

SCIENCEDOMAIN international

Quartic Cyclic Homogeneous Polynomial Inequalities of Three Nonnegative Variables

Yuanzhe Zhou^{1*}

¹Department of Physics, University Claude Bernard Lyon 1, France.

Article Information DOI: 10.9734/BJMCS/2015/16723 <u>Editor(s)</u>: (1) Jaime Rangel-Mondragon, Faculty of Informatics, Queretaros Institute of Technology, Mexico , Faculty of Computer Science, Autonomous University of Quertaro, Mexico. (2) Tian-Xiao He, Department of Mathematics and Computer Science, Illinois Wesleyan University, USA. <u>Reviewers:</u> (1) Anonymous, Colombia. (2) Anonymous, Japan. (3) Anonymous, Romania. Complete Peer review History: <u>http://www.sciencedomain.org/review-history.php?iid=1032&id=6&aid=8617</u>

Original Research Article

Received: 11 February 2015 Accepted: 17 March 2015 Published: 30 March 2015

Abstract

We present and prove a set of necessary and sufficient conditions that the inequality $f_4(x, y, z) \ge 0$ holds for all nonnegative real variables x, y, z, where $f_4(x, y, z)$ is a cyclic homogeneous polynomial of degree four which satisfies $f_4(1, 1, 1) = 0$.

Keywords: Cyclic homogeneous inequality; quartic polynomial; nonnegative variables; necessary and sufficient conditions.

2010 Mathematics Subject Classification: 26D05

1 Introduction

A quartic cyclic homogeneous polynomial of three variables has the form

$$f_4(x, y, z) = x^4 + y^4 + z^4 + A(x^2y^2 + y^2z^2 + z^2x^2) + Bxyz(x + y + z)$$
$$+ C(x^3y + y^3z + z^3x) + D(xy^3 + yz^3 + zx^3),$$

where A, B, C, D are real constants.

*Corresponding author: E-mail: yuanzhe.zhou@etu.univ-lyon1.fr

In [1], V. Cirtoaje presented and proved that

$$3(1+A) \ge C^2 + CD + D^2$$

is a necessary and sufficient condition to have $f_4(x, y, z) \ge 0$ for all real x, y, z in the particular case $f_4(1, 1, 1) = 0$.

In [2], we obtained two set of necessary and sufficient conditions to have $f_4(x, y, z) \ge 0$ for all real x, y, z in the general case $f_4(1, 1, 1) \ge 0$. These conditions are stated in Theorem 1.1 and Theorem 1.2.

Theorem 1.1. The cyclic inequality $f_4(x, y, z) \ge 0$ holds for all real numbers x, y, z if and only if

$$f_4(t+k, k+1, kt+1) \ge 0$$

for all real t, where $k \in [0, 1]$ is a root of the equation

$$(C-D)k^{3} + (2A - B - C + 2D - 4)k^{2} - (2A - B + 2C - D - 4)k + C - D = 0$$

Theorem 1.2. The cyclic inequality $f_4(x, y, z) \ge 0$ holds for all real numbers x, y, z if and only if $g_4(t) \ge 0$ for all $t \ge 0$, where

$$g_4(t) = 3(2 + A - C - D)t^4 - Ft^3 + 3(4 - B + C + D)t^2 + 1 + A + B + C + D,$$

$$F = \sqrt{27(C - D)^2 + E^2}, \quad E = 8 - 4A + 2B - C - D.$$

The following theorem in [3] expresses some strong sufficient conditions that the inequality $f_4(x, y, z) \ge 0$ holds for all real x, y, z.

Theorem 1.3. Let

$$G = \sqrt{1 + A + B + C + D},$$

$$H = 2 + 2A - B - C - D - C^{2} - CD - D^{2}.$$

The cyclic inequality $f_4(x, y, z) \ge 0$ holds for all real numbers x, y, z if the following two conditions are satisfied:

(a) $1 + A + B + C + D \ge 0;$

(b) there exists a real number $t \in (-\sqrt{3}, \sqrt{3})$ such that $f(t) \ge 0$, where

$$f(t) = 2Gt^{3} - (6 + 2A + B + 3C + 3D)t^{2} + 2(1 + C + D)Gt + H.$$

In [4], we found some sharp sufficient conditions that the inequality $f_4(x, y, z) \ge 0$ holds for all $x, y, z \ge 0$, which are stated in Theorem 1.4.

