now, in both 
physical geography and human geography, we meet a kind of fractal dimensions which fail to measure the real 
geographical space. This suggests that there is generalized geographical space which cannot be felt visually and 
cannot be characterized with the common fractal dimension. Thus, we have to face new problems: what is the 
abstract space, and how to understand it and measure it? 

In this paper, geographical spaces are classified as three types in theoretical perspective, and the fractal 
dimensions in a broad sense corresponding to these spaces are put in order. Section 2 presents new definitions of 
geographical spaces and dimensions based on allometric scaling relations, section 3 gives several examples to 
illustrate these spaces and dimensions, and section 4 shows how to apply these notions to concrete geographical 
scaling analysis. Finally, the paper is concluded with summary and remarks. 

2. Definitions 

2.1 Allometric Growth, Fractal Dimension, and Generalized Space 

The concepts of geographical space and dimension can be demonstrated by means of the law of allometric 
growth. The problem of dimension coming from the allometric relations that once puzzled many geographers 
(Lee, 1989). Today, the allometric scaling relation is very useful in geographical analysis, especially in urban 
spatial analysis (Batty, 2008; Batty et al., 2008; Bettencourt et al., 2007; Chen, 2010a; Samaniego and Moses, 
2008). In fact, the allometric scaling exponent is associated with fractal dimension (Batty and Longley, 1994; 
Chen, 2010a). Based on the fractal notion defined by Mandelbrot (1983), we can comprehend geographical 
fractals from two perspectives. One is scaling invariance (scale-free), or scaling symmetry, which can be 
formulated as a functional equation 

)()( xfxf   ,                                (1) 

where α refers to the scaling exponent, and λ to the scale factor. The other is dimensional 
consistency/homogeneity, which can be formulated as geometrical measure relations between line (L, d=1), area 
(A, d=2), volume (V, d=3), and generalized volume (M, d) in the form 

fdMVAL /13/12/11/1  ,                           (2) 

where df denotes an Euclidean or fractal dimension. This implies that a measure will be proportional to another 
one if and only if the two measures share the same dimension. 

Now let’s take the allometric relation between urban area (S) and population (P) as an example to show how to 
understand the fractal concept in urban geography. This example can be generalized to physical domain. The 
allometric growth law indicates that the rate of relative growth of urban area is a constant fraction of the rate of 
relative growth of urban population. The allometric equation can be expressed as 

bxPxS )()(  ,                                 (3) 

where b is a scaling exponent, x represents time (x=t) in the dynamic process of urban evolvement, or denotes 
rank (x=k) in a hierarchy of cities, or refers to radius (x=r) of city form. No matter what x is, for a given time or 
a specified rank, the measures S and P can be connected with one certain city. Let b=Ds/Dp. Introducing a 
common scale R with dimension d=1 into equation (3), we have 

RRPRS DD  ps
/1/1 )()( .                             (4) 

where R is the maximum average radius of urban area. The geometric measure relation can be decomposed as 
follows 

s)( DRRS  ,                                 (5) 

p)( DRRP  .                                 (6) 
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Considering the scale-free nature of urban form as fractals (Batty and Longley, 1994; Frankhauser, 1994), we 
cannot determine the value of the maximum radius in theory. Thus we should adopt a variable radius r to replace 
the constant R, then equations (5) and (6) change to the following power laws 

s)( DrrS  ,                                  (7) 

p)( DrrP  ,                                  (8) 

where Ds refers to the fractal dimension of urban form, and Dp to the fractal dimension of urban population.  

If we reverse the path and go from equations (7) and (8) to equation (3), we can see that the scaling exponent of 
allometric relations is the ratio of fractal dimension of urban form to that of urban population. The dimension 
values may be different from city to city, but the ratios tend to be equal on the average. On the other hand, the 
fractal dimension is a spatial uniformity index: a geographical phenomenon has a higher dimension value the 
more homogeneous it becomes. Therefore, if urban land use area grows rapider than population does, it will 
show a result b>1 according to equation (3), and thus Ds>Dp, which just consists with the given relation b=Ds/Dp. 

To sum up, if x=r, we have a fractal dimension in its narrow sense; however, if x=t or x=k, the dimension does 
not belong to real geographical space commonly understood by geographers, the parameters b=Ds/Dp is in fact 
the dimensions ratio in an abstract space. In other words, the dimension based on time series or hierarchical 
structure is different from that based on network or pure spatial form. In order to avoid confusing concepts, it is 
necessary to define new types of geographical space to adopt these dimensions.  

