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Abstract 
 

A model for the dynamics of homogeneous population competition between two species of 
weeds and a crop is formulated to gain in-sight into the behaviour of crop growing with weeds. 
We used assumptions based upon reasonable biological process to derive from single weed 
model equation, the systems of difference equations that described the dynamics of weed-crop 
competition. Steady- state solutions of the model are obtained and analyzed for local stability or 
otherwise. The results show that the extinction steady state is not stable without control and the 
conditions for stability of two plants steady-states are given. The weed-crop coexistence steady 
state of our model is locally asymptotically stable. Besides, the graphical profile of the model 
shows that the crop’s growth may be stagnated by the weeds’ densities. Hence, we conclude 
that the crop’s growth may be stagnated, but survive in the mixture of the two species of weeds. 
However, application of effective control measure to eradicate the two weeds species will 
enhance crop growth at its optimum capacity. 
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1 Introduction 
 
Weed and Crop are both plants. Crop is a desirable plant mostly cultivated, while weed is 
unwanted plants that always grow naturally. Weeds are generally defined as uncultivated plant 
species that proliferate in agricultural setting thereby, interfering with crop production. In fact, weed 
is a term applied to any plant that grows in a place it is not wanted. They exist only in natural 
environments that have been disturbed by humans such as agricultural lands, recreational parks, 
and irrigation dams [1]. However, plants are very important in the natural world, since they are the 
survival basis for all kinds of creatures, including human being, animals and microorganism [2, 3]. 
The weeds of natural areas often differ from those affecting agricultural fields. The agricultural 
weeds are frequently annuals which colonize bare ground. Weeds of natural areas are often 
perennials or biennials that are capable of invading established natural areas and are hard to get 
rid of.  
 
Population dynamics involve the study of population growth (numerical change in time), 
composition and spatial dispersion. The objectives are to identify the causes of change in 
population and to explain how this cause act and interact to produce the observed pattern. Not 
until recent past population models were concentrated mainly on the use of differential equations. 
Although, most populations such as weeds and organisms whose classification are based on their 
developmental relationships live in seasonal environments and for this reason, have yearly 
rhythms of reproduction (birth) and death. Besides, measurements are often made once a year 
because interest is centred on change in population from one season to another. Continuous-time 
models (differential equations) are not well appropriate to describe these types of dynamical 
processes. Hence, there is need for other modelling techniques, especially when interested in 
population with only annual reproductive tendencies or expected changes that happen seasonally. 
Discrete-time models are better suited for organism with annual or seasonal reproductive patterns 
[4,5,6,7]. Since plant has discrete generations (seasonal reproduction), difference dynamical 
equations are proper mathematical tool to describe the behaviour of population with no 
overlapping generations such as weeds. Furthermore, many researchers  have paid attention in 
recent times to discrete-time population models, since it is governed by discrete systems which are 
more appropriate when the populations under consideration have non over lapping generations [8]. 
 
In this study we intend to employ biological process to develop discrete-time models for the 
dynamics of weed-crop competition. This research work considered homogeneous population 
competition between weeds and crop to understand the deleterious effects and gain in-sight into 
the behaviour of weeds growing with a crop plant. 
  

2 Materials and Methods 
 
2.1 Formulation of the Model Equations  
 
Baseline for studies of population dynamics of weeds as with most plant species are usually on 
analysis of single species in defined habitats and often experimentally manipulated.  
 
In this section, we formulate from the simple model equation proposed to described the dynamics 
of single weed species proliferation as stated in [9], thus 
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This is a non-linear difference equation for the density of mature single-species of weed. 
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In modelling weed-crop interaction in continuous arable cropping, we assumed that an annual crop 
species is sown at approximately the same density each cropping season and two species of 

weeds 1n  and 2n  which may be superior competitors are growing in mixture with the crop                      

(a desirable plant). We observed that, it is rare to find a single weed species growing in a particular 
arable area, although one may be in abundance or dominates. 
 
In order to study the population dynamics of weeds in mixture with crop, the single-species weed 
model (2.1) is first extended to a model of two weed species for the competitive effect of 

introducing the second species 2n  into monoculture of the first 1n . The term tna ,212  is introduced 

to reflect the reduction per capita rate of growth or yield per unit area of the first species. 
Therefore, the dynamics of the mixture is described by the model equation;   
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In the same manner, the addition of the term tna ,121  , crowding density of individuals of the first 

specie 1n into monoculture of the second 2n  will lead to reduction in its growth (second species) 

but may not necessarily be of the same magnitude. Hence, similar model equation is 
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where 11a and 22a  are intra-specific coefficients (competitions) of species 1 and 2, respectively.  

