# $I$-pure Submodules, $I$-FP-injective Modules and $I$-flat Modules 

Zhanmin Zhu ${ }^{1 *}$<br>${ }^{1}$ Department of Mathematics, Jiaxing University, Jiaxing, Zhejiang Province, 314001, P.R. China.

Article Information
DOI: 10.9734/BJMCS/2015/16451
Editor(s):
(1) Carlo Bianca, Laboratoire de Physique Thorique de la Matire Condense, Sorbonne Universits,

France.
Reviewers:
(1) Juan Ramn Garca Rozas, Dept. Matemticas. University of Almera, Spain.
(2) Francisco Bulnes, Department in Mathematics and Engineering, Tescha, Mexico.
(3) Anonymous, Turkey.

Complete Peer review History:
http://www.sciencedomain.org/review-history.php?iid=1032\&id=6\&aid=8594

## Original Research Article

Received: 02 February 2015
Accepted: 06 March 2015
Published: 27 March 2015


#### Abstract

Let $R$ be a ring and $I$ an ideal of $R$. We define and study $I$-pure submodules, $I$ - $F P$-injective modules, $I$-flat modules, $I$-coherent rings and $I$-semihereditary rings. Using the concepts of $I$ $F P$-injectivity and $I$-flatness of modules, we also present some characterizations of $I$-coherent rings and $I$-semihereditary rings.


Keywords: I-pure submodules; I-FP-injective modules; I-flat modules; I-coherent rings; I-semihereditary rings.
2010 Mathematics subject classification: 16D40, 16D50, 16P70, 16E60.

## 1 Introduction

Throughout this paper, $m, n$ are positive integers, $R$ is an associative ring with identity, $I$ is an ideal of $R, J=J(R)$ is the Jacobson radical of $R$ and all modules considered are unitary. For any module $M, M^{+}$denotes $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q} / \mathbb{Z})$, where $\mathbb{Q}$ is the set of rational numbers, and $\mathbb{Z}$ is the set of integers. In general, for a set $S$, we write $S^{m \times n}$ for the set of all formal $m \times n$ matrices whose entries are elements of $S$, and $S_{n}$ (resp., $S^{n}$ ) for the set of all formal $n \times 1$ (resp., $1 \times n$ ) matrices

[^0]whose entries are elements of $S$. Let $N$ be a left $R$-module, $X \subseteq N_{n}$ and $A \subseteq R^{n}$. Then we definite $\mathbf{r}_{N_{n}}(A)=\left\{u \in N_{n}: a u=0, \forall a \in A\right\}$, and $\mathbf{l}_{R^{n}}(X)=\left\{a \in R^{n}: a x=0, \forall x \in X\right\}$.

Recall that a left $R$-module $M$ is called $F P$-injective [1] or absolutely pure [2] if $\operatorname{Ext}_{R}^{1}(A, M)=0$ for every finitely presented left $R$-module $A$; a right $R$-module $M$ is flat if and only if $\operatorname{Tor}_{1}^{R}(M, A)=0$ for every finitely presented left $R$-module $A$; a ring $R$ is left coherent [3] if every finitely generated left ideal of $R$ is finitely presented, or equivalently, if every finitely generated submodule of a projective left $R$-module is finitely presented ; a ring $R$ is left semihereditary [4] if every finitely generated left ideal of $R$ is projective, or equivalently, if every finitely generated submodule of a projective left $R$-module is projective. We recall also that: given a right $R$-module $U$ with submodule $U^{\prime}$, then $U^{\prime}$ is called a pure submodule of $U$ if the canonical map $U^{\prime} \otimes_{R} V \rightarrow U \otimes_{R} V$ is a monomorphism for every finitely presented left $R$-module $V$. Pure submodules, FP-injective modules, flat modules, coherent rings, semihereditary rings, and their generalizations have been studied extensively by many authors (see, for example, $[1,3,5,6,7,8]$ ).

In this article, we wish to introduce a new generalization for pure submodules, $F P$-injective modules, flat modules, coherent rings, semihereditary rings respectively.

Let $I$ be an ideal of $R$. In section 2 of this paper, we introduce the concept of $I$-pure submodules. Given a right $R$-module $U$ with submodule $U^{\prime}$, then $U^{\prime}$ is called an $I$-pure submodule of $U$ if the canonical map $U^{\prime} \otimes_{R} V \rightarrow U \otimes_{R} V$ is a monomorphism for every $I$-finitely presented left $R$-module $V$, where a left $R$-module $V$ is said to be $I$-finitely presented, if there is a positive integer $m$ and an exact sequence of left $R$-modules $0 \rightarrow K \rightarrow R^{m} \rightarrow V \rightarrow 0$ with $K$ a finitely generated submodule of $I^{m}$. We give some characterizations and properties of $I$-pure submodules.

In section 3 and section 4, we introduce the concepts of $I$-FP-injective modules and $I$-flat modules. A left $R$-module $M$ is called $I$ - $F P$-injective, if $\operatorname{Ext}_{R}^{1}(V, M)=0$ for every $I$-finitely presented left $R$ module $V$; a right $R$-module $M$ is called $I$-flat, if $\operatorname{Tor}_{1}^{R}(M, V)=0$ for every $I$-finitely presented left $R$-module $V$. We give some characterizations and properties of $I$ - $F P$-injective modules and $I$-flat modules. For instance, we prove that a left $R$-module $M$ is $I$ - $F P$-injective if and only if it is $I$-pure in every module containing it.

In section 5, we introduce the concepst of $l$-coherent rings and $l$-semihereditary rings. The ring $R$ is called $I$-coherent if every finitely generated left ideal in $I$ is finitely presented. The ring $R$ is called $I$ semihereditary if every finitely generated left ideal in $I$ is projective. We give some characterizations and properties of $I$-coherent rings and $I$-semihereditary rings, especially, $I$-coherent rings and $I$ semihereditary rings are characterized by $I$ - $F P$-injective modules and $I$-flat modules, some interesting results are obtained. For instance, we prove that $R$ is a left $I$-coherent ring $\Leftrightarrow$ any direct product of $I$-flat right $R$-modules is $I$-flat $\Leftrightarrow$ any direct limit of $I-F P$-injective left $R$-modules is $I$ - $F P$-injective $\Leftrightarrow$ every right $R$-module has an $I$-flat preenvelope; $R$ is a left $I$-semihereditary ring $\Leftrightarrow R$ is left $I$ coherent and every submodule of an $I$-flat right $R$-module is $I$-flat $\Leftrightarrow$ every quotient module of an $I$ - $F P$-injective left $R$-module is $I$ - $F P$-injective $\Leftrightarrow$ every left $R$-module has a monic $I$ - $F P$-injective cover $\Leftrightarrow$ every right $R$-module has an epic $I$-flat envelope.

## 2 I-pure Submodules

Recall that a left $R$-module $V$ is said to be ( $m, n$ )-presented [8], if there is an exact sequence of left $R$ modules $0 \rightarrow K \rightarrow R^{m} \rightarrow V \rightarrow 0$ with $K n$-generated. We extend the definitions of $(m, n)$-presented modules and finitely presented modules respectively as follows.

Definition 2.1. A left $R$-module $V$ is said to be $l-(m, n)$-presented, if there is an exact sequence of left $R$-modules $0 \rightarrow K \rightarrow R^{m} \rightarrow V \rightarrow 0$ with $K$ an $n$-generated submodule of $I^{m}$. A left $R$-module $V$ is said to be l-finitely presented if it is $I-(m, n)$-presented for a pair of positive integers $m, n$.

Clearly, a left $R$-module $V$ is $(m, n)$-presented if and only if it is $R-(m, n)$-presented, a left $R$ module $V$ is finitely presented if and only if it is $R$-finitely presented.

Definition 2.2. Given a right $R$-module $U$ with submodule $U^{\prime}$. Then:
(1) $U^{\prime}$ is called I-( $m, n$ )-pure in $U$ if the canonical map $U^{\prime} \otimes_{R} V \rightarrow U \otimes_{R} V$ is a monomorphism for every $I$-( $m, n$ )-presented left $R$-module $V . U^{\prime}$ is said to be $I$ - $(m, \infty$-pure (resp., $I$ - $(\infty, n)$-pure in $U$ in case $U^{\prime}$ is $I-(m, n)$-pure in $U$ for all positive integers $n$ (resp., $m$ ).
(2) $\quad U^{\prime}$ is called I-pure in $U$ if the canonical map $U^{\prime} \otimes_{R} V \rightarrow U \otimes_{R} V$ is a monomorphism for every $I$ - finitely presented left $R$-module $V$.

Example 2.3. (1) It is easy to see that $U^{\prime}$ is ( $m, n$ )-pure in $U$ if and only if $U^{\prime}$ is $R$-( $m, n$ )-pure in $U . U^{\prime}$ is pure in $U$ if and only if $U^{\prime}$ is $R$-pure in $U$.
(2) Let $I_{1}$ and $I_{2}$ be two ideals with $I_{1} \subseteq I_{2}$. If $U^{\prime}$ is $I_{2}$-( $m, n$ )-pure in $U$, then $U^{\prime}$ is $I_{1}$-( $m, n$ )-pure in $U$.

Theorem 2.4 Let $U_{R}^{\prime} \leq U_{R}$. Then the following statements are equivalent:
(1) $U^{\prime}$ is $I-(m, n)$-pure in $U$.
(1)' For all $C \in I^{n \times m}$, the canonical map $U^{\prime} \otimes_{R}\left(R^{m} / R^{n} C\right) \rightarrow U \otimes_{R}\left(R^{m} / R^{n} C\right)$ is a monomorphism.
(2) For every $I$ - $(m, n)$-presented left $R$-module $V$, the canonical map $\operatorname{Tor}_{1}^{R}(U, V) \rightarrow \operatorname{Tor}_{1}^{R}\left(U / U^{\prime}, V\right)$ is surjective.
(3) For all $C \in I^{n \times m},\left(U^{\prime}\right)^{m} \cap U^{n} C=\left(U^{\prime}\right)^{n} C$.
(4) For every $n$-generated submodule $T$ of $I^{m},\left(U^{\prime}\right)^{m} \cap U T=U^{\prime} T$.
(5) For every $I$-( $n, m$ )-presented right $R$-module $A$, the canonical map $\operatorname{Hom}_{R}(A, U) \rightarrow \operatorname{Hom}_{R}\left(A, U / U^{\prime}\right)$ is surjective.
(5) For all $C \in I^{n \times m}$, the canonical map

$$
\operatorname{Hom}_{R}\left(R_{n} / C R_{m}, U\right) \rightarrow \operatorname{Hom}_{R}\left(R_{n} / C R_{m}, U / U^{\prime}\right)
$$

is surjective.
(6) For every $I$-( $n, m$ )-presented right $R$-module $A$, the canonical map $\operatorname{Ext}^{1}\left(A, U^{\prime}\right) \rightarrow \operatorname{Ext}^{1}(A, U)$ is a monomorphism.