2.2 RPO: Definition of Generalized Geographical Space 

For explaining the fractal dimension of both the human systems (e.g. urban systems) and physical systems (e.g. 
river systems), we’d better categorize the geographical spaces into three types: real space (R-space), phase space 
(P-space), and order space (O-space). 

1) Real space. This is the common geographical space which can be reflected by maps or remote sensing images 
(RSI), and so forth. The real form, relation, location, and neighborhood of geographical phenomena are always 
given in this kind of spatial way. Real space can be represented with Cartesian coordinates systems familiar to 
geographers. 

2) Phase space. It can be described by time series of geographical systems. Phase space is a concept taken from 
physics, but it is very helpful in reflecting the regularity in the temporal series of geographical evolution. For a 
physical system with n degrees of freedom, we can define a 2n-dimensional space with coordinates (x1, x2,…, xn, 
y1, y2, …, yn), where xi describes the degrees of freedom of the system and yi are the corresponding momenta 
(i=1,2,…, n). As the system changes with time, the representative points trace out a curve in phase space, which 
is known as a trajectory. The notion of phase space can be generalized to geographical field. Using two time 
series, say, a time series of urban area and that of urban population, to make a Cartesian coordinate system, we 
will have a very simple phase space pattern. 

3) Order space. This kind of space is defined by referring to the definition of phase space. However, it is not 
characterized by time series data, but by hierarchical data or cross-sectional data, including the geographical data 
based on rank and order (level). In theory, the function based on rank and that based on order can be transformed 
into each other (Chen and Zhou, 2006). For example, let k be city rank based on population size (k=1, 2, 3 …). 
Suppose P(k) refers to the population of the kth city, and S(k) to the urban area of the corresponding city. P(k) 
and S(k) can support a order space in a Cartesian coordinate system. 

The three types of space defined for geographical systems are independent of one another. However, there exists 
translational symmetry between one space and another one. For instance, if we have a map or an RSI of a city, 
we can examine the city in real space, turning the sample data into Cartesian coordinates if necessary. If we have 
more than one time series based on different measures (say, area, population) of the city, we can examine the city 
in phase space. Further, if we have some kind of data of a system of cities, and the city number is great enough, 
we can examine the cities in order space in given time. It should be pointed out that the concept of phase space 
defined in this paper is somewhat different from that in physics. In fact, the concept of phase space in physics 
encompasses both the concept of phase space and that of order space defined here. The reason why geographical 
space is classified into three types is that we have three sets of fractal dimension corresponding to space, time, 
and class respectively (Table 1). 
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2.3 Fractal Dimensions of the Different Spaces 

Now, we can take systems of cities as an example to illuminate the dimensions of different geographical spaces. 
It has been demonstrated that a hierarchy of cities can be characterized with a set of exponential functions based 
on the top-down order m (Chen and Zhou, 2006), namely 

1
1

 m
fm rff ,                                   (9) 

m
pm rPP  1

1 ,                                  (10) 

m
sm rSS  1

1 ,                                  (11) 

where m=1, 2, …, M is ordinal number (M is the class number), fm represents the number of cities at a given 
order/level, Pm denotes the mean population size of order m, and Sm is the mean area of the fm cities, 
corresponding to the mean population Pm. The ratio parameters can be expressed as below: rf=fm+1/fm, rp= 
Pm/Pm+1, rs=Sm/Sm+1. As for the coefficients, f1 refers to the number of the primary city (f1=1), P1 to the population 
of the largest city, and S1 to the urban area of the top-class city. 

A set of power laws can be derived from equations (9) to (11). Starting from equations (9) and (10), a scaling 
relation can be obtained as 

D
mm Pf   ,                                   (12) 

in which µ=f1P1
D, D=lnrf/lnrp. Equation (12) can be termed as “size-frequency relation”, and D is just the ‘fractal 

dimension’ of urban hierarchies. Similarly, combining equations (9) and (11) yields 

  mm Sf ,                                    (13) 

where the parameters may be written as κ=f1S1
ν, ν=lnrf/lnrs. Equation (13) can be named “area-frequency 

relation”. Further we can derive the well-known allometric scaling relation between urban area and population 
from equations (10) and (11) such as 

b
mm PS  ,                                    (14) 

where η=S1P1
-b, b=lnrs/lnrp. Equation (14) can be called “area-population relation”, and it is equivalent to the 

allometric growth law of the urban area and population (Batty and Longley, 1994; Chen, 2010a; Lee, 1989; Lo, 
2002; Woldenberg, 1973).  