 
In order to study (account for) the effect of one species on the other in the mixture, we find the 
relative crowding effect of each species by normalizing (2.2) and (2.3) via changing of variables, as 
follows; 
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Here 12 and 21  are inter-specific competitions effects of species 2 on 1 and 1 on 2 respectively. 

Therefore, equations (2.4) and (2.5) are coupled non-linear difference equations, which give inter-
species model for competition between homogeneous densities of two weed-species in the 
absence of crop. For the crop interaction, since crop is a plant like weed but a desirable one, when 
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the three plants are competing, their fitness will be adversely affected. Hence, a two-weed species 
competition model equation (2.4) and (2.5) are extended to three competing plants. The dynamics 
of weed proliferation in the presence of crop density is described by a system of difference 
equations (2.6) – (2.8); 
 
Fig. 2.1 is a schematic representation of the model. Subsequent 
 

 
 

Fig. 2.1. Schematic model for weed-crop competition of homogeneous population density 
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where tcN ,  
is the density of established crop seed sown in the growing season, t , which survived 

to maturity and produce seeds for the next season, tN ,1  density of mature weed species 1 in the 

growing season t and tN ,2  is the density of mature weed species 2 in the growing season t. Here, 

c , 1  and 2  are the recruitment factors (the growth factors) of crop and two weed species 

respectively. ic  and ij  are competition coefficients of crop and weeds respectively, while i  

are the residual seeds of the weeds.  
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The following assumptions are taken into consideration in the formulation of the model equations 
for the above ground competitions among established homogeneous densities of two species of 
weed and a crop.  
 

1. There are enough growth resources; e.g. nutrients, light, and water that promote 
continuous growth of at least two plant species. 

2. Between the two populations of weed and crop there are inter- specific competitions. 
3. All the dormant seeds are viable and no predation by insects, 
4. All the crop seeds germinated (so there are no dormant or residual crop seeds) 
5. All parameters involved with the model formulation are non-negatives.  

 
The resulting model equations (2.6) – (2.8) were to establish the conditions in which a crop could 
coexist with two species of weed through their competitive interactions for space with each other 
(since it was assumed that other growth resources are enough). 
 

2.2 Dynamical Behaviour of the Developed Weed-Crop Competition Model 
  
2.2.1 Steady-state solutions and stability analysis 
 
The goal of this section is to employ analytic method to describe the nature and behaviour of our 
model for the two-species of weeds competing with a crop. This will be done without actually 
solving or approximating them, since in contrast with differential equations, the existence and 
uniqueness of solutions of difference equations initial value problems are always guaranteed [10]. 
Usually in the investigation of any dynamical system a primary step is to find its fixed or steady 
state solutions. So, for the steady states (fixed points) of our three-species competition model 
equations (2.6) – (2.8), there are seven steady states of interest; three single-species steady 
states where one species is at carrying capacity and other two are locally extinct, three two-
species steady states when two species co-exist and the third is absent (extinct) and finally, one 
three-species steady state when co-existence among all the three species is possible. To obtain 

these steady-state solutions, we let  ),,( 21 NNNE c  be the solutions of the system (2.6) – (2.8). 

So, zero steady state E0(0, 0, 0) always exist.  For non-zero positive steady state, we let 

ititi NNN  ,1,  in (2.6) - (2.8).  So, we have 

 

12211  cccc NNN  ,              (2.9) 

 

  21211 NNNcc ,                         (2.10) 

 

  21212 NNNcc ,                                   (2.11) 
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 . Here,   and   are the maximum steady-state 

populations of each weed species in the mixture without a control. 
 
The steady-state solutions of interest when two species co-exist while the third is locally extinct 
and when co-existence among all the three species is possible were obtained next.  
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2.2.2 Two- weed species dominance (infestation) 
 

If ,01 N  
and 02 N  but 0cN , this is equivalent to proliferation of two-species of weed 

without a crop. Now equations (2.10) and (2.11) become 

  2121 NN ,         (2.12) 

  

  2121 NN .         (2.13) 

  
Solving equations (2.12) and (2.13) simultaneously, gives the non-negative steady state as 
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E1 exists provided    and 2112    such that   
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Here,   implies that the two weed species have equal possibility to attain their maximum 

densities at the steady state. So, the population density dynamics of the two weeds species 

depend on inter-species competition coefficients, such that 112  and 121   where 2112   . 