Theorem 1.4. The inequality $f_4(x, y, z) \ge 0$ holds for all nonnegative real numbers x, y, z if

$$1 + A + B + C + D > 0$$

and one of the following two conditions is fulfilled:

 $\begin{array}{l} (a) \ 3(1+A) \geq C^2 + CD + D^2;\\ (b) \ 3(1+A) < C^2 + CD + D^2 \ \text{, and there is } t \geq 0 \ \text{such that}\\ (C+2D)t^2 + 6t + 2C + D \geq 2\sqrt{(t^4 + t^2 + 1)(C^2 + CD + D^2 - 3 - 3A)}. \end{array}$

In addition, we have conjectured that for 1 + A + B + C + D = 0, the conditions (a) and (b) in Theorem 1.4 are necessary and sufficient to have $f_4(x, y, z) \ge 0$ for all $x, y, z \ge 0$. The main objective of this paper is to show that this conjecture is true. Some related results are also given in [5], [6] and [7].

2 Main Results

The main result is given by the theorem below, which gives a set of necessary and sufficient conditions to have $f_4(x, y, z) \ge 0$ for all $x, y, z \ge 0$ in the most usual case $f_4(1, 1, 1) = 0$.

Theorem 2.1. For $f_4(1,1,1) = 0$, the inequality $f_4(x, y, z) \ge 0$ holds for all nonnegative real numbers x, y, z if and only if one of the following two conditions is satisfied:

(a)
$$3(1+A) \ge C^2 + CD + D^2$$
;

 $(b) \ 3(1+A) < C^2 + CD + D^2$, and there exists $t_0 \ge 0$ such that

$$F_4(t_0) = (2C+D)t_0^2 + 6t_0 + 2D + C - 2\sqrt{(t_0^4 + t_0^2 + 1)(C^2 + CD + D^2 - 3(1+A))} \ge 0.$$

Consider now the more general case where $f_4(1,1,1) \ge 0$. Applying Theorem 2.1 to the function

$$g_4(x, y, z) = f_4(x, y, z) - (1 + A + B + C + D)xyz \sum x,$$

which satisfies $g_4(1,1,1) = 0$, we get the following corollary.

Corollary 2.2. The inequality $f_4(x, y, z) \ge 0$ holds for all nonnegative real numbers x, y, z if one of the following two conditions is satisfied:

(a)
$$3(1+A) \ge C^2 + CD + D^2$$
;

 $(b) \ 3(1+A) < C^2 + CD + D^2$, and there exists $t_0 \ge 0$ such that

$$F_4(t_0) = (2C+D)t_0^2 + 6t_0 + 2D + C - 2\sqrt{(t_0^4 + t_0^2 + 1)(C^2 + CD + D^2 - 3(1+A))} \ge 0.$$

To prove Theorem 2.1, we need three lemmas.

Lemma 2.3. Let

$$S = \sum x^{2}y^{2} - \sum x^{2}yz, \quad U = \frac{\sum x^{3}y - \sum x^{2}yz}{S}, \quad V = \frac{\sum xy^{3} - \sum x^{2}yz}{S}.$$

If $x, y, z \ge 0$, then

$$U > 0, \quad V > 0, \quad UV = 1 + \frac{xyz(x+y+z)(x^2+y^2+z^2-xy-yz-zx)^2}{S^2} \ge 1.$$

In addition, for $f_4(1,1,1) = 0$, the inequality

$$f_4(x, y, z) \ge 0$$

holds for all real x, y, z if and only if

$$F(U,V) \ge 0,$$

where

$$4F(U,V) = 4(U^2 - UV + V^2 + 1 + A + CU + DV)$$

= $(U + V + C + D)^2 + 3\left(U - V + \frac{C - D}{3}\right)^2 + \frac{4}{3}(3 + 3A - C^2 - CD - D^2).$

Lemma 2.4. If t_0 is a real root of the equation

$$2t^4 + Dt^3 - Ct - 2 = 0,$$

then

$$\left(\frac{1}{t_0} + t_0 + C + D\right)^2 + 3\left(\frac{1}{t_0} - t_0 + \frac{C - D}{3}\right)^2 = \frac{\left[(2C + D)t_0^2 + 6t_0 + C + 2D\right]^2}{3(t_0^4 + t_0^2 + 1)}.$$