The scaling laws of urban hierarchies are involved with three basic measures: number, f, size, P, and area, S. 
Number is associated with network of cites, size with urban population, and area with urban form. Suppose that 
the dimensions corresponding to number measure, size measure, and area measure are Df, Dp, and Ds, 
respectively. According to the relation of geometrical measures, we have 

)O(
p

)O(
f / DD

mm Pf  ,                               (15) 

where Df
(o) is the fractal dimension based on the measure f, and Dp

(o) the dimension on the measure P, both of 
them are defined in order space (Table 2). Comparing equation (15) with equation (12) gives 

)R(
p

)R(
f

)O(
p

)O(
f

p

f

ln

ln

D

D

D

D

r

r
D  .                            (16) 

where Df
(R)

 is the fractal dimension corresponding to the measure f, and Dp
(R) the fractal dimension 

corresponding to the measure P defined in the real space. The notation of arrow “→” means “approach to”. Both 
Df

(R) and Dp
(R) can be estimated with the radius-number scaling relation, or box-counting method or grid method 
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in real space (Batty and Longley, 1994; Benguigui et al., 2000; Feng and Chen, 2010a; Frankhauser, 1998). 
Similarly we get 

)O(
p

)O(
s / DD

mm PS                                  (17) 

and 

)O(
s

)O(
f / DD

mm Sf  ,                               (18) 

where Ds
(o) is the fractal dimension corresponding to S. Then we find the relationships between dimensions and 

the scaling exponent v as well as b, which can be formulated as 

)R(
s
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and 

)R(
p

)R(
s

)O(
p

)O(
s

p

s

ln

ln

D

D
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D

r

r
b  ,                           (20) 

where Ds
(R)

 is the dimension corresponding to S in the real space. 

According to ergodicity theory (Harvey, 1971; Walters, 2000) and some empirical evidences (Chen and Lin, 
2009), equations (9) to (11) can be generalized to time domain in terms of symmetry analysis (Chen, 2009). Then, 
based on a bottom-up order, we have 

T
fT rff  1

1 ,                                (21) 

1
1

 T
pT rPP ,                                (22) 

1
1

 T
sT rSS ,                                (23) 

where T denotes the level of ‘urban age’ indicative of temporal dimension of urban evolution (Vining, 1977), fT 
refers to the number of cities of age T (T=1, 2, .., ), and PT and ST to the mean population size and mean area of 
the fT cities, respectively. The parameters can be expressed as follows: rf=fT/fT+1, rp= PT+1/PT, rs=ST+1/ST. As for 
the coefficients, f1 refers to the number of the smallest cities, P1 and S1 to the average population and area of the 
f1 cities. 

Three power laws can be derived from equations (21) to (23). Corresponding to equation (12), the first one is 

D
TT Pf   ,                                 (24) 

in which µ=f1P1
D, D=lnrf/lnrp. Corresponding to equation (13), the second one is 

  TT Sf .                                 (25) 

where κ=f1S1
ν, ν=lnrf/lnrs. Corresponding to equation (14), the third one is 

b
TT PS  ,                                  (26) 

where η=S1P1
-b, b=lnrs/lnrp. This is also the longitudinal allometric relation between urban area and population. 

Equation (14) can be associated with the cross-sectional allometry, while equation (26) represents the 
longitudinal allometry. Both equation (14) and equation (26) are concrete forms of equation (3). By equations 
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(24) to (26), we can derive three dimensions of phase space: Df
(P)

 refers to the dimension corresponding to 
number f, Dp

(P) to the dimension corresponding to size P, and Ds
(P) to the dimension corresponding to area S. All 

of these dimensions are tabulated here for the purpose of comparison (Table 2). 

The real space is easy to understand, and the phase space is familiar to some geographers. However, the order 
space is first defined in this paper. Although order space bears an analogy with phase space, and in practice, 
order space is always regarded as phase space, it is necessary for us to make the concept clear in geographical 
context. For illustrating the three types of geographical spaces and the corresponding dimensions, several 
examples are presented in next section. 

3. Examples 

3.1 An Example of Real Space 

The first example is about the real space of Beijing city, the national capital of China, the fractal dimension of 
which can be directly computed by area/number-radius scaling relation. We can take the urban population and 
land use area as two measures to show how to estimate fractal dimension as well as the allometric scaling 
exponent. The fifth census dataset of China in 2000 and the land use dataset of Beijing in 2005 are available. The 
urban growth core of Beijing, Qianmen, is taken as the center, and a set of concentric circles are drawn at regular 
intervals. The width of an interval represents 0.5 kilometers (km) on the earth’s surface. The land use area 
between two circles can be measured with the number of pixels on the digital map, and it is not difficult to 
calculate the area with the aid of ArcGIS software. In this way, the land use density can be easily determined. 
The population within a ring is hard to evaluate because the census is taken in units of jie-dao (sub-district) and 
each ring runs through different jie-daos. This problem is resolved by estimating the weighted average density of 
the population within a ring (Chen, 2010b). 