 
2.2.3 Crop and weed species dominance 
  

If 02 N  and ,0,01  cNN equations (2.9) and (2.10) become 
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  11 NNcc .         (2.16) 

  
Solving equations (2.15) and (2.16) simultaneously, to obtain the non-zero steady state  
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Also, from equations (2.9) and (2.11) when ,0cN  02 N , but 01 N , we have the non-zero 

steady state  
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E3 exists provided 122 cc  ,  cc   21   and 
c

c
c

2

2







 . 

 
2.2.4 Crop coexistence with two-weed species 
  
The fixed points are obtained when a crop survives (grows) in the presence of two species of 

weeds. At non-zero steady states, that is when 0cN , 01 N  and 02 N   equations (2.9) - 

(2.11) written in matrix form 
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This is equivalent to matrix equation BNA  . The values of cN , 1N  and 2N  are obtained from 

(2.19) as 
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So, the non-zero steady state ),,( 214 NNNE c  as given in (2.20) exists provided the following 

conditions hold 12112  , 2121  cc  , 
1212  cc 

, 
122 cc  ,  cc 2121   ,  

2112 cc  , 1
11 
cc  ,  2112  cc    and  cc 2121   besides 0,,  c . 

 
The conditions are summarized in Table 2.1. 
 
2.2.5 Local stability of the steady states for the model equations of weed-crop competition 
 
In this section, Perron’s approach to the stability analysis is adapted to our model equation. Hence, 

The linearization of system (2.6) – (2.8) about the steady state ),,( 21 NNNE c yields the partial 

derivative matrix (variation matrix). 
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Table 2.1. Conditions for existence of steady state solutions 
 
 Solution co-ordinates Conditions for existence 
E0 (0, 0, 0) 

c = 1 = 2 = 0  
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2.2.6 Stability of the extinction steady state E0 (0,0,0)  
 
Evaluating (2.21) at E0 (0,0,0) gives 
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The eigenvalues of )( 0ED  are the main diagonal elements.  
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So, the stability of E0 depends on 1c , 111   and 122   . However, from the 

conditions for the existence of the steady states 1c , 111   and 122   . Hence, E0 

is unstable without control. 
 
2.2.7 Stability of the steady state for two species of weed dominance 
  

For the coexistence steady state of the two-species of weeds, (2.21) evaluated at  ),,0( 211 NNE
gives 
  




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

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
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2
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2
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1

)1(

)1(

)1()1(
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)1(
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









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









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
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N
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N
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N

NN

N

NN

N

NN

N

NN

ED

c

c

cc

c

. (2.23)

 
 

Further simplification using (2.9) – (2.11) when 0cN  gives 
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


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

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

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
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










NNN

NNN
ED

c

c

c

.                         (2.24) 

 

The matrix )1(ED in (2.24) is a block lower rectangular matrix. So, its eigenvalues are equal to 

the eigenvalues of the 2 x 2 and 1 x 1 matrices involved. It is observed that the eigenvalues of the 
1x1 matrix which is the single element of that matrix has magnitude less than one. That is 
 

1
1


c
  since 1c . 

 
Therefore, the local stability analysis of the steady state E1 depends on the analysis of the block 
2x2 matrix in (2.24), thus; 
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


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
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
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
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A .                               (2.25) 

 
The stability of A is determined by the Trace - determinant analysis [11]. So, 
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
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
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





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2

21212
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


















NN
A .    

 

For stability we need to show that 1det1  AtrA . To do this it is sufficient to show that 

(a)  AtrA det1     (b)  1det A   . First consider  
 

(a) AtrA det1  
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
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
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. 

 

Further simplification using  1
1 1

1 






   and   1

1 2

2 






  gives 
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21 









 











NN
. 
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














 NN
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Using (2.13), we have 
 

1
)1)(1()1(

2

1212

1

111 











 NN
,   

   
 

21122112111221 )1()1()1(   NN
,   

 
 

Substituting for 1N  using (2.14) gives 

 












)]1()1([

)]1()1([)1(

221112

12221112211221 .   

 
Compactly written as 
    

  )( 121B ,                          (2.26) 

 
where  
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)]1()1([

)1(

221112

211221
1








B .       

 
Now, the second inequality of the stability conditions   

(b) 1det A  requires  
 

1
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


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
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Similarly, further simplification using (2.13), gives 
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Compactly written as   
 

  
  )( 212 B .         (2.27) 

 
where, 
 

])1()1([

)1](1)1([
2
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2
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2
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2


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B  .      