Lemma 2.5. Let t_0 be a real root of the equation

$$2t^4 + Dt^3 - Ct - 2 = 0.$$

lf

$$3(1+A) < C^2 + CD + D^2,$$

 $f_4(1,1,1) = 0$ and $f_4(x,y,z) \ge 0$ for all $x, y, z \ge 0$, then

$$(2C+D)t_0^2 + 6t_0 + C + 2D \ge 0.$$

3 Proof of Lemmas 2.3, 2.4 and 2.5

Proof of Lemma 2.3. From

$$2S = x^{2}(y-z)^{2} + y^{2}(z-x)^{2} + z^{2}(x-y)^{2},$$

it follows that $S \ge 0$. In addition, S = 0 when x = y = z, and also when y = z = 0 (or any cyclic permutation). For $x, y, z \ge 0$, by the Cauchy-Schwarz inequality, we have

$$(z + x + y)(x^{3}y + y^{3}z + z^{3}x) \ge xyz(x + y + z)^{2},$$

hence

$$x^{3}y + y^{3}z + z^{3}x \ge xyz(x + y + z),$$

with equality for x = y = z. From this inequality and $S \ge 0$, it follows that U > 0. Similarly, we can show that V > 0. To complete the proof, we use the identity

$$\frac{f_4(x,y,z)}{S} = F(U,V),$$

which is valid for all real x, y, z such that $S \neq 0$. Consider now the case S = 0. If x = y = z, then

$$f_4(x, y, z) = x^4 f_4(1, 1, 1) = 0.$$

Also, if y = z = 0, we have

$$f_4(x, y, z) = x^4 \ge 0.$$

Remark 3.1. Consider the case where $f_4(1,1,1) = 0$ and $3(1 + A) = C^2 + CD + D^2$. In order to study when the equality $f_4(x, y, z) = 0$ occurs (for other cases than x = y = z), assume that

$$p = x + y + z$$
, $q = xy + yz + zx$, $r = xyz$.

We have the following two identities

$$UV - 1 = \frac{pr(p^2 - 3q)^2}{(q^2 - 3pr)^2},$$

232

$$U + V - 1 = \frac{q(p^2 - 3q)}{q^2 - 3pr}.$$

Without loss of generality, assume that p = x + y + z = 3. After some calculations, we get

$$\begin{cases} p = x + y + z = 3, \\ q = xy + yz + zx = \frac{9(U+V-1)}{U^2 + V^2 - UV + U+V+1}, \\ r = xyz = \frac{27(UV-1)}{(U^2 + V^2 - UV + U+V+1)^2}. \end{cases}$$
(3.1)

Since the equality $f_4(x, y, z) = 0$ holds for U + V = -C - D and U - V = (-C + D)/3 (Lemma 2.3), we get the equality conditions

$$\begin{cases} p = x + y + z = 3, \\ q = xy + yz + zx = \frac{-108(C+D+1)}{(C-D)^2 + 3(C+D-2)^2}, \\ r = xyz = \frac{108(9(C+D)^2 - (C-D)^2 - 36)}{((C-D)^2 + 3(C+D-2)^2)^2}, \end{cases}$$
(3.2)

which are the same as the ones in [2].

Remark 3.2. Let $f_4(x, y, z)$ be a fourth degree cyclic homogeneous polynomial such that $f_4(1, 1, 1) = 0$ and $f_4(x, y, z) \ge 0$ for all real numbers x, y, z. The inequality $f_4(x, y, z) \ge 0$ becomes an equality when x = y = z, and also when x, y, z satisfy

$$(C-D)(x+y+z)(x-y)(y-z)(z-x) \ge 0$$

and are proportional to the roots w_1 , w_2 and w_3 of the polynomial equation

$$w^3 - 3w^2 + qw - r = 0.$$

Proof of Lemma 2.4. Denote

$$G = \frac{1}{t_0} + t_0 + C + D, \quad H = \frac{1}{t_0} - t_0 + \frac{C - D}{3}.$$

We need to show that X = Y, where

$$X = (G^{2} + 3H^{2})[(3(t_{0}^{2} + 1)^{2} + (t_{0}^{2} - 1)^{2}], \quad Y = \frac{4}{3}[(2C + D)t_{0}^{2} + 6t_{0} + C + 2D]^{2}.$$

Since

$$X = [G(t_0^2 - 1) - 3H(t_0^2 + 1)]^2 + 3[G(t_0^2 + 1) + H(t_0^2 - 1)]^2$$

= $\frac{2}{t_0}(2t_0^4 + Dt_0^3 - Ct_0 - 2)^2 + 3[G(t_0^2 + 1) + H(t_0^2 - 1)]^2$
= $3[G(t_0^2 + 1) + H(t_0^2 - 1)]^2$,

the desired equality becomes

$$[G(t_0^2+1) + H(t_0^2-1)]^2 = \frac{4}{9}[(2C+D)t_0^2 + 6t_0 + C + 2D]^2.$$

This is true because of

$$3[G(t_0^2 + 1) + H(t_0^2 - 1)] = 2[(2C + D)t_0^2 + 6t_0 + C + 2D].$$

Proof of Lemma 2.5. Denote

$$a = \frac{2C+D}{3}, \quad b = \frac{C+2D}{3}, \quad g(t) = at^2 + 2t + b.$$

We need to show that $g(t_0) \ge 0$.