Using the datasets of urban land use area and population, we can estimate the allometric scaling exponent of 
urban form. For real space, the allometric scaling relation is a typical geometric measure relation. According to 
the scaling pattern, the geographical space of Beijing city can be divided into two scaling ranges, which remind 
us of bi-fractals of urban land-use structure (White and Engelen, 1993; White and Engelen, 1994). The bi-fractal 
pattern is often related with self-affine growth of a city. In the first scaling range (0~7km), the allometric scaling 
relation is 

121.1
11 )(263.1)( rPrS  , 

where r refers to the distance from the center of the city (r=0), P(r) to the population within a radius of r km of 
the city center, S(r) to the built-up area of urban land use. The goodness of fit is about R2=0.999. In the second 
scaling range (7.5-48km), the allometric scaling relation is 

417.0
22 )(825.45)( rPrS  . 

The goodness of fit is around R2=0.976 (Figure 1). 

The first model reflects the spatial feature of urban core (0~7km), and the allometric scaling exponent is about 
b=1.121. This suggests that urban land use becomes denser the more distant from the city center it is. This is not 
normal. The second model implies the human geographical structure of urban periphery and suburban area, and 
the allometric scaling exponent is about b=0.417. This implies that urban land use becomes less dense the more 
distant from the city center you go. But the b value is too low. The line of demarcation between the two scaling 
ranges appears at about 7 kilometer. In fact, for the real space, the fractal dimension of Beijing’s urban 
population distribution and land use can be directly estimated by using the area/number-radius scaling. This kind 
of dimension is called radial dimension (Frankhauser and Sadler, 1991; White and Engelen, 1993). For the urban 
land use in 2005, the fractal model is 

904.1534.3)( rrS  . 

The goodness of fit is about R2=0.997, and the radial dimension is Ds≈1.904 (Figure 2a). For the spatial 
distribution of urban population in 2005, the fractal model is 

616.1609.8)( rrP  . 
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The goodness of fit is around R2=0.935, and the radial dimension is Dp≈1.616 (Figure 2b). The allometric scaling 
exponent of Beijing from 0 to 48 km can be approximately estimated as b≈1.616/1.904≈0.849. 

This case analysis of Beijing is deficient in preciseness because of two shortcomings. First, the years of sampling 
are not consistent with each other. The population dataset is in 2000, whereas the land use dataset is in 2005. 
Consider the time lag of the correlation between urban population and land use, the inconsistent sampling is 
acceptable, or tolerable at least. After all, the concentration and diffusion of urban population is previous to land 
use. Second, as stated above, the population distribution cannot be modeled by the self-similar fractal based on 
the number-radius scaling. Obviously, the data of urban population cannot be well fitted to the number-radius 
scaling relation. Maybe the population distribution follow the exponential law instead of the power law, maybe 
the spatial distribution of population is of self-affinity rather than self-similarity. Just because of this, the 
allometric scaling relation of urban area and population broke up into two scaling ranges (Figure 1). Despite 
these defects, it is sufficient to show the allometric scaling relation and fractal dimensions of the real space. 

Actually, fractal dimension values depend on the measurement method. If we use the box-counting method to 
research city fractals, the effect is always satisfying; however, if we employ the area/number-radius scaling to 
estimate fractal dimension of a city, the result is not often convincing. The fractal dimension of urban form based 
on the box-counting method comes between 1 and 2. As for Beijing, the box dimension of the area within the 
frame of viewfinding (study area) is about Df

(R)=1.90 in 1999 and Df
(R)=1.93 in 2006 (Figure 3). However, the 

dimension values based on the area-radius scaling can be greater than 2 or less than 1 (White and Engelen, 1993; 
White, et al., 1997). According to Frankhauser (1994), the fractal dimension of Beijing’s city form is about 1.93 
in 1981 (see Batty and Longley, 1994, p242). Today, the radial dimension value is greater than d=2 (Jiang and 
Zhou, 2006). If we examine the population in the region within a radius of 7 km of the city center, the model is 
P(r)=4.555r2.242, the goodness of fit is about R2=0.999. The topic of this paper is not fractal study of urban form, 
but classification of geographical spaces and dimensions. The city of Beijing is only taken here as an example to 
show what is the fractal dimension of the real space. 