 
If the inequalities (2.26) and (2.27) are fulfilled, this implies that the two stability conditions are 
automatically satisfied. Therefore E1 is locally stable. 
 
2.2.8 Stability of the Steady state for a crop and one species of weed coexistence 
 
The coexistence fixed points of a crop and a species of weed that survive the control (a weed died 

out due to control) is analyzed. Evaluating (2.21) at )0,,( 12 NNE c , using (2.15) and (2.16) it 

becomes 
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c
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c
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c
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.                   (2.28) 

 
Equation (2.28) is a block upper rectangular matrix. However, row-operation method is used to 
reduce it to upper triangular matrix. Thus,  
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(2.29) is an upper triangular matrix, so, its eigenvalues are equal to the elements along the 
principal diagonal. For the stability it requires that 
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
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where 11 NB cc   . 

 

Simplifying  1
)1(

1 2 







 gives 12  , this implies 13  .  

So, the stability depends on 1  and 2 .  Now simplify 1 , that is 1
)1( 11 



c

c N




.   

Using (2.16), we have  
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.
       

 
Further simplification yields 
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1


 c

c .              (2.30)  

 

It implies that 11  , provided the inequality (2.30) holds.  

 

Also, simplifying  2  , thus  
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c
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Substituting for cN  gives  ])1([)1( 11111 BB cccccc   ,   

  

Substituting for B then 1N  gives 
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After simplification, it becomes 
 

c
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ccc 
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 .                  (2.31) 

 

So, 12  , provided the inequality (2.31) holds.    

 

Similarly, evaluating (2.21) at the steady state ),0,( 23 NNE c , applying row-operation, it becomes 
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 The characteristic equation is 
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So, its eigenvalues are    
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For the stability it requires that 
 

1
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1 
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
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


  implies   cc N   221   and simplified using (2.18) to obtain 
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Also 
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Since weed N1 is extinct (due to control) 01  , it implies  11  . Similarly 
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1
)1( 222

3 



c
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


   implies   cc N  )1( 2222  .     

 

Employ (2.18) and simplified to obtain  222   cc
 
 , hence 

 

   





2

2
2

)( 
 c

c .                      (2.34) 

 
So, E3 is locally asymptotically stable provided the inequalities (2.33) and (2.34) hold. The stability 
results are summarized in Table 2.2. 
 

Table 2.2. Stability conditions of the steady states for two plant species interaction 
 

Steady-state Condition Stability result  
E0 1c , 122   , 111   unstable 

E1 

1
1


c
 ,   )( 121B  ,   )( 212 B  
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
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2
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2
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2.2.9 Stability of a crop and two-species of weed co-existence steady state 
 

The linearization of system (2.6) – (2.8) about the steady state, ),,( 21 NNNE c  as given in (2.20) 

the partial derivative matrix (2.21) after simplification yields 
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For easy analysis it is expressed as 
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where 
 

22111 NNX ccc    ,  21211 1 NNX cc     and 12122 1 NNX cc   . 

 
The characteristic equation of matrix (2.35) is given by 
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It is simplified to obtain 
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Then re-expressed as 
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where 
 

)( 1
2

111  XBA ,  )( 2
2

222  XBA ,  11113 NNBA ccc   ,   22224 NNBA ccc

, 
212121125 NNBBA   , 2121211212216 )( NNNBBA ccccc   . 

 
In a more compact form (2.36) becomes 
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In order to determine the stability of the positive coexistence steady state E4, we discuss the roots 
of the equation (2.37), which are the eigenvalues of matrix D(E4) by applying the Jury criteria for 
local stability test.  
 

The necessary and sufficient conditions for the characteristic polynomial )(f  to have roots 

inside the unit circle ( that is all have magnitude less than 1)  are given as; 
 

,0)1( f     ,0)1()1( 3  f  and ,13 a  the Jury’s Criteria [12]. So, applying these to (2.37); 
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 Provided 1)( 321  aaa . Furthermore, the constant term satisfies 
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If the conditions for the Jury criterion are satisfied, it implies that the three roots of the equation 

(2.37) satisfy 11   , 12   , and 13  . The linearization theory implies that the positive steady 

state E4 ),,( 21 NNN c  is locally asymptotically stable if the above inequalities hold. So, the 

coexistence steady state E4 of our model equations is locally asymptotically stable and the crop’s 
growth may stagnate, but survive in the mixture of the two species of weeds. However, if the 
effective control measure is applied to eradicate the two weeds species the crop will grow at its 
optimum capacity. 
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3 Results and Discussion 
 
In this section, the competition models are studied numerically by chosen parameter values to test 
(explain) the analytical results obtained. The values were carefully chosen to satisfy the necessary 
conditions for stability of the steady-states solutions. The values of the parameters for the 
graphical profiles are selected mathematically to let the model demonstrate the required dynamics. 
 