We will show first that there exists $t \ge 0$ such that $g(t) \ge 0$. For the sake of contradiction, assume that g(t) < 0 for all $t \ge 0$. From

$$g(0) = b$$

and

we get

$$\lim_{t \to \infty} \frac{g(t)}{t^2} = a$$

 $a < 0, \quad b < 0.$

In addition, from $g\left(\sqrt{\frac{b}{a}}\right) < 0$, we get

Choosing x, y, z such that U + V = -C - D and U - V = (D - C)/3, that is

$$U = \frac{-(2C+D)}{3} = -a > 0, \quad V = \frac{-(C+2D)}{3} = -b > 0,$$

ab > 1.

from Lemma 2.3 we get

$$F(U,V) = \frac{3 + 3A - C^2 - CD - D^2}{3} < 0,$$

which contradicts the hypothesis that $f_4(x, y, z) \ge 0$ for all $x, y, z \ge 0$. Therefore, there exists $t \ge 0$ such that $g(t) \ge 0$.

Since C = 2a - b and D = -a + 2b, we can rewrite the hypothesis $2t_0^4 + Dt_0^3 - Ct_0 - 2 = 0$ in the form

$$a(t_0^3 + 2t_0) + 2 = b(2t_0^3 + t_0) + 2t_0^4, \quad t_0 > 0.$$

Using this relation gives

$$g(t_0) = \frac{2(t_0^4 + t_0^2 + 1)(at_0 + 1)}{2t_0^3 + t_0} = \frac{2(t_0^4 + t_0^2 + 1)(b + t_0)}{t_0^2 + 2},$$

from which it follows that $g(t_0) \ge 0$ for $a \ge -1/t_0$ and also for $b \ge -t_0$. To complete the proof it suffices to show that the remaining case (where $a < -1/t_0$ and $b < -t_0$) is not possible. Indeed, if $a < -1/t_0$ and $b < -t_0$, then for t = 0 we have g(0) = b < 0, and for t > 0 we have

$$g(t) \le -2t\sqrt{ab} + 2t < -2t + 2t = 0.$$

This is a contradiction, because there exists $t \ge 0$ such that $g(t) \ge 0$.

4 Proof of Theorem 2.1

Sufficiency. By Lemma 2.3, it suffices to show that $F(U, V) \ge 0$.

Case (a): $3(1 + A) \ge C^2 + CD + D^2$. We have

$$4F(U,V) = (U+V+C+D)^2 + 3\left(U-V+\frac{C-D}{3}\right)^2 + \frac{4}{3}(3+3A-C^2-CD-D^2)$$
$$\geq \frac{4}{3}(3+3A-C^2-CD-D^2) \geq 0.$$

Case (b): $C^2 + CD + D^2 > 3(1 + A)$. Write the inequality $F(U, V) \ge 0$ in the form

$$(U+V+C+D)^{2} + 3\left(U-V+\frac{C-D}{3}\right)^{2} \ge \frac{4}{3}(C^{2}+CD+D^{2}-3-3A)$$

For any $t \ge 0$, by the Cauchy-Schwarz inequality, we have

$$\left(U+V+C+D\right)^2+3\left(U-V+\frac{C-D}{3}\right)^2 \geq \frac{3M^2}{3(t^2+1)^2+(t^2-1)^2}=\frac{3M^2}{4(t^4+t^2+1)},$$

where

$$M = (t^{2} + 1)(U + V + C + D) + (t^{2} - 1)\left(U - V + \frac{C - D}{3}\right)$$
$$= \frac{2}{3}[(2C + D)t^{2} + 3(Ut^{2} + V) + C + 2D].$$

Thus, we only need to show that

$$\frac{[(2C+D)t^2 + 3(Ut^2+V) + C + 2D]^2}{t^4 + t^2 + 1} \ge 4(C^2 + CD + D^2 - 3 - 3A).$$

This is true if

$$\frac{(2C+D)t^2 + 3(Ut^2+V) + C + 2D}{\sqrt{t^4 + t^2 + 1}} \ge 2\sqrt{C^2 + CD + D^2 - 3 - 3A}$$

Since

$$Ut^2 + V \ge 2t\sqrt{UV} \ge 2t,$$

it suffices to prove that

$$(2C+D)t^{2}+6t+C+2D \ge 2\sqrt{(t^{4}+t^{2}+1)(C^{2}+CD+D^{2}-3-3A)},$$

which is true by hypothesis.