Proof. (1) $\Leftrightarrow(1)^{\prime}$ and $(5) \Leftrightarrow(5)^{\prime}$ are obvious.
$(1) \Leftrightarrow(2)$. This follows from the exact sequence

$$
\operatorname{Tor}_{1}^{R}(U, V) \rightarrow \operatorname{Tor}_{1}^{R}\left(U / U^{\prime}, V\right) \rightarrow U^{\prime} \otimes V \rightarrow U \otimes V
$$

(1) $\Rightarrow$ (3). Let $C=\left(c_{i j}\right)_{n \times m} \in I^{n \times m}$ and $x \in\left(U^{\prime}\right)^{m} \cap U^{n} C$. Then there exist $a_{1}, a_{2}, \cdots, a_{m} \in$ $U^{\prime}, u_{1}, u_{2}, \cdots, u_{n} \in U$ such that $x=\left(a_{1}, a_{2}, \cdots, a_{m}\right)$ and $a_{i}=\sum_{j=1}^{n} u_{j} c_{j i}, i=1,2, \cdots, m$. Let $V=R^{m} / L$, where

$$
L=R \alpha_{1}+\cdots+R \alpha_{n}, \alpha_{j}=\left(c_{j 1}, c_{j 2}, \cdots, c_{j m}\right), j=1,2, \cdots, n
$$

. Then $V$ is $I$ - $(m, n)$-presented and we have $\sum_{i=1}^{m} a_{i} \otimes \overline{e_{i}}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} u_{j} c_{j i}\right) \otimes \overline{e_{i}}=\sum_{j=1}^{n}\left(u_{j} \otimes\right.$ $\left.\sum_{i=1}^{m} c_{j i} \overline{e_{i}}\right)=\sum_{j=1}^{n}\left(u_{j} \otimes \overline{\alpha_{j}}\right)=0$ in $U \otimes V$. Since $U^{\prime}$ is $I-(m, n)$-pure in $U, \sum_{i=1}^{m} a_{i} \otimes \overline{e_{i}}=0$ in $U^{\prime} \otimes V$. So from the exactness of the sequence $U^{\prime} \otimes L^{1_{U^{\prime}} \otimes \iota} U^{\prime} \otimes R^{m} \xrightarrow{{ }^{\prime}{ }^{\prime} \otimes \pi} U^{\prime} \otimes V \rightarrow 0$, we have $\sum_{i=1}^{m} a_{i} \otimes$ $e_{i}=\left(1_{U^{\prime}} \otimes \iota\right)\left(\sum_{j=1}^{n} u_{j}^{\prime} \otimes \alpha_{j}\right)=\sum_{j=1}^{n} u_{j}^{\prime} \otimes \alpha_{j}=\sum_{j=1}^{n} u_{j}^{\prime} \otimes\left(\sum_{i=1}^{m} c_{j i} e_{i}\right)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} u_{j}^{\prime} c_{j i}\right) \otimes e_{i}$ for some $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{m}^{\prime} \in U^{\prime}$. This follows that $a_{i}=\sum_{j=1}^{n} u_{j}^{\prime} c_{j i}, i=1,2, \cdots, m$, thus $x \in\left(U^{\prime}\right)^{n} C$. But $\left(U^{\prime}\right)^{n} C \subseteq\left(U^{\prime}\right)^{m} \cap U^{n} C$, so $\left(U^{\prime}\right)^{m} \cap U^{n} C=\left(U^{\prime}\right)^{n} C$.
$(3) \Rightarrow(4)$. Let $T=R b_{1}+\cdots+R b_{n}$, where $b_{j}=\left(c_{1 j}, c_{2 j}, \cdots, c_{m j}\right) \in I^{m}, j=1,2, \cdots, n$. If $x=\left(a_{1}, \cdots, a_{m}\right)=\sum_{j=1}^{n} u_{j} b_{j} \in\left(U^{\prime}\right)^{m} \cap U T$, where each $a_{i} \in U^{\prime}$ and each $u_{j} \in U$, then
$x=\left(u_{1}, u_{2}, \cdots, u_{n}\right) C \in U^{n} C \cap\left(U^{\prime}\right)^{m}$, where $C$ is the $n \times m$ matrix with row vectors $b_{1}, \cdots, b_{n}$. Clearly, $C \in I^{n \times m}$. By (3), $x=\left(u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n}^{\prime}\right) C$ for some $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n}^{\prime} \in U^{\prime}$. It follows that $x \in U^{\prime} T$, and so $\left(U^{\prime}\right)^{m} \cap U T=U^{\prime} T$.
$(4) \Rightarrow(5)$. Consider the following diagram with exact rows

where $f \in \operatorname{Hom}_{R}\left(A, U / U^{\prime}\right)$ and $K$ is an $m$-generated submodule of $I^{n}$, with generators $y_{i}=$ $\left(c_{i 1}, c_{i 2}, \cdots, c_{i n}\right), i=1,2, \cdots, m$. Since $R^{n}$ is projective, there exist $g \in \operatorname{Hom}_{R}\left(R^{n}, U\right)$ and $h \in \operatorname{Hom}_{R}\left(K, U^{\prime}\right)$ such that the diagram commutes. Now let $b_{j}=\left(c_{1 j}, c_{2 j}, \cdots, c_{m j}\right) \in I^{m}$, $j=1,2, \cdots, n, T=R b_{1}+\cdots+R b_{n}$ and $u_{i}=\sum_{j=1}^{n} g\left(e_{j}\right) c_{i j}$, where $e_{j}=(0, \cdots, 0,1,0, \cdots, 0)$ (with 1 in the $j$ th position and 0 's in all other positions), $i=1,2, \cdots, m, j=1,2, \cdots, n$. Then $u_{i}=$ $g\left(\sum_{j=1}^{n} e_{j} c_{i j}\right)=g\left(y_{i}\right)=h\left(y_{i}\right) \in U^{\prime}, i=1,2, \cdots, m$. Note that $\left(u_{1}, u_{2}, \cdots, u_{m}\right)=\sum_{j=1}^{n} g\left(e_{j}\right) b_{j} \in$ $U T$, by (4), $\left(u_{1}, u_{2}, \cdots, u_{m}\right)=\sum_{j=1}^{n} u_{j}^{\prime} b_{j}$ for some $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n}^{\prime} \in U^{\prime}$. Therefore, $u_{i}=\sum_{j=1}^{n} u_{j}^{\prime} c_{i j}$, $i=1,2, \cdots, m$. Define $\sigma \in \operatorname{Hom}_{R}\left(R^{n}, U^{\prime}\right)$ such that $\sigma\left(e_{j}\right)=u_{j}^{\prime}, j=1,2, \cdots, n$. Then $\sigma i_{K}=h$. Finally, we define $\tau: A \rightarrow U$ by $\tau(z+K)=g(z)-\sigma(z)$, then $\tau$ is a well-defined right $R$ homomorphism and $\pi_{1} \tau=f$. Whence $\operatorname{Hom}_{R}(A, U) \rightarrow \operatorname{Hom}_{R}\left(A, U / U^{\prime}\right)$ is surjective.
(5) $\Rightarrow$ (3). Suppose that $C=\left(c_{i j}\right)_{n \times m} \in I^{n \times m}$ and $x \in\left(U^{\prime}\right)^{m} \cap U^{n} C$. Then $x=\left(a_{1}, a_{2}, \cdots, a_{m}\right)=$ $\left(u_{1}, u_{2}, \cdots, u_{n}\right) C$ for some $a_{1}, a_{2}, \cdots, a_{m} \in U^{\prime}$ and $u_{1}, u_{2}, \cdots, u_{n} \in U$. Take $y_{i}=\left(c_{1 i}, c_{2 i}, \cdots, c_{n i}\right)(i=$ $1,2, \cdots, m), K=y_{1} R+y_{2} R+\cdots+y_{m} R$ and $A=R^{n} / K$. Then $A$ is $I-(n, m)$-presented and we have the following commutative diagram with exact rows

where $f_{2}$ is defined by $f_{2}\left(e_{j}\right)=u_{j}, j=1,2, \cdots, n$ and $f_{1}=\left.f_{2}\right|_{K}$. Define $f_{3}: A \rightarrow U / U^{\prime}$ by $f_{3}(z+K)=\pi_{1} f_{2}(z)$. Then it is easy to see that $f_{3}$ is well defined and $f_{3} \pi_{2}=\pi_{1} f_{2}$. By hypothesis, $f_{3}=\pi_{1} \tau$ for some $\tau \in \operatorname{Hom}_{R}(A, U)$. Now we define $\sigma: R^{n} \rightarrow U^{\prime}$ by $\sigma(z)=f_{2}(z)-\tau \pi_{2}(z)$. Then $\sigma \in \operatorname{Hom}_{R}\left(R^{n}, U^{\prime}\right)$ and $i_{U^{\prime}} \sigma=f_{2}$. Hence $a_{i}=f_{2}\left(y_{i}\right)=\sigma\left(y_{i}\right)=\sum_{j=1}^{n} \sigma\left(e_{j}\right) c_{j i}, i=1,2, \cdots, m$, and $x=\left(\sigma\left(e_{1}\right), \sigma\left(e_{2}\right), \cdots, \sigma\left(e_{n}\right)\right) C \in\left(U^{\prime}\right)^{n} C$. Therefore $\left(U^{\prime}\right)^{m} \cap U^{n} C=\left(U^{\prime}\right)^{n} C$.
(3) $\Rightarrow$ (1). Let ${ }_{R} V$ be $I-(m, n)$-presented. Without loss of generality, write $V=R^{m} / L$, where

$$
L=R \alpha_{1}+\cdots+R \alpha_{n}, \alpha_{j}=\left(c_{j 1}, c_{j 2}, \cdots, c_{j m}\right) \in I^{m}, j=1,2, \cdots, n
$$

If $\sum_{k=1}^{s} a_{k} \otimes b_{k}=0$ in $U \otimes V$, where $a_{k} \in U^{\prime}, b_{k}=\sum_{j=1}^{m} r_{k j} \overline{e_{j}} \in V$, then $\sum_{j=1}^{m}\left(\sum_{k=1}^{s} a_{k} r_{k j}\right) \otimes \overline{e_{j}}=0$ in $U \otimes V$. Consider the exact sequence of $U \otimes L^{1_{U} U^{\otimes \iota}} U \otimes R^{m} \xrightarrow{1_{U} \otimes \pi} U \otimes R^{m} / L \rightarrow 0$, we have $\sum_{j=1}^{m}\left(\sum_{k=1}^{s} a_{k} r_{k j}\right) \otimes e_{j} \in \operatorname{Ker}\left(1_{U} \otimes \pi\right)=\operatorname{Im}\left(1_{U} \otimes \iota\right)$, so there exists $u_{1}, \cdots, u_{n} \in U$ such that $\sum_{j=1}^{m}\left(\sum_{k=1}^{s=1} a_{k} r_{k j}\right) \otimes e_{j}=\sum_{i=1}^{n} u_{i} \otimes \alpha_{i}=\sum_{i=1}^{n} u_{i} \otimes\left(\sum_{j=1}^{m} c_{i j} e_{j}\right)=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} u_{i} c_{i j}\right) \otimes e_{j}$, and so $\sum_{k=1}^{s} a_{k} r_{k j}=\sum_{i=1}^{n} u_{i} c_{i j}$. By (3), there exist $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n}^{\prime} \in U^{\prime}$ such that $\sum_{k=1}^{s} a_{k} r_{k j}=$ $\sum_{i=1}^{n} u_{i}^{\prime} c_{i j}, j=1, \cdots, m$. Thus $\sum_{k=1}^{s} a_{k} \otimes b_{k}=\sum_{i=1}^{n} u_{i}^{\prime} \otimes\left(\sum_{j=1}^{m} c_{i j}\right) \overline{e_{j}}=0$ in $U^{\prime} \otimes V$.
$(5) \Leftrightarrow(6)$. It follows from the exact sequence

$$
\operatorname{Hom}_{R}(A, U) \rightarrow \operatorname{Hom}_{R}\left(A, U / U^{\prime}\right) \rightarrow \operatorname{Ext}_{R}^{1}\left(A, U^{\prime}\right) \rightarrow \operatorname{Ext}_{R}^{1}(A, U)
$$

Corollary 2.5. Let $U_{R}^{\prime} \leq U_{R}$. Then $U^{\prime}$ is $l-(1, \infty)$-pure in $U$ if and only if $U T \cap U^{\prime}=U^{\prime} T$ for all finitely generated left ideals $T \subseteq I$.