3.1 Two-Weed Species Coexistence  
 
The parameter values we employ were selected to satisfy the necessary conditions for stability of 
the steady-states solutions under consideration. Therefore, the parameter values selected for  

numerical explanation of the coexistence fixed points of the two-species ( Nc , N1 , 0 ) are 2c , 

1 , 1 ,  8.01 c  , 12 c ,  5.01 c  , 9.02 c ,  4.112  , and  1.121  . 

 

These satisfy the algebraic criteria for the existence of the non-zero fixed pints, 2E . So the 

numerical result of the steady-states solution converges to    0,33.0,83.00),(),( 1 tNtNc .This 

gives the coexistence steady state of one crop and one species of weed. (i.e the second weed 
extinct). Besides, the numerical result shows that the steady state is locally asymptotically stable 
since the parameter values satisfy the stability conditions in Table 2.1.  
 

3.2 Crop and Two-Weed Species Coexistence 
 
The parameter values employed for numerical explanation of the coexistence fixed points were 

selected to satisfy the algebraic criteria for the existence of the non-zero steady state, 4E . 

Therefore, the parameter values are the following; 
 

2c , 1 , 1 , 6.11 c  , 6.02 c ,  5.01 c  , 4.12 c ,  6.012  , and  

.5.121 
 
 

 
Using these values the steady- state solutions converges to 

)80.0,27.0,00.1(),,( 214  NNNE c . That is, the crop would have its maximum population at 

the steady state. 
 

We obtain the characteristic equation  
 

07.194.11)( 23  f .       (3.1) 
  

Table 3.1. Jury’s stability criterion for weed-crop competition model 
 

 Condition System Stability result 
1 0)1( f  07.1)1( f  Satisfied 

2 0)1()1( 3  f  07.17)1()1( 3  f  Not satisfied 

3 13 a  17.17.1   
Not satisfied 

 

Following the stability results obtained in Table 3.1, the three roots of the equation (3.1) are not 
within the disk (not less than 1). Hence, the weed-crop competition model is not locally 

asymptotically stable for chosen values at the positive steady state ),,( 21 NNN c . This implies 
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that, the crop may not grow and survive (stagnated) in the mixture of the two species of weeds if 
the weeds densities are not controlled.  
 

3.3 Graphical Profile for Crop and Two-Species of Weed Coexistence 
 
In this section, the graphical profile for a crop and two-species of weed interaction (co-existence) 
was obtained using Mathematica. 
 
Fig. 3.1 depicts the dynamics of weed-crop competition model equations (2.6) - (2.8) using the 
time intervals of 1 week. The graphical profiles show that the density of the two weeds continued 
to be on the increase during the growing season as long as there are enough resources to 
promote their growth, but approach steady densities after 30 weeks. Besides, it supported the co-
existence analysis result obtained in section 2.2.9 that, the growth of the crop may be stagnated if 
the weeds densities are not controlled. The 1

st 
(first) and 2

nd
 (second) weeds’ densities growth 

rates dominate that of the crop, while that of the 1
st 

weed dominates that of the 2
nd

 weed (i.e one 
overgrown the other). 
 

 
Fig. 3.1. Rate of growth of crop and two-species of weed coexistence 

 

4 Conclusions 
 
The main idea studied in this paper is the formulation of a model to investigate the weed-crop 
competition dynamics for the above ground established weeds densities. The model equations 
were analyzed for stability based on variational principles. From the analysis, the following findings 
/ conclusion can be drawn. 
 

i. The extinction steady-state point E0 (0,0,0) is not stable without control. 
ii. The coexistence steady state of weed-crop competition model is locally asymptotically 

stable.  
iii. Experimental work showed that the positive steady state solution of weed-crop competition 

model is not stable based on the chosen values. We conclude that the crop may not grow 
and survive in the mixture of the two species of weeds at certain level of weeds infestation. 
That is its growth may be stagnated as depicts in the model’s graphical profile.  

 

Based on the results, the crop’s growth may be stagnated, but survive in the mixture of the two 
species of weeds. However, application of effective control measure to eradicate the two weeds 
species will improve crop yield at its optimum capacity for sustainable food production. 
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