3.2 An Example of Phase Space 

The second example is on the phase space of Zhengzhou city, the capital of China’s Henan Province. It is hard to 
calculate its fractal dimension directly. Fortunately, the ratio of one dimension to another can be estimated 
through the allometric scaling relation (Chen and Jiang, 2009). In practice, the fractal dimension ratio is more 
important than fractal dimension values themselves (Chen and Lin, 2009). The variables are urban area and 
population, and the two sample paths of time series range from 1984 to 2004. In other words, we have two 
observational datasets: one is for urban area, and the other, for population size. The linear relation between urban 
area and population is clear in the double logarithmic plot (Figure 4). A least squares computation give the 
following result 

163.1)(331.0)( tPtS  , 

where t refers to time (or year). The goodness of fit is R2=0.969. This implies that the ratio of fractal dimension 
of urban form to that of urban population in phase space is as follows 

.163.1
)P(

p

)P(
s 

D

D
b  

The fact that the dimension of urban form is greater than that of urban population suggests that urban land use 
grew faster than urban population (Chen, 2010a; Lee, 1989). 

Generally speaking, it is almost impossible for us to evaluate the capacity dimension (D0) and information 
dimension (D1) of urban area and population in phase space, but it is very easy for us to estimate the correlation 
dimension (D2) by reconstructing phase space with time series (Figure 5). In a multifractals dimension spectrum 
(Dq, where q denotes the moment order, and -∞<q<∞), the correlation dimension is less than the capacity 
dimension and information dimension (Feder, 1988). However, the ratio of one correlation dimension to another 
correlation dimension can be probably brought into comparison with the ratio of one capacity dimension to 
another capacity dimension. If the dimension of embedding space de=2 as given, then the correlation dimension 
value of urban area in the reconstructed phase space of time series from 1984 to 2004 is estimated as 
Ds2

(P)≈0.843, the goodness of fit is about R2=0.996 (Figure 3a). Accordingly, the correlation dimension of urban 
population is about Dp2

(P) ≈0.773, the goodness of fit is around R2=0.995 (Figure 3b). The ratio of correlation 
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dimension of urban area to that of urban population is 

091.1
773.0

843.0
)P(

p2

)P(
s2

2 
D

D
b , 

where the subscript 2 implies correlation dimension, namely, the order of moment is q=2. This value (b2=1.091) 
is consistent with the result given by the longitudinal allometric relation (b=1.163). 

3.3 An Example of Order Space 

The third example is on the order space of China’s urban system consisting of 664 cities in 2000, the dimension 
of which cannot be directly evaluated, either. The data can be processed through two approaches, which are 
equivalent to each other in theory (Chen and Zhou, 2006). The first is based on rank of size distribution, and the 
other on order of self-similar hierarchy. Based on the rank, the mathematical model is 

812.0927.1 kk PS  , 

where k denotes city rank (k=1,2,…,664), the goodness of fit is R2=0.776 (Figure 6a). This implies that the ratio 
of fractal dimension of urban form to that of urban population in order space is as follows 

812.0
)O(

p

)O(
s 

D

D
b . 

By the method of hierarchical scaling and rescaling, the city size distribution can be converted into a self-similar 
hierarchy (Chen, 2009; Chen, 2010a). Based on the hierarchical order, the model is 

843.0881.1 mm PS  , 

where m indicates urban order in the hierarchy (m=1,2,…,9), the goodness of fit is R2=0.994 (Figure 4b). This 
suggests a fractal dimension ratio such as 

843.0
)O(

p

)O(
s 

D

D
b . 

Apparently, the two results, 0.812 and 0.843, are close to one another empirically. 

4. Applications 

4.1 Explanations of River and City Models 

The theory of RPO spaces and dimensions proposed in this paper can be employed to explain many traditional 
models and related parameters in both physical and human geography. In fractal studies of both river networks 
and urban hierarchies, there exist some difficulties in interpreting the meaning of fractal parameters as well as 
the differences between calculated results and theoretically expected values. The crux of the matter lies in the 
fact that the fractal dimensions based on different kinds of spaces are easily confused with each other. Actually, 
the generalized fractal dimension of order space or phase space (say, similarity dimension) is always treated as 
the dimension of real space (say, box dimension). Once the geographical spaces and dimensions are put in order, 
many problems can be readily resolved. Two examples are presented here to illuminate these questions. 