Proposition 2.6 Let $U_{R}^{\prime} \leq U_{R}$. Then
(1) If $U$ is $n$-generated, then $U^{\prime}$ is $I-(m, n)$-pure in $U$ if and only if $U^{\prime}$ is $I-(m, \infty)$-pure in $U$.
(2) If each finitely generated left ideal in $I$ is $n$-generated, then $U^{\prime}$ is $I-(1, n)$-pure in $U$ if and only if $U^{\prime}$ is $I-(1, \infty)$-pure in $U$.
(3) If each finitely generated right ideal in $I$ is $m$-generated, then $U^{\prime}$ is $I-(m, 1)$-pure in $U$ if and only if $U^{\prime}$ is $I-(\infty, 1)$-pure in $U$.

Proof. (2) can be proved by Theorem 2.4(4), and (3) can be proved by Theorem 2.4(5). Now we prove only the necessity of (1).

Let $u_{1}, u_{2}, \cdots, u_{n}$ be a generating set of $U$. For every positive integer $k$ and each $C \in I^{k \times m}$, if $x \in\left(U^{\prime}\right)^{m} \cap U^{k} C$, then $x=\left(u_{1}, u_{2}, \cdots, u_{n}\right) A C$ for some $A \in R^{n \times k}$. Since $U^{\prime}$ is $I-(m, n)$-pure in $U$, by Theorem 2.4(3), $x=\left(u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n}^{\prime}\right) A C$ for some $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n}^{\prime} \in U$. So $x \in\left(U^{\prime}\right)^{k} C$, and thus $\left(U^{\prime}\right)^{m} \cap U^{k} C=\left(U^{\prime}\right)^{k} C$. Therefore $U^{\prime}$ is $(m, k)$-pure in $U$.

Corollary 2.7 Let $U_{R}^{\prime} \leq U_{R}$. Then the following statements are equivalent:
(1) $U^{\prime}$ is I-pure in $U$.
(2) For every I-finitely presented left $R$-module $V$, the canonical map $\operatorname{Tor}_{1}^{R}(U, V) \rightarrow \operatorname{Tor}_{1}^{R}\left(U / U^{\prime}, V\right)$ is surjective.
(3) For any positive integers $m, n$ and any $C \in I^{n \times m},\left(U^{\prime}\right)^{m} \cap U^{n} C=\left(U^{\prime}\right)^{n} C$.
(4) For any positive integers $m$, $n$ and any $n$-generated submodule $T$ of $I^{m} I^{m},\left(U^{\prime}\right)^{m} \cap U T=U^{\prime} T$
(5) For every l-finitely presented right $R$-module $A$, the canonical map $\operatorname{Hom}_{R}(A, U) \rightarrow \operatorname{Hom}_{R}\left(A, U / U^{\prime}\right)$ is surjective.
(6) For every I-finitely presented right $R$-module $A$, the canonical map $\operatorname{Ext}^{1}\left(A, U^{\prime}\right) \rightarrow \operatorname{Ext}^{1}(A, U)$ is a monomorphism.

Proposition 2.8 Suppose $E, F$ and $G$ are right $R$-modules such that $E \subseteq F \subseteq G$. Then:
(1) If $E$ is $I-(m, n)$-pure in $F$ and $F$ is $I-(m, n)$-pure in $G$, then $E$ is $I-(m, n)$-pure in $G$.
(2) If $E$ is $I-(m, n)$-pure in $G$, then $E$ is $I-(m, n)$-pure in $F$.
(3) If $F$ is $I-(m, n)$-pure in $G$, then $F / E$ is $I-(m, n)$-pure in $G / E$.
(4) If $E$ is $I-(m, n)$-pure in $G$ and $F / E$ is $I-(m, n)$-pure in $G / E$, then $F$ is $I-(m, n)$-pure in $G$.

Proof. (1) and (2) follows from the definition of $I-(m, n)$-pure submodules or Theorem 2.4(3).
(3). Let $A$ be an $I-(n, m)$-presented right $R$-module. Since $F$ is $I-(m, n)$-pure in $G$, by Theorem 2.4(5), the canonical map $\operatorname{Hom}_{R}(A, G) \xrightarrow{Q} \operatorname{Hom}_{R}(A, G / F)$ is surjective. Considering the following commutative diagram

, where $\sigma$ is an isomorphism and hence a epimorphism, we have that the canonical map $\tau$ is epic. By Theorem 2.4(5), $F / E$ is $I-(m, n)$-pure in $G / E$.
(4). Let $V$ be an $I-(n, m)$-presented left $R$-module. Since $E$ is $I-(m, n)$-pure in $G, E$ is also $I-(m, n)$-pure in $F$, and so we have a commutative diagram with exact rows

. Since $F / E$ is $I-(m, n)$-pure in $G / E, g$ is monic. By five Lemma [9, 7.18], $f$ is also monic, and thus $F$ is $I-(m, n)$-pure in $G$.
Corollary 2.9 Suppose $E, F$ and $G$ are right $R$-modules such that $E \subseteq F \subseteq G$. Then:
(1) If $E$ is $I$-pure in $F$ and $F$ is $I$-pure in $G$, then $E$ is I-pure in $G$.
(2) If $E$ is $I$-pure in $G$, then $E$ is $I$-pure in $F$.
(3) If $F$ is $I$-pure in $G$, then $F / E$ is $I$-pure in $G / E$.
(4) If $E$ is $I$-pure in $G$ and $F / E$ is $I$-pure in $G / E$, then $F$ is $I$-pure in $G$.

## $3 \quad I-F P$-injective Modules

Recall that a left $R$-module $M$ is $F P$-injective if and only if every $R$-homomorphism from a finitely generated submodule of a free left $R$-module $F$ to $M$ extends to a homomorphism of $F$ to $M$ [1, Proposition 2.6] . $F P$-injective modules and their generalizations have been studied by many authors, for example, see $[6,7,10,11,12,13,14]$. Following [11], a left $R$-module $M$ is called ( $m, n$ )-injective if every $R$-homomorphism from an $n$-generated submodule $T$ of $R^{m}$ to $M$ extends to a homomorphism of $R^{m}$ to $M$. It is easy to see that a left $R$-module $M$ is $F P$-injective if and only if $M$ is $(m, n)$ injective for each pair of positive integers $m, n$. Following [7], a left $R$-module $M$ is called $F$-injective if every $R$-homomorphism from a finitely generated left ideal to $M$ extends to a homomorphism of $R$ to $M$. Following [10, 12], a left $R$-module $M$ is called $n$-injective if every $R$-homomorphism from an $n$ generated left ideal to $M$ extends to a homomorphism of $R$ to $M$. Following [6], a left $R$-module $M$ is called $J$-injective if every $R$-homomorphism from a finitely generated left ideal in $J(R)$ to $M$ extends to a homomorphism of $R$ to $M$. We extends the concepts of $(m, n)$-injective modules, $F P$-injective modules and $J$-injective modules as follows.

Definition 3.1. A left $R$-module $M$ is called $I-(m, n)$-injective, if every $R$-homomorphism from an $n$-generated submodule $T$ of $I^{m}$ to $M$ extends to a homomorphism of $R^{m}$ to $M$. A left $R$-module $M$ is called I-FP-injective if M is I-( $m, n$ )-injective for every pair of positive integers $m, n$. A left $R$-module $M$ is called I-F-injective if $M$ is $I-(1, n)$-injective for every positive integer $n$.

It is easy to see that direct sums and direct summands of $I-(m, n)$-injective modules are $I-(m, n)$ injective. A left $R$-module $M$ is $(m, n)$-injective if and only if $M$ is $R$ - $(m, n)$-injective, a left $R$-module $M$ is $F P$-injective if and only if $M$ is $R$ - $F P$-injective, a left $R$-module $M$ is $J$-injective if and only if $M$ is $J$ - $F$-injective. According to [15], a ring $R$ is said to be left $S o c$-injective if every $R$-homomorphism from a semisimple submodule of ${ }_{R} R$ to $R$ extends to $R$. Clearly, if $\operatorname{Soc}\left({ }_{R} R\right)$ is finitely generated, then $R$ is left $S o c$-injective if and only if ${ }_{R} R$ is $S o c\left({ }_{R} R\right)$ - $F$-injective. Following [14], a left $R$-module $M$ is called $N$-injective if $\operatorname{Ext}^{1}(R / T, M)=0$ for every finitely generated left ideal $T$ in $N i l_{*}(R)$, where $N i l_{*}(R)$ is the prime radical of $R$, it is equal to the intersection of all the prime ideals in $R$ [16]. It is clear that a left $R$-module $M$ is $N$-injective if and only if $M$ is $N(R)-F$-injective.

Theorem 3.2. Let $M$ be a left $R$-module. Then the following statements are equivalent:
(1) $M$ is $I$-( $m, n$ )-injective.
(2) $E x t^{1}(V, M)=0$ for every $l$-(m,n)-presented left R-module $V$.
(3) $\mathbf{r}_{M_{n}} \mathbf{l}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=\alpha_{1} M+\cdots+\alpha_{m} M$ for any $m$ elements $\alpha_{1}, \ldots, \alpha_{m} \in I_{n}$.
(4) If $x=\left(m_{1}, m_{2}, \ldots, m_{n}\right)^{\prime} \in M_{n}$ and $A \in I^{n \times m}$ satisfy $\mathbf{l}_{R^{n}}(A) \subseteq \mathbf{1}_{R^{n}}(x)$, then $x=A y$ for some $y \in M_{m}$.
(5) $\mathbf{r}_{M_{n}}\left(R^{n} B \cap \mathbf{l}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}\right)=\mathbf{r}_{M_{n}}(B)+\alpha_{1} M+\cdots+\alpha_{m} M$ for any $m$ elements $\alpha_{1}, \ldots, \alpha_{m} \in$ $I_{n}$ and $B \in R^{n \times n}$.
(6) $M$ is I-(m,1)-injective and $r_{M_{m}}(K \cap L)=r_{M_{m}}(K)+r_{M_{m}}(L)$, Where $K$ and $L$ are submodules of the left $R$-module $I^{m}$ such that $K+L$ is $n$-generated.
(7) $M$ is I-( $m, 1$ )-injective and $r_{M_{m}}(K \cap L)=r_{M_{m}}(K)+r_{M_{m}}(L)$, Where $K$ and $L$ are submodules of the left $R$-module $I^{m}$ such that $K$ is cyclic and $L$ is $(n-1)$-generated.
(8) For each n-generated submodule $T$ of $I^{m}$ and any $f \in \operatorname{Hom}(T, M)$, if $(\alpha, g)$ is the pushout of $(f, i)$ in the following diagram

where $i$ is the inclusion map, there exists a homomorphism $h: P \rightarrow M$ such that $h \alpha=1_{M}$.
(9) $M$ is absolutely $I-(n, m)$-pure, that is, $M$ is $I-(n, m)$-pure in each module containing $M$.
(10) $M$ is $I-(n, m)$-pure in $E(M)$.
(11) $M$ is an $I-(n, m)$-pure submodule of an I-(m, n)-injective module.