Necessity. Let t_0 be a positive root of the equation

$$2t^4 + Dt^3 - Ct - 2 = 0.$$

It suffices to consider the case $C^2 + CD + D^2 > 3(1 + A)$, and to show that if $f_4(1, 1, 1) = 0$ and $f_4(x, y, z) \ge 0$ for all $x, y, z \ge 0$, then

$$(2C+D)t_0^2 + 6t_0 + C + 2D \ge 2\sqrt{(t_0^4 + t_0^2 + 1)(C^2 + CD + D^2 - 3 - 3A)}.$$

By Lemma 2.4 and Lemma 2.5, we have

$$\sqrt{\left(\frac{1}{t_0} + t_0 + C + D\right)^2 + 3\left(\frac{1}{t_0} - t_0 + \frac{C - D}{3}\right)^2} = \frac{(2C + D)t_0^2 + 6t_0 + C + 2D}{\sqrt{3(t_0^4 + t_0^2 + 1)}}$$

Based on this result, using Lemma 2.3 for x = 1, $y = t_0$ and z = 0 yields

$$U = t_0, \qquad V = 1/t_0$$

and

$$4F(U,V) = \left(t_0 + \frac{1}{t_0} + C + D\right)^2 + 3\left(t_0 - \frac{1}{t_0} + \frac{C - D}{3}\right)^2 + \frac{4}{3}(3 + 3A - C^2 - CD - D^2)$$
$$= \frac{\left[(2C + D)t_0^2 + 6t_0 + C + 2D\right]^2}{3(t_0^4 + t_0^2 + 1)} - \frac{4}{3}(C^2 + CD + D^2 - 3 - 3A).$$

235

Since the hypothesis $f_4(x, y, z) \ge 0$ for all $x, y, z \ge 0$ involves $F(U, V) \ge 0$, we get

$$\frac{[(2C+D)t_0)^2 + 6t_0 + C + 2D]^2}{3(t_0^4 + t_0^2 + 1)} \ge \frac{4}{3}(C^2 + CD + D^2 - 3 - 3A).$$

In addition, since

$$(2C+D)t^2 + 6t + C + 2D \ge 0$$

(by Lemma 2.5), we can rewrite this inequality as

$$(2C+D)t_0^2 + 6t_0 + C + 2D \ge 2\sqrt{(t_0^4 + t_0^2 + 1)(C^2 + CD + D^2 - 3 - 3A)}$$

which is just the desired inequality.

5 Conclusion

In [4], we presented and proved Theorem 1.4, which states some strong sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in nonnegative real variables and, for the most usual case $f_4(1,1,1) = 0$, we conjectured that the sufficient conditions in Theorem 1.4 are also necessary to have $f_4(x, y, z)$ for all $x, y, z \ge 0$. In this paper, we have proved that this conjecture is true.

Acknowledgment

The author is grateful to the reviewers for their constructive and valuable comments and the author is especially thankful to reviewer 3/3 for his invaluable suggestions based upon which the paper has been revised. The comments are very helpful to improve clarity and quality.

Competing Interests

The author declares that no competing interests exist.

References

- Cirtoaje V. On the cyclic homogeneous polynomial inequalities of degree four. Journal of Inequalities in Pure and Applied Mathematics. 2009;10(3):67.
- [2] Cirtoaje V, Zhou Y. Necessary and sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in real variables. The Australian Journal of Mathematical Analysis and Applications. 2012;9(1):15.
- [3] Cirtoaje V, Zhou Y. Some strong sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in real variables. Journal of Nonlinear Analysis and Applications. 2012;151.
- [4] Zhou Y, Cirtoaje V, Some strong sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in nonnegative real variables. Journal of Nonlinear Science and Applications. 2013;6.

- [5] Ando T. Discriminants of cyclic homogeneous inequalities of degree variables, Preprint.
- [6] Ando T. Cubic and quartic cyclic homogeneous inequalities of three variables. Mathematical Inequalities & Applications. 2013;16(1):127-142.
- [7] Shi SC, Wu YD. Simple proofs of three homogeneous cyclic inequalities of three variables of degree three and four. Acta Mathematica Academiae Paedagogicae Nyregyhziensis. 2012;28(1):21-24.

©2015 Zhou; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=1032&id=6&aid=8617