Hierarchies of cities have been demonstrated to share the same scaling laws with networks of rivers (Chen and 
Zhou, 2006; Chen, 2009). Suppose that the rivers in a system are divided into M levels in a bottom-up order. The 
structure of system of rivers can be formulated as three exponential laws as follows 

m
m rNN  1

b1 ,                                (27) 

1
l1

 m
m rLL ,                                (28) 
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1
a1

 m
m rAA ,                                 (29) 

where m is the increasing order of the hierarchy of rivers (m=1, 2, ,  M), Nm is the number of river branches 
of order m, Lm is the mean length of the branches of order m, and Am is the mean catchment area of the rivers of 
order m corresponding to the mean length Lm. As for the parameters, N1 is the number of the first-order branches, 
rb=Nm/Nm+1 is termed bifurcation ratio; L1 is the mean length of first-order rivers, rl=Lm+1/Lm is the length ratio; 
A1 is the mean catchment area of the first-order rivers, and ra=Am+1/Am is the area ratio. The formula of 
bifurcation ratio, length ratio, and area ratio are actually three translational scaling laws taking on the form of 
geometric series (Williams, 1997). Equations (27) to (29) are just the law of river composition originated by 
Horton (1945) and consolidated by Strahler (1952) and then developed by Schumm (1956).  

It has been shown that river systems have fractal property (LaBarbera and Rosso, 1989; Rodriguez-Iturbe and 
Rinaldo, 2001; Tarboton, et al., 1988; Turcotte, 1997). Turning the bottom-up order into the top-down order 
based on the special symmetry of exponential function (Chen, 2009), a number of power functions can be 
derived from equations (27) to equation (29). Combining equation (27) with equation (28) yields 

D
mm kLN  ,                                 (30) 

where k=N1L1
D, D=lnrb/lnrl, and D is regarded as the fractal dimension of river systems. Similarly, combining 

equation (28) with equation (29) gives an allometric scaling relation 

h
mm cAL  ,                                  (31) 

in which c=L1A1
-b, h=lnrl/lnra, This is actually the generalized Hack’s law (Hack, 1957), and the scaling 

exponent is considered to be relative to fractal dimension (Mandelbrot, 1983; Feder, 1988). Combining equation 
(27) with equation (29) yields 

 mm uAN ,                                 (32) 

where u=N1A1
σ, σ=lnrb/lnra. Obviously, we have 

a

b

ln

ln

r

r
hD  .                               (33) 

In light of the Korcak’s law (Mandelbrot, 1983), σ approaches to 1, then ra≈rb, and thus we have h=lnrl/lnrb 
(Feder, 1988). However, this is not often the case in the real world (Table 2). 

The fractal models of rivers, equations (30) to (32), gave rise to two difficult problems in both theory and 
practice. First, we should clarify the problem related to equation (30). The parameter in equation (30), D, used to 
be taken as the fractal dimension equivalent or even identical to the box dimension indicating real space 
measurement. Thus the value of D should range between 1 (the topological dimension of a river) and 2 (the 
embedding space dimension of rivers). However, the scaling exponent values given by equation (30) are not 
always consistent with the fractal dimension values from the box-counting method. What is more, the D value is 
sometimes beyond the limits 1 and 2 (Table 3). Geographers are always in a puzzle about this kind of 
phenomena. 

The abovementioned difficult problem can be readily solved by using the theory of this paper. In fact, the 
parameter D=lnrb/lnrl is not really a fractal dimension defined in real space, but a generalized fractal dimension 
ratio defined in order space. In terms of geometrical measure relation, we have 

)O(
l

)O(
n / DD

m
D

mm LLN   .                             (34) 

That is 

)R(
l

)R(
b

l

b
(O)
l

)O(
b

ln

ln

D

D

r

r

D

D
D  ,                            (35) 
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where Db
(O) refers to the dimension of a network of rivers, and Dl

(O) to the dimension of watercourses in the order 
space. The former corresponds to the structural fractal dimension of river networks in real space, Db

(R), which 
can be evaluated by the box-counting method; the latter corresponds to textural fractal dimension of riverways in 
real space, Dl

(R), which can be estimated by the Richardson (1961)’s divider method. Generally speaking, 
2>Db

(R)>1.25, 1.75>Dl
(R)>1; therefore we have 2>D>1 frequently. However, as a fractal dimension ratio defined 

in the order space, it is not surprising for D to be less than 1 or greater than 2. In short, D=lnrb/lnrl is the fractal 
dimension ratio of hierarchy of rivers in the order space rather than that of network of rivers in the real space. 