Proof. (1) $\Leftrightarrow(2) ;(8) \Rightarrow(1)$ and (9) $\Rightarrow(10),(11)$ are clear.
(1) $\Rightarrow$ (3). Always $\alpha_{1} M+\cdots+\alpha_{m} M \subseteq \mathbf{r}_{M_{n}} \mathbf{l}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. If $x \in \mathbf{r}_{M_{n}} \mathbf{l}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. Let $A$ be the matrix with column vectors $\alpha_{1}, \ldots, \alpha_{m}$. Then the mapping $f: R^{n} A \rightarrow M ; \beta A \mapsto \beta x$ is a well-defined left $R$-homomorphism. Since $M$ is $I-(m, n)$-injective and $R^{n} A$ is an $n$-generated submodule of $I^{m}, f$ can be extended to a homomorphism $g$ of $R^{m}$ to $M$. Now, for any $\beta \in R^{n}$, we have $\beta\left(\alpha_{1} g\left(e_{1}\right)+\cdots+\alpha_{m} g\left(e_{m}\right)\right)=g(\beta A)=f(\beta A)=\beta x$, so $x=\alpha_{1} g\left(e_{1}\right)+\cdots+\alpha_{m} g\left(e_{m}\right) \in$ $\alpha_{1} M+\cdots+\alpha_{m} M$. Thus $\mathbf{r}_{M_{n}} \mathbf{l}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \subseteq \alpha_{1} M+\cdots+\alpha_{m} M$. Therefore, $\mathbf{r}_{M_{n}} \mathbf{l}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=$ $\alpha_{1} M+\cdots+\alpha_{m} M$.
(3) $\Rightarrow$ (1). Let $T=\sum_{i=1}^{n} R \beta_{i}$ be an $n$-generated submodule of $I^{m}$ and $f$ be a homomorphism from $T$ to $M$. Write $u_{i}=f\left(\beta_{i}\right), i=1,2, \ldots, n, u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)^{\prime}$ and let A be the matrix with row vectors $\beta_{1}, \ldots, \beta_{n}$. Then $u \in \mathbf{r}_{M_{n}} \mathbf{l}_{R^{n}}(A)$. By (3), there exists some $x_{1}, \ldots, x_{m} \in M$ such that $u=\alpha_{1} x_{1}+\cdots+\alpha_{m} x_{m}$, where $\alpha_{1}, \ldots, \alpha_{m}$ are column vectors of $A$. Now we define $g: R^{m} \rightarrow$ $M ;\left(r_{1}, \cdots, r_{m}\right) \mapsto r_{1} x_{1}+\cdots+r_{m} x_{m}$, then $g$ is a left $R$-homomorphism, and it is easy to check that $f\left(\beta_{i}\right)=u_{i}=\beta_{i}\left(x_{1}, x_{2}, \cdots, x_{m}\right)^{\prime}=g\left(\beta_{i}\right), i=1, \ldots, n$, and so $g$ extends $f$.
(3) $\Rightarrow(4)$. If $\mathbf{l}_{R^{n}}(A) \subseteq \mathbf{l}_{R^{n}}(x)$, where $A \in I^{n \times m}, x \in M_{n}$, then $x \in \mathbf{r}_{M_{n}} \mathbf{l}_{R^{n}}(x) \subseteq \mathbf{r}_{M_{n}} \mathbf{l}_{R^{n}}(A)=$ $\alpha_{1} M+\cdots+\alpha_{m} M$ by (3), where $\alpha_{1}, \ldots, \alpha_{m}$ are columns of $A$. Thus (4) is proved.
(4) $\Rightarrow$ (5). Let $x \in \mathbf{r}_{M_{n}}\left(R^{n} B \cap \mathbf{1}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}\right)$. Then $\mathbf{l}_{R^{n}}(B A) \subseteq \mathbf{1}_{R^{n}}(B x)$, where $A$ is the matrix whose column vectors are $\alpha_{1}, \ldots, \alpha_{m}$. By (4), $B x=B A y$ for some $y \in M_{m}$. Hence $x-A y \in \mathbf{r}_{M_{n}}(B)$, and so $x=z+A y$ for some $z \in \mathbf{r}_{M_{n}}(B)$, proving that $\mathbf{r}_{M_{n}}\left(R^{n} B \bigcap \mathbf{l}_{R^{n}}(\alpha)\right) \subseteq$ $\mathbf{r}_{M_{n}}(B)+\alpha_{1} M+\cdots+\alpha_{m} M$. The other inclusion always holds.
$(5) \Rightarrow(3)$. By taking $B=E$ in (5).
$(1) \Rightarrow(6)$. Clearly, $M$ is $I-(m, 1)$-injective and

$$
r_{M_{m}}(K)+r_{M_{m}}(L) \subseteq r_{M_{m}}(K \cap L) .
$$

Conversely, let $x \in r_{M_{m}}(K \cap L)$. Then $f: K+L \rightarrow M$ is well defined by $f(k+l)=k x$ for all $k \in K$ and $l \in L$. Since $M$ is $I-(m, n)$-injective, $f=y$ for some $y \in M_{m}$. Hence, for all $k \in K$ and $l \in L$, we have $k y=f(k)=k x$ and $l y=f(l)=0$. Thus $x-y \in r_{M_{m}}(K)$ and $y \in r_{M_{m}}(L)$, so $x=(x-y)+y \in r_{M_{m}}(K)+r_{M_{m}}(L)$.
$(6) \Rightarrow(7)$ is trivial.
$(7) \Rightarrow(1)$. We proceed by induction on $n$. If $n=1$, then (1) is clearly holds by hypothesis. Suppose $n>1$. Let $T=R \beta_{1}+R \beta_{2}+\cdots+R \beta_{n}$ be an $n$-generated submodule of the left $R$-module $I^{m}, T_{1}=R \beta_{1}$ and $T_{2}=R \beta_{2}+\cdots+R \beta_{n}$. Suppose $f: T \rightarrow M$ is a left $R$-homomorphism. Then $\left.f\right|_{T_{1}}=\cdot y_{1}$ for some $y_{1} \in M_{m}$ by hypothesis and $\left.f\right|_{T_{2}}=\cdot y_{2}$ for some $y_{2} \in M_{m}$ by induction hypothesis . Thus $y_{1}-y_{2} \in r_{M_{m}}\left(T_{1} \cap T_{2}\right)=r_{M_{m}}\left(T_{1}\right)+r_{M}\left(T_{2}\right)$. So $y_{1}-y_{2}=z_{1}+z_{2}$ for some $z_{1} \in r_{M_{m}}\left(T_{1}\right)$ and $z_{2} \in r_{M_{m}}\left(T_{2}\right)$. Let $y=y_{1}-z_{1}=y_{2}+z_{2}$. Then for any $\beta \in T$, let $\beta=\beta_{1}+\beta_{2}, \beta_{1} \in T_{1}, \beta_{2} \in T_{2}$, we have $\beta_{1} z_{1}=0, \beta_{2} z_{2}=0$. Hence $f(\beta)=f\left(\beta_{1}\right)+f\left(\beta_{2}\right)=\beta_{1} y_{1}+\beta_{2} y_{2}=\beta_{1}\left(y_{1}-z_{1}\right)+\beta_{2}\left(y_{2}+z_{2}\right)=$ $\beta_{1} y+\beta_{2} y=\beta y$. So (1) follows.
$(1) \Rightarrow(8)$. Without loss of generality, we may assume that $P=\left(M \oplus R^{m}\right) / W$, where $W=$ $\{f(a),-i(a) \mid a \in T\}, g(y)=(0, y)+W, \alpha(x)=(x, 0)+W$ for $x \in M$ and $y \in R^{m}$. Since $M$ is $I-(m, n)$-injective, there is $\varphi \in \operatorname{Hom}_{R}\left(R^{m}, M\right)$ such that $\varphi i=f$. Define $h[(x, y)+W]=x+\varphi(y)$ for all $(x, y)+W \in P$. Then it is easy to check that $h$ is well-defined and $h \alpha=1_{M}$.
$(2) \Leftrightarrow(10)$. It follows from the exact sequence

$$
\operatorname{Hom}_{R}(V, E(M)) \rightarrow \operatorname{Hom}_{R}(V, E(M) / M) \rightarrow \operatorname{Ext}_{R}^{1}(V, M) \rightarrow 0
$$

and Theorem 2.4(5).
(10) $\Rightarrow$ (9). Suppose $M \leq M^{\prime}$, then $M \leq E(M) \leq E\left(M^{\prime}\right)$. Since $M$ is $I-(n, m)$-pure in $E(M)$ and $E(M)$ is pure in $E\left(M^{\prime}\right), M$ is $I-(n, m)$-pure in $E\left(M^{\prime}\right)$ by Proposition 2.8(1). Note that $M \leq M^{\prime} \leq E\left(M^{\prime}\right)$, by Proposition 2.8(2), $M$ is $I-(n, m)$-pure is $M^{\prime}$.
$(11) \Rightarrow(10)$. Suppose that $M$ is $I-(n, m)$-pure in $M^{\prime}$ and $M^{\prime}$ is $I-(m, n)$-injective. Then for every $I-(n, m)$-presented module ${ }_{R} V$, since $M$ is $I-(n, m)$-pure in $M^{\prime}$ and $M^{\prime}$ is $I-(n, m)$-pure in $E\left(M^{\prime}\right)$, $M \otimes V \rightarrow M^{\prime} \otimes V$ and $M^{\prime} \otimes V \rightarrow E\left(M^{\prime}\right) \otimes V$ are monomorphisms. Thus the following commutative diagram

gives that the map $M \otimes V \rightarrow E(M) \otimes V$ is a monomorphism, and so $M$ is $I-(n, m)$-pure in $E(M)$.
Corollary 3.3. Let $M$ be a left R-module. Then the following statements are equivalent:
(1) $M$ is $(m, n)$-injective.
(2) $\operatorname{Ext}^{1}(V, M)=0$ for every $(m, n)$-presented left $R$-module $V$.
(3) $\mathbf{r}_{M_{n}} \mathbf{l}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=\alpha_{1} M+\cdots+\alpha_{m} M$ for any $m$ elements $\alpha_{1}, \ldots, \alpha_{m} \in R_{n}$.
(4) If $x=\left(m_{1}, m_{2}, \ldots, m_{n}\right)^{\prime} \in M_{n}$ and $A \in R^{n \times m}$ satisfy $\mathbf{l}_{R^{n}}(A) \subseteq \mathbf{1}_{R^{n}}(x)$, then $x=A y$ for some $y \in M_{m}$.
(5) $\mathbf{r}_{M_{n}}\left(R^{n} B \cap \mathbf{l}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}\right)=\mathbf{r}_{M_{n}}(B)+\alpha_{1} M+\cdots+\alpha_{m} M$ for any $m$ elements $\alpha_{1}, \ldots, \alpha_{m} \in$ $R_{n}$ and $B \in R^{n \times n}$.
(6) $M$ is $(m, 1)$-injective and $r_{M_{m}}(K \cap L)=r_{M_{m}}(K)+r_{M_{m}}(L)$, Where $K$ and $L$ are submodules of the left $R$-modules $R^{m}$ such that $K+L$ is $n$-generated.
(7) $M$ is $(m, 1)$-injective and $r_{M_{m}}(K \cap L)=r_{M_{m}}(K)+r_{M_{m}}(L)$, Where $K$ and $L$ are submodules of the left $R$-modules $R^{m}$ such that $K$ is cyclic and $L$ is $(n-1)$-generated.
(8) For each n-generated submodule $T$ of $R^{m}$ and any $f \in \operatorname{Hom}(T, M)$, if $(\alpha, g)$ is the pushout of $(f, i)$ in the following diagram

where $i$ is the inclusion map, there exists a homomorphism $h: P \rightarrow M$ such that $h \alpha=1_{M}$.
(9) $M$ is absolutely $(n, m)$-pure, that is, $M$ is $(n, m)$-pure in each module containing $M$.
(10) $M$ is $(n, m)$-pure in $E(M)$.
(11) $M$ is an ( $n, m$ )-pure submodule of an ( $m, n$ )-injective module.

We note that the equivalence of (1), (3), (6), (7) in Corollary 3.3 appears in [11, Corollary 2.5 and Corollary 2.10].

Corollary 3.4. Let $M$ be a left $R$-module. Then the following statements are equivalent:
(1) $M$ is $I-F P$-injective.
(2) $\operatorname{Ext}^{1}(V, M)=0$ for every I-finitely presented left $R$-module $V$.
(3) Every $R$-homomorphism from a finitely generated submodule of $I^{(\mathbb{N})}$ to $M$ extends to a homomorphism of $R^{(\mathbb{N})}$ to $M$, where $\mathbb{N}$ is the set of all positive integers.
(4) For any positive integers $m, n, \mathbf{r}_{M_{n}} \mathbf{l}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=\alpha_{1} M+\cdots+\alpha_{m} M$ for any $m$ elements $\alpha_{1}, \ldots, \alpha_{m} \in I_{n}$.
(5) For any positive integers $m$, $n$, if $x=\left(m_{1}, m_{2}, \cdots, m_{n}\right)^{\prime} \in M_{n}$ and $A \in I^{n \times m}$ satisfy $\mathbf{l}_{R^{n}}(A) \subseteq \mathbf{l}_{R^{n}}(x)$, then $x=A y$ for some $y \in M_{m}$.
(6) For any positive integers $m, n, \mathbf{r}_{M_{n}}\left(R^{n} B \cap \mathbf{l}_{R^{n}}\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}\right)=\mathbf{r}_{M_{n}}(B)+\alpha_{1} M+\cdots+\alpha_{m} M$ for any $m$ elements $\alpha_{1}, \ldots, \alpha_{m} \in I_{n}$ and $B \in R^{n \times n}$.
(7) For any positive integer $m, M$ is $I-(m, 1)$-injective and $r_{M_{m}}(K \cap L)=r_{M_{m}}(K)+r_{M_{m}}(L)$, Where $K$ and $L$ are submodules of the left $R$-module $I^{m}$ such that $K+L$ is finitely generated.
(8) For any positive integer $m, M$ is $I-(m, 1)$-injective and $r_{M_{m}}(K \cap L)=r_{M_{m}}(K)+r_{M_{m}}(L)$, Where $K$ and $L$ are submodules of the left $R$-modules $I^{m}$ such that $K$ is cyclic and $L$ is finitely generated.
(9) For each finitely generated submodule $T$ of $I^{(\mathbb{N})}$ and any $f \in \operatorname{Hom}(T, M)$, if $(\alpha, g)$ is the pushout of $(f, i)$ in the following diagram

where $i$ is the inclusion map, there exists a homomorphism $h: P \rightarrow M$ such that $h \alpha=1_{M}$.
(10) $M$ is absolutely $l$-pure, that is, $M$ is $I$-pure in each module containing $M$.
(11) $M$ is I-pure in $E(M)$.
(12) $M$ is an I-pure submodule of an I-FP-injective module.

Proof. Since $M$ is $I$ - $F P$-injective if and only if $M$ is $I-(m, n)$-injective for every pair of positive integers $m, n$, the equivalence of (1), (2),(4), (5), (6), (7), (8), (10), (11), (12) follows from Theorem 3.2.
$(1) \Leftrightarrow(3)$, and $(9) \Rightarrow(3)$ are obvious.
$(3) \Rightarrow(9)$ is similar to the proof of $(8) \Rightarrow(1)$ in Theorem 3.2.
Proposition 3.5. Let $\left\{M_{\alpha}\right\}_{\alpha \in A}$ be a family of left $R$-modules. Then the following statements are equivalent:
(1). Each $M_{\alpha}$ is $I-(m, n)$-injective.
(2) $\prod_{\alpha \in A} M_{\alpha}$ is $I$ - $(m, n)$-injective.
(3) $\oplus_{\alpha \in A} M_{\alpha}$ is $I$ - $(m, n)$-injective .

Proof. It is trivial.
Corollary 3.6. Let $\left\{M_{\alpha}\right\}_{\alpha \in A}$ be a family of left $R$-modules. Then the following statements are equivalent:
(1). Each $M_{\alpha}$ is I-FP-injective.
(2) $\prod_{\alpha \in A} M_{\alpha}$ is I-FP-injective.
(3) $\oplus_{\alpha \in A} M_{\alpha}$ is I-FP-injective .

Recall that a submodule $K$ of an $R$-module $M$ is called small in $M$ [9, 19.1], written $K \ll M$, if, for every submodule $L \subseteq M$, the equality $K+L=M$ implies $L=M$. A ring $R$ is called semiregular [17] if for any $a \in R, R / R a$ has a projective cover. A left $R$-module $M$ is called semiregular [17] if for any $m \in M$, we have $M=P \oplus K$, where $P$ is projective, $P \subseteq R m$, and $R m \cap K \ll K$. By [17, Lemma B.40, Lemma B.48], a ring $R$ is semiregular if and only if the left $R$-module ${ }_{R} R$ is semiregular.

Proposition 3.7. If $R$ is a semiregular ring, then a left $R$-module $M$ is FP-injective if and only if it is J-FP-injective.

Proof. Necessity is clear. To prove sufficiency, let $N$ be a finitely generated submodule of a finitely generated free left $R$-module $F$ and $f: N \rightarrow M$ be a left $R$-homomorphism. Since $R$ is semiregular, by [17, Lemma B.54], $F$ is semiregular. So, by [17, Lemma B.51], $F=P \oplus K$, where $P$ is projective, $P \subseteq N$ and $N \cap K$ is small in $K$. Hence $F=N+K, N=P \oplus(N \cap K)$, and so $N \cap K$ is finitely generated. Since $M$ is J-FP-injective, there exists a homomorphism $g: F \rightarrow M$ such that $g(x)=f(x)$ for all $x \in N \cap K$. Now let $h: F \rightarrow M ; x \mapsto f(n)+g(k)$, where $x=n+k, n \in N, k \in K$. Then $h$ is a well-defined left $R$-homomorphism and $h$ extends $f$.

## 4 I-flat Modules

Recall that a right $R$-module $B$ is said to be flat if the functor $B \otimes_{R}$ is exact, it is well-known that a right $R$-module $B$ is flat if and only if the canonical map $B \otimes T \rightarrow B \otimes R$ is monic for every finitely generated left ideal $T$, if and only if $\operatorname{Tor}_{1}(B, V)=0$ for every finitely presented left $R$-module $V$. A right $R$-module $B$ is said to be $n$-flat [10, 18], if for every $n$-generated left ideal $T$, the canonical map $V \otimes T \rightarrow V \otimes R$ is monic. 1-flat modules are also called $P$-flat by some authors [19, 20]. Following Zhang and Chen, a right $R$-module $B$ is said to be ( $m, n$ )-flat [8], if for every $n$-generated submodule $T$ of the left $R$-module $R^{m}$, the canonical map $B \otimes T \rightarrow B \otimes R^{m}$ is monic. It is easy to see that a right $R$-module $B$ is $n$-flat if and only if and only if it is $(1, n)$-flat, a right $R$-module $B$ is flat if and only if and only if it is $(m, n)$-flat for each pair of positive integers $m, n$ if and only if it is $(1, n)$-flat for each positive integer $n$. We extend the concepts of ( $m, n$ )-flat modules and flat modules respectively as follows.

Definition 4.1. $\quad A$ right $R$-module $B$ is said to be $I-(m, n)$-flat, if for every $n$-generated submodule $T$ in $I^{m}$, the canonical map $B \otimes T \rightarrow B \otimes R^{m}$ is monic. A right $R$-module $B$ is said to be l-flat in case it is $I$-( $m, n$ )-flat for any positive integers $m$ and $n$.

Theorem 4.2. For a right $R$-module $B$, the following statements are equivalent:
(1) $B$ is $I-(m, n)$-flat.
(2) $\operatorname{Tor}_{1}\left(B, R^{m} / T\right)=0$ for every $n$-generated submodule $T$ of the left $R$-module $I^{m}$.
(3) $B^{+}$is I-(m,n)-injective.
(4) For every $n$-generated submodule $T$ of the left $R$-module $I^{m}$, the map $\mu_{T}: B \otimes T \rightarrow$ $B T ; \sum b_{i} \otimes a_{i} \mapsto \sum b_{i} a_{i}$ is a monomorphism.
(5) For all $X \in B^{n}, A \in I^{n \times m}$, if $X A=0$, then exist positive integer I and $Y \in B^{l}, C \in R^{l \times n}$, such that $C A=0$ and $X=Y C$.

Proof. (1) $\Leftrightarrow$ (2) follows from the exact sequence $0 \rightarrow \operatorname{Tor}_{1}\left(B, R^{m} / T\right) \rightarrow B \otimes T \rightarrow B \otimes R^{m}$.
$(2) \Leftrightarrow(3)$ follows from the isomorphism $\operatorname{Tor}_{1}\left(B, R^{m} / T\right)^{+} \cong \operatorname{Ext}^{1}\left(R^{m} / T, B^{+}\right)$.
$(1) \Leftrightarrow(4)$. Consider the following commutative diagram

, where $\sigma: b \otimes\left(r_{1}, \cdots, r_{m}\right) \mapsto\left(b r_{1}, \cdots, b r_{m}\right)$ is an isomorphism, and $i_{V T}$ is the inclusion map. Then it is easy to see that $1_{B} \otimes i_{T}$ is monic if and only if $\mu_{T}$ is monic.
$(4) \Rightarrow(5)$. Let $X=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ and let $A_{1}, A_{2}, \cdots, A_{n}$ be the row vectors of $A, T=$ $\sum_{j=1}^{n} R A_{j}$. Write $e_{j}$ be the element in $R^{n}$ with 1 in the jth position and 0's in all other positions, $j=1,2, \ldots, n$. Consider the short exact sequence

$$
0 \rightarrow K \xrightarrow{i_{K}} R^{n} \xrightarrow{f} T \rightarrow 0
$$

where $f\left(e_{j}\right)=A_{j}$ for each $j=1,2, \ldots, n$. Since $X A=0$, by (4), $\sum_{j=1}^{n}\left(b_{j} \otimes f\left(e_{j}\right)\right)=\sum_{j=1}^{n}\left(b_{j} \otimes\right.$ $\left.A_{j}\right)=0$ as an element in $B \otimes_{R} T$. So in the exact sequence

$$
B \otimes K \xrightarrow{1_{B} i_{K}} B \otimes R^{n} \xrightarrow{1_{B} \otimes f} B \otimes T \rightarrow 0
$$