Next, the questions from Hack’s law should be made clear (Hack, 1957). Generally, equation (31) is re-expressed 
as a geometrical measure relation such as 

2/lD
mm AL  ,                                    (36) 

where Dl =2h denotes the fractal dimension of watercourses. Dl is originally expressed as (Feder, 1988) 

b

l

a

l
l r

r

r

r
hD

ln

ln2

ln

ln2
2  ,                               (37) 

which is revised by Tarboton et al. (1988) as 

b

l

a

l

a

l

ln

ln

ln

ln

r

r

r

r
h

D

D
 .                                 (38) 

where Da indicates the fractal dimension of drainage area form. This is apparently a progress in theory, but the 
problem has not been finally resolved. According to the theory of this paper, we have 

)R(
a

)R(
l

a

l
)O(

a

)O(
l

ln

ln

D

D

r

r

D

D
h  ,                               (39) 

)R(
a

)R(
b

a

b
)O(

a

)O(
b

ln

ln

D

D

r

r

D

D
 ,                               (40) 

where Da
(O) refers to the dimension of the drainage area in the order space corresponding to the fractal dimension 

of the drainage basin form in the real space, Da
(R), which is expected to equal 2. Thus, we have Dl

(O) =2h, Db
(O) 

=2σ. However, this is not often the case in the real world. For the real rivers, 2σ values are always greater than 
Db

(O) values (Table 3) . These phenomena cannot be interpreted by the real space theory, but it can be explained 
with the order space theory. 

In urban studies, we have met with the similar problems. The scaling exponent in equation (14), b, is hard to 
understand according to the traditional theory (Lee, 1989). In light of Euclidean geometry, b values should be 2/3 
or 1. However, b values often vary between 2/3 and 1, and the mean of b values approaches to 0.85. In fact, b is 
not a fractal parameter defined in real space, but a fractal dimension ratio defined in phase space (for the 
longitudinal allometry) or order space (for the cross-sectional allometry). Under the ideal conditions, we have 

)R(
p

)O(
p DD  , )R(

s
)O(

s DD  . 

According to Batty and Longley (1994), the mean of Ds
(R) approaches to 1.7. If population distribution is 

self-similar, then Dp
(R) is expected to near 1.7, thus, according to equation (20), we have b≈1; if population 

distribution is not self-similar, the Dp
(R) is expected to equal 2, and consequently we have b=1.7/2=0.85 (Chen, 

2010a). All of these are discussed from the angle of view of statistical average. 

4.2 Ergodicity and Locality 

According to the ergodicity hypothesis (Walters, 2000), if a system is ergodic, we have a formula as “time 
average=space average=phase average”. Ergodicity is a contrast to localization (El Naschie, 2000; Liu and Chen, 
2007). For a system of non-localization, in theory, we have 

)O()P()R( DDD  .                                 (41) 
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This relation is true only when the geographical system is ergodic, and under ideal conditions. A real 
geographical system always has two major, sometimes contradictory, specialities indicative of two different 
trends: one is ergodicity, the other is locality. Because of locality, the above equality always breaks down and is 
replaced by a inequality such as 

)O()P()R( DDD  .                              (42) 

However, ergodicity always appears at the macro level, while locality always appears at the micro level. If a 
sample is so large that it approximates to the population, or if we take an average from a very large sample, the 
result is expected to be 

)O()P()R( DDD  .                              (43) 

That is to say, statistical averages always show ergodicity and screen locality. So, further test of the theory 
proposed in this paper should be made by using the idea of statistical average. 

In practice, fractal dimension values are often difficult to be evaluated, but the ratios of one fractal dimension to 
another fractal dimension are easily estimated by means of allometric growth or geometric measure relations 
(Chen, 2010a). On the other hand, in geographical analysis, the relative numerical values of fractal dimension 
such as fractal dimension ratios are more significant than the absolute numerical values of fractal dimension 
itself. In this sense, this paper proposes a theoretical basis for geographical research by using fractal dimension 
ratios based on the macro level. Especially, as a speculation, equations (41) can be used as a criterion of 
structural optimization of geographical systems.  

5. Conclusions 

Geographers are very familiar with the notion of the real space, and the concept of phase space is familiar to 
theoretical geographers. However, the idea of order space used to be confused with phase space or even real 
space. In essence, the dimension of order space differs from that of real space or phase space. A different kind of 
dimension indicates a different type of space. One of the aims of this paper is to remove confusion over order 
and real space in geography. Division and classification of geographical space are helpful for us to make 
theoretical analysis of geographical systems by means of scaling relations. 