we have $\sum_{j=1}^{n}\left(b_{j} \otimes e_{j}\right) \in \operatorname{Ker}\left(1_{B} \otimes f\right)=\operatorname{Im}\left(1_{B} \otimes i_{K}\right)$. Thus there exist $u_{h} \in B, k_{h} \in K, h=1,2, \ldots, l$ such that $\sum_{j=1}^{n}\left(b_{j} \otimes e_{j}\right)=\sum_{h=1}^{l}\left(u_{h} \otimes k_{h}\right)$. Let $k_{h}=\sum_{j=1}^{n} c_{h j} e_{j}, h=1,2, \ldots, l$. Then $\sum_{j=1}^{n} c_{h j} a_{j}=$ $\sum_{j=1}^{n} c_{h j} f\left(e_{j}\right)=f\left(k_{h}\right)=0, h=1,2, \ldots, l$. Write $C=\left(c_{h j}\right)_{l n}$, then $C A=0$. Moreover, since $\sum_{j=1}^{n}\left(b_{j} \otimes e_{j}\right)=\sum_{h=1}^{l}\left(u_{h} \otimes k_{h}\right)=\sum_{h=1}^{l}\left(u_{h} \otimes\left(\sum_{j=1}^{n} c_{h j} e_{j}\right)\right)=\sum_{j=1}^{n}\left(\left(\sum_{h=1}^{l} u_{h} c_{h j}\right) \otimes e_{j}\right)$, we have $b_{j}=\sum_{h=1}^{l} u_{h} c_{h j}, j=1,2, \ldots, n$. Now, let $Y=\left(u_{1}, u_{2}, \cdots, u_{l}\right)$. Then $Y \in B^{l}$ and $X=Y C$.
$(5) \stackrel{(4)}{\Rightarrow}$. Let $T=\sum_{j=1}^{n} R X_{j}$ be an $n$-generated submodule of ${ }_{R} I^{m}$ and suppose $A_{i}=$ $\sum_{j=1}^{n} r_{i j} X_{j} \in T, b_{i} \in B$ with $\sum_{i=1}^{k} b_{i} A_{i}=0$. Then $\sum_{j=1}^{n}\left(\sum_{i=1}^{k} b_{i} r_{i j}\right) X_{j}=0$. By (5), there exists elements $u_{1}, \ldots, u_{m} \in B$ and elements $c_{i j} \in R(i=1, \ldots, m, j=1, \ldots, n)$ such that $\sum_{j=1}^{n} c_{i j} X_{j}=$ $0(i=1, \ldots, m)$ and $\sum_{i=1}^{m} u_{i} c_{i j}=\sum_{i=1}^{k} b_{i} r_{i j}(j=1, \ldots, n)$. Thus, $\sum_{i=1}^{k} b_{i} \otimes A_{i}=\sum_{i=1}^{k} b_{i} \otimes$ $\left(\sum_{j=1}^{n} r_{i j} X_{j}\right)=\sum_{j=1}^{n}\left(\sum_{i=1}^{k} b_{i} r_{i j}\right) \otimes X_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} u_{i} c_{i j}\right) \otimes X_{j}=\sum_{i=1}^{m}\left(u_{i} \otimes \sum_{j=1}^{n} c_{i j} X_{j}\right)=0$. And so (4) is proved.

Corollary 4.3. For a right $R$-module $B$, the following statements are equivalent:
(1) $B$ is I-flat.
(2) $\operatorname{Tor}_{1}(B, V)=0$ for every I-finitely presented left R-module $V$.
(3) $B^{+}$is I-FP-injective .
(4) For every positive integer $m$ and every finitely generated submodule $T$ of the left $R$-module $I^{m}$, the map $\mu_{T}: B \otimes T \rightarrow B T ; \sum b_{i} \otimes a_{i} \mapsto \sum b_{i} a_{i}$ is a monomorphism.
(5) For any positive integers $m, n$ and all $X \in B^{n}, A \in I^{n \times m}$, if $X A=0$, then exist positive integer $I$ and $Y \in B^{l}, C \in R^{l \times n}$, such that $C A=0$ and $X=Y C$.

Remark 4.4. From Corollary 4.3, the $I$-flatness of $B_{R}$ can be characterized by the $I-F P$-injectivity of $B^{+}$. On the other hand, by [5, Lemma 2.7(1)], the sequence $\operatorname{Tor}_{1}\left(B^{+}, V\right) \rightarrow \operatorname{Ext}^{1}(V, B)^{+} \rightarrow 0$ is exact for all finitely presented left $R$-module $V$, so if $B^{+}$is $I$-flat, then $B$ is $I$-FP-injective.

Proposition 4.5. If $R$ is a semiregular ring, then a right $R$-module $B$ is flat if and only if it is $J$-flat.

Proof. Clearly, flat module is $J$-flat. Conversely, if $B$ is $J$-flat, then by Corollary 4.3, $B^{+}$is $J-F P-$ injective. But $R$ is a semiregular ring, by Proposition 3.7, $B^{+}$is $F P$-injective, and so $B$ is flat.

Proposition 4.6. Let $U_{R}^{\prime} \leq U_{R}$.
(1) If $U / U^{\prime}$ is I-(m,n)-flat, then $U^{\prime}$ is I-(m,n)-pure in $U$.
(2) If $U^{\prime}$ is I-(m,n)-pure in $U$ and $U$ is I-(m,n)-flat, then $U / U^{\prime}$ is I-(m,n)-flat.

Proof. It follows from the exact sequence

$$
\operatorname{Tor}_{1}\left(U, R^{m} / T\right) \rightarrow \operatorname{Tor}_{1}\left(U / U^{\prime}, R^{m} / T\right) \rightarrow U^{\prime} \otimes R^{m} / T \rightarrow U \otimes R^{m} / T
$$

and Theorem 4.2(2).

Corollary 4.7. Let $F$ be an I-(m,n)-flat module and $K$ a submodule of $F$. Then $F / K$ is I-(m,n)-flat if and only if $K$ is $l$-( $m, n$ )-pure in $F$.

The results of following Corollary 4.8 are well-known.

Corollary 4.8. Let $F$ be a flat module and $K$ a submodule of $F$. Then the following statements are equivalent:
(1) $F / K$ is flat.
(2) $K \cap F T=K T$ for every finitely generated left ideal $T$.
(3) $K \cap F T=K T$ for every left ideal $T$.

Proof. (1) $\Leftrightarrow(2)$. Since a module is flat if and only if it is $R-(1, \infty)$ flat, so , by Corollary 4.7. $F / K$ is flat if and only if $K$ is $R-(1, \infty)$-pure in $F$. Thus, by Theorem 2.4(4), we have that $F / K$ is flat if and only if $K \cap F T=K T$ for every finitely generated left ideal $T$.
$(2) \Leftrightarrow(3)$. It is obvious.
Corollary 4.9. $I-(n, m)$-presented $I-(m, n)$-flat module is projective.
Proof. By Proposition 4.6(1) and Theorem 2.4(5).
Corollary 4.10. I-finitely presented I-flat module is projective. In particular, finitely presented flat module is projective, and J-finitely presented J-flat module is projective.

Theorem 4.11. Every pure submodule of an I-(m,n)-flat module is I-(m,n)-flat. In particular, every pure submodule of an ( $m, n$ )-flat module is ( $m, n$ )-flat.

Proof. Let $A$ be a pure submodule of an $I-(m, n)$-flat right $R$-module $B$. Then the pure exact sequence $0 \rightarrow A \rightarrow B \rightarrow B / A \rightarrow 0$ induces a split exact sequence $0 \rightarrow(B / A)^{+} \rightarrow B^{+} \rightarrow A^{+} \rightarrow 0$. Since $B$ is $I-(m, n)$-flat, by Theorem 4.2, $B^{+}$is $I-(m, n)$-injective, and so $A^{+}$is $I-(m, n)$-injective. Thus $A$ is $I-(m, n)$-flat by Theorem 4.2 again.

Corollary 4.12. Every pure submodule of an I-flat module is I-flat.
Proposition 4.13. Let $\left\{M_{\alpha}\right\}_{\alpha \in A}$ be a family of right $R$-modules. Then $\oplus_{\alpha \in A} M_{\alpha}$ is I-flat if and only if each $M_{\alpha}$ is I-flat.

Proof. It follows from the isomorphism $\operatorname{Tor}_{1}\left(\oplus_{\alpha \in A} M_{\alpha}, N\right) \cong \oplus_{\alpha \in A} \operatorname{Tor}_{1}\left(M_{\alpha}, N\right)$.

## $5 \quad I$-coherent Rings and $I$-semihereditary Rings

Recall that a ring $R$ is called left coherent if every finitely generated left ideal of $R$ is finitely presented, a ring $R$ is called left $J$-coherent [6] if every finitely generated left ideal in $J$ is finitely presented, a ring R is called left $N i l_{*}$-coherent [14] if every finitely generated left ideal in $N i l_{*}(R)$ is finitely presented. We extend these concepts as follows.

Definition 5.1. Let $R$ be a ring and $I$ be an ideal of $R$. Then $R$ is called left I-coherent if every finitely generated left ideal in I is finitely presented.

Following [21], a ring $R$ is called left min-coherent if every minimal left ideal of R is finitely presented.

Example 5.2. $\quad$ A ring $R$ is left min-coherent if and only if $R$ is left $\operatorname{Soc}\left({ }_{R} R\right)$-coherent.
We note that since left $J$-coherent rings need not be left coherent [6, Example 2.8], and left mincoherent rings need not be left coherent [21, Remark 4.2(1)]. So, a left $I$-coherent ring need not be left coherent for any ideal $I$.

Recall that a left $R$-module $A$ is called 2-presented if there exists an exact sequence $F_{2} \rightarrow F_{1} \rightarrow$ $F_{0} \rightarrow A \rightarrow 0$ in which every $F_{i}$ is a finitely generated free module.

Theorem 5.3. Let $R$ be a ring and $I$ be an ideal of $R$. Then the following statements are equivalent:
(1) $R$ is a left I-coherent ring.
(2) For every positive integer m, every finitely generated submodule $A$ of the left $R$-module $I^{m}$ is finitely presented.
(3) Every I-finitely presented left R-module is 2-presented.

Proof. (1) $\Rightarrow$ (2). We prove by induction on $m$. If $m=1$, then $A$ is a finitely generated left ideal in $I$, by hypothesis, $A$ is finitely presented. Assume that every finitely generated submodule of the left $R$-module $I^{m-1}$ is finitely presented. Then for any finitely generated submodule $A$ of the left $R$ module $I^{m}$. Let $B=A \cap\left(R e_{1} \oplus \cdots \oplus R e_{m-1}\right)$. Then each $a \in A$ has a unique expression $a=b+r e_{m}$, where $b \in R e_{1} \oplus \cdots \oplus R e_{m-1}, r \in R$, where $e_{j} \in R^{m}$ with 1 in the $j$ th position and 0 's in all other positions. If $\varphi: A \rightarrow R$ is defined by $a \mapsto r$, then there is an exact sequence $0 \rightarrow B \rightarrow A \xrightarrow{\varphi} L \rightarrow 0$, where $L=\operatorname{Im}(\varphi)$ is a finitely generated left ideal in $I$. By hypothesis, $L$ is finitely presented, and so $B$ is finitely generated. Since $B$ is contained in $I^{m-1}$, the induction hypothesis gives $B$ is finitely presented. Therefore, $A$ is also finitely presented by [9, 25.1(2)(ii)].
$(2) \Rightarrow(1)$, and $(2) \Leftrightarrow(3)$ are obvious.
Let $\mathcal{F}$ be a class of $R$-modules and $M$ an $R$-module. Following [22], we say that a homomorphism $\varphi: M \rightarrow F$ where $F \in \mathcal{F}$ is an $\mathcal{F}$-preenvelope of $M$ if for any morphism $f: M \rightarrow F^{\prime}$ with $F^{\prime} \in \mathcal{F}$, there is a $g: F \rightarrow F^{\prime}$ such that $g \varphi=f$. An $\mathcal{F}$-preenvelope $\varphi: M \rightarrow F$ is said to be an $\mathcal{F}$-envelope if every endomorphism $g: F \rightarrow F$ such that $g \varphi=\varphi$ is an isomorphism. Dually, we have the definitions of an $\mathcal{F}$-precover and an $\mathcal{F}$-cover. $\mathcal{F}$-envelopes ( $\mathcal{F}$-covers) may not exist in general, but if they exist, they are unique up to isomorphism.

Theorem 5.4. Let $R$ be a ring and $I$ be an ideal of $R$. Then the following statements are equivalent:
(1) $R$ is left l-coherent.
(2) $\xrightarrow{\lim } \operatorname{Ext}_{R}^{1}\left(V, M_{\alpha}\right) \cong \operatorname{Ext}_{R}^{1}\left(V, \underline{\text { lim }} M_{\alpha}\right)$ for any l-finitely presented left $R$-module $V$ and direct system $\left(\vec{M}_{\alpha}\right)_{\alpha \in A}$ of left $R$-modules.
(3) $\operatorname{Tor}_{1}^{R}\left(\prod N_{\alpha}, V\right) \cong \Pi \operatorname{Tor}_{1}^{R}\left(N_{\alpha}, V\right)$ for any family $\left\{N_{\alpha}\right\}$ of right $R$-modules and any l-finitely presented left $R$-module $V$.
(4) Any direct product of copies of $R_{R}$ is I-flat.
(5) Any direct product of $I$-flat right $R$-modules is $I$-flat.
(6) Any direct limit of I-FP-injective left $R$-modules is I-FP-injective.
(7) Any direct limit of injective left $R$-modules is I-FP-injective.
(8) A left R-module $M$ is $I$-FP-injective if and only if $M^{+}$is I-flat.
(9) A left R-module $M$ is I-FP-injective if and only if $M^{++}$is I-FP-injective.
(10) A right $R$-module $M$ is $I$-flat if and only if $M^{++}$is $I$-flat.
(11) For any ring $S, \operatorname{Tor}_{1}^{R}\left(\operatorname{Hom}_{S}(B, E), V\right) \cong \operatorname{Hom}_{S}\left(\operatorname{Ext}_{R}^{1}(V, B), E\right)$ for the situation $\left({ }_{R} V,_{R} B_{S}, E_{S}\right)$ with $V$ l-finitely presented and $E_{S}$ injective.
(12) Every right R-module has an I-flat preenvelope.

Proof. (1) $\Rightarrow$ (2) follows from [5, Lemma 2.9(2)].
$(1) \Rightarrow(3)$ follows from [5, Lemma 2.10(2)].
$(2) \Rightarrow(6) \Rightarrow(7),(3) \Rightarrow(5) \Rightarrow(4)$ are trivial.
(7) $\Rightarrow$ (1). Let $V=R^{m} / T$ be an $I$-finitely presented left $R$-module, where $T$ be a finitely generated submodule of $I^{m}$, and let $\left(M_{\alpha}\right)_{\alpha \in A}$ a direct system of $F P$-injective left $R$-modules (with $A$ directed). Then $\underset{\longrightarrow}{\lim } M_{\alpha}$ is $I$ - $F P$-injective by (7), and so $\operatorname{Ext}^{1}\left(V, \xrightarrow[\longrightarrow]{\lim } M_{\alpha}\right)=0$. Thus we have a commutative diagram with exact rows:


Since $f$ and $g$ are isomorphism by $[9,25.4(\mathrm{~d})], h$ is also an isomorphism by the Five Lemma. So $T$ is finitely presented by $[9,25.4(\mathrm{e})]$ and then $V$ is 2-presented. Hence $R$ is left $I$-coherent.
$(4) \Rightarrow(1)$. Let $T$ be a finitely generated submodule of the left $R$-module $I^{m}$. By (4), $\operatorname{Tor}_{1}\left(\Pi R, R^{m} / T\right)=$ 0 . Thus we have a commutative diagram with exact rows:


Since $f_{2}$ and $f_{3}$ are isomorphism by [22, Theorem 3.2.22], $f_{1}$ is an isomorphism by the Five Lemma. So $T$ is finitely presented by [22, Theorem 3.2.22] again. Hence $R$ is left $I$-coherent.
$(5) \Rightarrow(12)$. Let $N$ be any right $R$-module. By [22, Lemma 5.3.12], there is a cardinal number $\aleph_{\alpha}$ dependent on $\operatorname{Card}(N)$ and $\operatorname{Card}(R)$ such that for any homomorphism $f: N \rightarrow F$ with $F I$-flat, there is a pure submodule $S$ of $F$ such that $f(N) \subseteq S$ and Card $S \leq \aleph_{\alpha}$. Thus $f$ has a factorization $N \rightarrow$ $S \rightarrow F$ with $S I$-flat by Corollary 4.12. Now let $\left\{\varphi_{\beta}\right\}_{\beta \in B}$ be all such homomorphisms $\varphi_{\beta}: N \rightarrow S_{\beta}$ with Card $S_{\beta} \leq \aleph_{\alpha}$ and $S_{\beta} I$-flat. Then any homomorphism $N \rightarrow F$ with $F I$-flat has a factorization $N \rightarrow S_{i} \rightarrow F$ for some $i \in B$. Thus the homomorphism $N \rightarrow \Pi_{\beta \in B} S_{\beta}$ induced by all $\varphi_{\beta}$ is an $I$-flat preenvelope since $\Pi_{\beta \in B} S_{\beta}$ is $I$-flat by (5).
$(12) \Rightarrow(5)$ follows from [23, Lemma 1].
$(1) \Rightarrow(11)$. Let $V$ be any $I$-finitely presented left $R$-module. Since $R$ is left $I$-coherent, $V$ is 2-presented. And so (11) follows from [5, Lemma 2.7(2)].
$(11) \Rightarrow(8)$. Let $S=\mathbb{Z}, C=\mathbb{Q} / \mathbb{Z}$ and $B=M$. Then $\operatorname{Tor}_{1}\left(M^{+}, V\right) \cong \operatorname{Ext}^{1}(V, M)^{+}$for any $I$-finitely presented left $R$-module $V$ by (11), and hence (8) holds.
$(8) \Rightarrow(9)$. Let $M$ be a left $R$-module. If $M$ is $I-F P$-injective, then $M^{+}$is $I$-flat by (8), and so $M^{++}$is $I-F P$-injective by Corollary 4.3. Conversely, if $M^{++}$is $I-F P$-injective, then $M$, being a pure submodule of $M^{++}$(see [24, Exercise 41, p.48]), is $I$ - $F P$-injective by Corollary 3.4.
$(9) \Rightarrow(10)$. If $M$ is an $I$-flat right $R$-module, then $M^{+}$is an $I$ - $F P$-injective left $R$-module by Corollary 4.3, and so $M^{+++}$is $I$ - $F P$-injective by (9). Thus $M^{++}$is $I$-flat by Corollary 4.3 again. Conversely, if $M^{++}$is $I$-flat, then $M$ is $I$-flat by Corollary 4.12 since $M$ is a pure submodule of $M^{++}$.
$(10) \Rightarrow(5)$. Let $\left\{N_{\alpha}\right\}_{\alpha \in A}$ be a family of $I$-flat right $R$-modules. Then by Proposition 4.13, $\oplus_{\alpha \in A} N_{\alpha}$ is $I$-flat, and so $\left(\prod_{\alpha \in A} N_{\alpha}^{+}\right)^{+} \cong\left(\oplus_{\alpha \in A} N_{\alpha}\right)^{++}$is $I$-flat by (10). Since $\oplus_{\alpha \in A} N_{\alpha}^{+}$is a pure submodule of $\Pi_{\alpha \in A} N_{\alpha}^{+}$by [25, Lemma 1(1)], $\left(\Pi_{\alpha \in A} N_{\alpha}^{+}\right)^{+} \rightarrow\left(\oplus_{\alpha \in A} N_{\alpha}^{+}\right)^{+} \rightarrow 0$ splits, and hence $\left(\oplus_{\alpha \in A} N_{\alpha}^{+}\right)^{+}$is $I$-flat. Thus $\Pi_{\alpha \in A} N_{\alpha}^{++} \cong\left(\oplus_{\alpha \in A} N_{\alpha}^{+}\right)^{+}$is $I$-flat. Since $\Pi_{\alpha \in A} N_{\alpha}$ is a pure submodule of $\Pi_{\alpha \in A} N_{\alpha}^{++}$by [25, Lemma 1(2)], $\Pi_{\alpha \in A} N_{\alpha}$ is $I$-flat by Corollary 4.12.

Corollary 5.5. Let $R$ be a left I-coherent ring. Then every left $R$-module has an I-FP-injective cover.

Proof. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a pure exact sequence of left $R$-modules with $B I$ - $F P$ injective. Then $0 \rightarrow C^{+} \rightarrow B^{+} \rightarrow A^{+} \rightarrow 0$ is split. Since $R$ is left $I$-coherent, $B^{+}$is $I$-flat by Theorem 5.4, so $C^{+}$is $I$-flat, and hence $C$ is $I-F P$-injective by Remark 4.4. Thus, the class of $I$ - $F P$-injective modules is closed under pure quotients. By [26, Theorem 2.5], every left $R$-module has an $I-F P$ injective cover.

Recall that a ring $R$ is called left semihereditary if every finitely generated left ideal of $R$ is projective, a ring $R$ is called left $J$-semihereditary [6] if every finitely generated left ideal in $J$ is projective. We extend these concepts as follows.

Definition 5.6. Let $R$ be a ring and $I$ be an ideal of $R$. Then $R$ is called left $l$-semihereditary if every finitely generated left ideal in I is projective.

Example 5.7. Recall that a ring $R$ is called left PS [27] if every minimal left ideal of $R$ is projective. It is easy to see that a ring $R$ is left PS if and only if $R$ is left $\operatorname{Soc}\left({ }_{R} R\right)$-semihereditary.

Let $R$ be a non-coherent commutative domain and $G$ a free abelian group with rank $G=\infty$. Then the group ring $R G$ is left J -semihereditary but not left semihereditary (see [6, p.152]). So, a let $I$-semihereditary ring need not be left semihereditary for a general ideal $I$.

Theorem 5.8. Let $R$ be a ring and $I$ be an ideal of $R$. Then the following statements are equivalent:
(1) $R$ is a left l-semihereditary ring.
(2) For every positive integer m, every finitely generated submodule $A$ of the left $R$-module $I^{m}$ is projective.
(3) If $0 \rightarrow K \rightarrow P \rightarrow V \rightarrow 0$ is exact, where $V$ is I-finitely presented, $P$ is finitely generated projective and $K$ is finitely generated, then $K$ is projective.

Proof. (1) $\Rightarrow$ (2). We prove by induction on $m$. If $m=1$, then $A$ is a finitely generated left ideal in $I$, by hypothesis, $A$ is projective. Assume that every finitely generated submodule of the left $R$ module $I^{m-1}$ is projective. Then for any finitely generated submodule $A$ of the left $R$-module $I^{m}$. Let $B=A \cap\left(R e_{1} \oplus \cdots \oplus R e_{m-1}\right)$. Then each $a \in A$ has a unique expression $a=b+r e_{m}$, where $b \in R e_{1} \oplus \cdots \oplus R e_{m-1}, r \in R$, where $e_{j} \in R^{m}$ with 1 in the $j$ th position and 0 's in all other positions. If $\varphi: A \rightarrow R$ is defined by $a \mapsto r$, then there is an exact sequence $0 \rightarrow B \rightarrow A \xrightarrow{\varphi} L \rightarrow 0$, where $L=\operatorname{Im}(\varphi)$ is a finitely generated left ideal in $I$. By hypothesis, $L$ is projective, so $A \cong B \oplus L$ and
then $B$ is finitely generated. Since $B$ is contained in $I^{m-1}$, the induction hypothesis gives $B$, hence $A$, is projective.
$(2) \Rightarrow(1)$. It is clear.
$(2) \Leftrightarrow(3)$. By the dual of Schanuel's lemma [9, 50.2(1)].
Corollary 5.9. If $R$ is a left $J$-semihereditary ring, then for every positive integer $m$, every finitely generated submodule of the left $R$-module $J^{m}$ is projective.

Corollary 5.10. If $R$ is a left semihereditary ring, then every finitely generated submodule of a projective left $R$-module is projective.