The main points of this paper can be summarized as follows. According to the sorts of dimensions, geographical 
space falls into three types, namely, real space (R-space), phase space (P-space), and order space (O-space), 
which constitutes a RPO framework of geographical space theory. R-space can be represented by maps, images, 
etc. The dimension values of R-space can be directly computed by box-counting method, area/number-radius 
scaling, or Richardson’s method. P-space can be reflected with time series. The dimension of P-space is hard to 
be directly evaluated, but the correlation dimension of time series can be calculated by reconstructing phase 
space. Especially, the ratio of dimensions can be estimated through the longitudinal allometric relations. O-space 
can be reflected by the data based on rank-size distributions or hierarchical structure. The dimension of O-space 
is also difficult to be directly evaluated, but the ratio of dimensions can be easily estimated through 
cross-sectional allometric analysis. 

The significance of developing the theory of generalized geographical spaces and dimensions is as follows. In 
theory, the idea of three-type spaces can be employed to explain the parameters of many scaling laws on 
geographical systems. In practice, the ratios of fractal dimensions are usually more important than fractal 
dimensions themselves. The translational symmetry of different kinds of space may be a criterion of system 
optimization. By means of the concept of RPO spaces, different fractal dimension ratios can be estimated. In 
virtue of different dimensions and ratios of dimensions, we can characterize geographical systems well and make 
in-depth analysis of geographical spatial information. 
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Table 1. The three type of geographical spaces—RPO framework 

Space type Attribute Allometry Phenomenon (example) Relation 

Real space 
(R-space) 

Space Dilation allometry Form, network, pattern, spatial 
distribution, etc. 

)()( rxry   

Phase space 
(P-space) 

Time Longitudinal 
allometry 

Process, evolution, etc. )()( txty   

Order space 
(O-space) 

Class 

(Hierarchy) 

Cross-sectional 
allometry 

Size distribution, hierarchical 
distribution, etc. 

)()( kxky   

Note: In the formulae, r refers to radius, t to time, and k to rank or order. 

 

Table 2. Various dimensions of different types of geographical spaces 

Measure Geographical systems Dimensions of different spaces 

Cities Rivers R-space P-space O-space Euclidean 

Number Number (f) Number (N) )R(
fD  )P(

fD  )O(
fD  fd  

Size Population (P) Length (L) )R(
pD  )P(

pD  )O(
pD  pd  

Area Area (S) Area (A) )R(
sD  )P(

sD  )O(
sD  sd  

 

Table 3. The values of fractal parameter (D), scaling exponent (h), and some related parameters of river systems 
in Jilin Province, China 

River D=lnrb/lnrl R2 h=lnrl/lnra R2 2h≈Dl 1/h σ=Dh 2σ≈Da

The first Songhua river 1.619 0.978 0.583 0.988 1.166 1.715 0.944 1.888

The second Songhua river 1.606 0.899 0.563 0.988 1.126 1.776 0.904 1.808

Huifa river 1.630 0.972 0.543 0.970 1.086 1.842 0.885 1.770

Yinma river 1.343 0.962 0.610 0.941 1.220 1.639 0.819 1.638

Taoer river 0.759 0.878 0.636 0.988 1.272 1.572 0.483 0.965

Eastern Liao river 1.274 0.863 0.627 0.998 1.254 1.595 0.799 1.598

Hun river 1.425 0.970 0.561 0.988 1.122 1.783 0.799 1.599

Peony river 1.549 0.978 0.536 0.992 1.072 1.866 0.830 1.661

Gaya river 1.736 0.799 0.509 0.990 1.018 1.965 0.884 1.767

Source of the original data: Water Conservancy Office of Jin Province, China (1988). Feature Values of Rivers’ 
Drainage Basins in Jilin Province. In the table, R2 represents the goodness of fit. The data were processed by Dr. 
Baolin Li of Chinese Academy of Sciences. 
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Figure 1. The log-log plot of the scaling relation between urban area (in 2005) and population (in 2000) of 
Beijing (The unit of land use area is km, and population, 10 thousands) 

 

 

 
a. Urban land use (2005)                b. Urban population (2000) 

Figure 2. The log-log plots of the urban land use area and population of Beijing in 2000 and 2005 
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Figure 3. The urban fractal landscape of Beijing in 2006 

 

 

 

Figure 4. The log-log plot of longitudinal allomtric relation between urban area and population of Zhengzhou, 
1984-2004 
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a. Urban area correlation (de=2) 

 

b. Urban population correlation (de=2) 

Figure 5. The scaling relationships between urban area and population of Zhengzhou in the reconstructed phase 
space (1984-2004) 
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