Theorem 5.11. The following statements are equivalent for a ring $R$ :
(1) $R$ is a left I-semihereditary ring.
(2) $R$ is left I-coherent and every submodule of an I-flat right $R$-module is I-flat.
(3) $R$ is left I-coherent and every right ideal is I-flat.
(4) $R$ is left I-coherent and every finitely generated right ideal is I-flat.
(5) Every quotient module of an I-FP-injective left R-module is I-FP-injective.
(6) Every quotient module of an injective left R-module is I-FP-injective.
(7) Every left R-module has a monic I-FP-injective cover.
(8) Every right R-module has an epic l-flat envelope.

Proof. $(2) \Rightarrow(3) \Rightarrow(4)$, and $(5) \Rightarrow(6)$ are trivial.
$(1) \Rightarrow(2)$. Let $V=R^{m} / L$ be an $I$-finitely presented left $R$-module, where $L$ is a finitely generated submodule of $I^{m}$. Then by Theorem 5.8, $L$ is projective, and so finitely presented, it shows that $V$ is 2-presented, and thus $R$ is left $I$-coherent. Let $A$ be a submodule of an $I$-flat right $R$-module $B$, and let $m$ be any positive and $T$ a finitely generated submodule of ${ }_{R} I^{m}$. Then $T$ is projective by Theorem 5.8 again, and hence $T$ is flat. So the exactness of $0=\operatorname{Tor}_{2}\left(B / A, R^{m}\right) \rightarrow \operatorname{Tor}_{2}\left(B / A, R^{m} / T\right) \rightarrow$ $\operatorname{Tor}_{1}(B / A, T)=0$ implies that $\operatorname{Tor}_{2}\left(B / A, R^{m} / T\right)=0$. And thus from the exactness of the sequence $0=\operatorname{Tor}_{2}\left(B / A, R^{m} / T\right) \rightarrow \operatorname{Tor}_{1}\left(A, R^{m} / T\right) \rightarrow \operatorname{Tor}_{1}\left(B, R^{m} / T\right)=0$ we have $\operatorname{Tor}_{1}\left(A, R^{m} / T\right)=0$, it follows that $A$ is $I$-flat.
$(4) \Rightarrow(1)$. Let $T$ be a finitely generated left ideal in $I$. Then for any finitely generated right ideal $K$ of $R$, the exact sequence $0 \rightarrow K \rightarrow R \rightarrow R / K \rightarrow 0$ implies the exact sequence $0 \rightarrow$ $\operatorname{Tor}_{2}(R / K, R / T) \rightarrow \operatorname{Tor}_{1}(K, R / T)=0$ since $K$ is $I$-flat. So $\operatorname{Tor}_{2}(R / K, R / T)=0$, and hence we obtain an exact sequence $0=\operatorname{Tor}_{2}(R / K, R / T) \rightarrow \operatorname{Tor}_{1}(R / K, T) \rightarrow 0$. Thus, $\operatorname{Tor}_{1}(R / K, T)=0$. Note that $T$ is finitely presented for $R$ is left $I$-coherent, so $T$ is a finitely presented flat left $R$-module. Therefore, $T$ is projective.
$(1) \Rightarrow(5)$. Let $M$ be an $I$ - $F P$-injective left $R$-module and $N$ be a submodule of $M$. Then for any positive integer $m$ and finitely generated submodule $T$ of ${ }_{R} I^{m}$, since $T$ is projective, the exact sequence $0=\operatorname{Ext}^{1}(T, N) \rightarrow \operatorname{Ext}^{2}\left(R^{m} / T, N\right) \rightarrow \operatorname{Ext}^{2}\left(R^{m}, N\right)=0$ implies that $\operatorname{Ext}^{2}\left(R^{m} / T, N\right)=$ 0 . Thus the exact sequence $0=\operatorname{Ext}^{1}\left(R^{m} / T, M\right) \rightarrow \operatorname{Ext}^{1}\left(R^{m} / T, M / N\right) \rightarrow \operatorname{Ext}^{2}\left(R^{m} / T, N\right)=0$ implies that $\operatorname{Ext}^{1}\left(R^{m} / T, M / N\right)=0$. Consequently, $M / N$ is $I-F P$-injective.
$(6) \Rightarrow(1)$. Let $T$ be a finitely generated left ideal in $I$. Then for any left $R$-module $M$, by (6), $E(M) / M$ is $I$ - $F P$-injective, and so $\operatorname{Ext}^{1}(R / T, E(M) / M)=0$. Thus, the exactness of the sequence $0=\operatorname{Ext}^{1}(R / T, E(M) / M) \rightarrow \operatorname{Ext}^{2}(R / T, M) \rightarrow \operatorname{Ext}^{2}(R / T, E(M))=0$ implies that $\operatorname{Ext}^{2}(R / T, M)=$ 0 . And so, the exactness of the sequence $0=\operatorname{Ext}^{1}(R, M) \rightarrow \operatorname{Ext}^{1}(T, M) \rightarrow \operatorname{Ext}^{2}(R / T, M)=0$ implies that $\operatorname{Ext}^{1}(T, M)=0$, this follows that $T$ is projective, as required.
(2), (5) $\Rightarrow$ (7). Since $R$ is left $I$-coherent by (2), for any left $R$-module $M$, there is an $I$ - $F P$-injective cover $f: E \rightarrow M$ by Corollary 5.4. Note that $\operatorname{Im}(f)$ is $I-n$-injective by (5), and $f: E \rightarrow M$ is an $I-F P$ injective precover, so for the inclusion map $i: \operatorname{Im}(f) \rightarrow M$, there is a homomorphism $g: \operatorname{Im}(f) \rightarrow E$ such that $i=f g$. Hence $f=f(g f)$. Observing that $f: E \rightarrow M$ is an $I$ - $F P$-injective cover and
$g f$ is an endomorphism of $E$, so $g f$ is an automorphisms of $E$, and thus $f: E \rightarrow M$ is a monic $I$ - $F P$-injective cover.
$(7) \Rightarrow(5)$. Let $M$ be an $I$ - $F P$-injective left $R$-module and $N$ be a submodule of $M$. By (7), $M / N$ has a monic $I$ - $F P$-injective cover $f: E \rightarrow M / N$. Let $\pi: M \rightarrow M / N$ be the natural epimorphism. Then there exists a homomorphism $g: M \rightarrow E$ such that $\pi=f g$. Thus $f$ is an isomorphism, and so $M / N \cong E$ is $I$ - $F P$-injective.
$(2) \Leftrightarrow(8)$. By Theorem 5.4 and [23, Theorem 2].

Corollary 5.12. The following statements are equivalent for a ring $R$ :
(1) $R$ is a left semihereditary ring.
(2) $R$ is left coherent and every submodule of a flat right $R$-module is flat.
(3) $R$ is left coherent and every right ideal is flat.
(4) $R$ is left coherent and every finitely generated right ideal is flat.
(5) Every quotient module of an FP-injective left R-module is FP-injective.
(6) Every quotient module of an injective left R-module is FP-injective.
(7) Every left R-module has a monic FP-injective cover.
(8) Every right R-module has an epic flat envelope.

Corollary 5.13. The following statements are equivalent for a ring $R$ :
(1) $R$ is a left $J$-semihereditary ring.
(2) $R$ is left J-coherent and every submodules of a J-flat right $R$-modules is flat.
(3) $R$ is left $J$-coherent and every right ideal is $J$-flat.
(4) $R$ is left $J$-coherent and every finitely generated right ideal is $J$-flat.
(5) Every quotient module of an J-FP-injective left R-module is J-FP-injective.
(6) Every quotient module of an injective left R-module is J-FP-injective.
(7) Every left R-module has a monic J-FP-injective cover.
(8) Every right R-module has an epic J-flat envelope.

## 6 Conclusion

Let $R$ be a ring and $I$ an ideal of $R$. In this paper, we define and study $I$-pure submodules, $I$ - $F P$-injective modules, $I$-flat modules, $I$-coherent rings and $I$-semihereditary rings, a series of interesting results are obtained, some results generalize the well-known results on pure submodules , $F P$-injective modules, flat modules, coherent rings and semihereditary rings, respectively.

## Acknowledgment

The author would like to thank the referees for their useful comments.

## Competing Interests

The author declares that no competing interests exist.

## References

[1] Stenström B. Coherent rings and FP-injective modules. J. London Math. Soc. 1970;2(2):323329.
[2] Megibben C. Absolutely pure modules. Proc. Amer. Math. Soc. 1970;26(4):561-566.
[3] Chase SU. Direct products of modules. Trans. Amer. Math. Soc. 1960;97(3):457-473.
[4] Cartan H, Eilenberg S. Homological algebra. Princeton University Press, Princeton; 1956.
[5] Chen JL, Ding NQ. On $n$-coherent rings. Comm. Algebra. 1996;24(10):3211-3216.
[6] Ding NQ, Li YL, Mao LX. J-coherent rings. J. Algebra Appl. 2009;8(2):139-155.
[7] Gupta RN. On f-injective modules and semihereditary rings. Proc. Nat. Inst. Sci. India Part A. 1969;35(2):323-328.
[8] Zhang XX, Chen JL. On $(m, n)$-injective modules and $(m, n)$-coherent rings. Algebra colloq. 2005;12(1):149-160.
[9] Wisbauer R. Foundations of Module and Ring Theory, Algebra, Logic and Applications, vol.3, Gordon and Breach Science, Pennsylvania; 1991.
[10] Ahmad S. $n$-injective and $n$-flat modules. Comm. Algebra. 2001;29(5):2039-2050.
[11] Chen JL, Ding NQ, Li YL, Zhou YQ. On $(m, n)$-injectivity of modules. Comm. Algebra. 2001;29(12):5589-5603.
[12] Nicholson WK, Yousif MF. Principally injective rings. J. Algebra. 1995;174(1):77-93.
[13] Yousif MF, Zhou YQ. Rings for which certain elements have the principal extension property. Algebra colloq. 2003;10(4):501-512.
[14] Xiang YM, Ouyang LQ. Nil*-Coherent rings. Bull. Korean Math. Soc. 2014;51(2):579-594.
[15] Amin I, Yousif M, Zeyada N. Soc-injective rings and modules. Comm. Algebra. 2005;33(11):4229-4250.
[16] Lam TY. Lectures on Modules and Rings, Graduate Texts in Mathematic vol.131, SpringerVerlag, New York; 2001.
[17] Nicholson WK, Yousif MF. Quasi-Frobenius Rings, Cambridge University Press, Cambridge; 2003.
[18] Dobbs DD. On $n$-flat modules over a commutative ring. Bull. Austral. Math. Soc. 1991;43(3):491498.
[19] Cheniour F, Mahdou N. When every P-flat ideal is flat. Bull. Iranian Math. Soc. 2014;37(3):251267.
[20] Couchot F. Flat modules over valuation rings. J. Pure Appl. Algebra. 2007;211(1):235-247.
[21] Mao LX. Min-flat modules and Min-coherent rings. Comm. Algebra. 2007;35(2):635-650.
[22] Enochs EE, Jenda OMG. Relative Homological Algebra, Walter de Gruyter, Berlin-New York; 2000.
[23] Chen JL, Ding NQ. A note on existence of envelopes and covers. Bull. Austral. Math. Soc. 1996;54(3):383-390.
[24] Stenström B. Rings of Quotients, Springer-Verlag, Berlin-Heidelberg-New York; 1975.
[25] Cheatham TJ, Stone DR. Flat and projective character modules, Proc. Amer. Math. Soc. 1981;81(2):175-177.
[26] Holm H, Jorgensen P. Covers, precovers, and purity. Illinois J. Math. 2008;52(2):691-703.
[27] Nicholson WK, Watters JF. Rings with projective socle. Proc. Amer. Math. Soc. 1988;102(3):443450.
(C) 2015 Zhu; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) www.sciencedomain.org/review-history.php?iid=1032\&id=6\&aid=8594


[^0]:    *Corresponding author: E-mail: zhanmin_zhu@hotmail.com

