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Abstract
Let R be a ring and I an ideal of R . We define and study I-pure submodules , I-FP -injective
modules, I-flat modules , I-coherent rings and I-semihereditary rings. Using the concepts of I-
FP -injectivity and I-flatness of modules, we also present some characterizations of I-coherent
rings and I-semihereditary rings.
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1 Introduction
Throughout this paper, m,n are positive integers, R is an associative ring with identity, I is an ideal
of R, J = J(R) is the Jacobson radical of R and all modules considered are unitary. For any
module M , M+ denotes HomZ(M,Q/Z), where Q is the set of rational numbers, and Z is the set
of integers. In general, for a set S, we write Sm×n for the set of all formal m × n matrices whose
entries are elements of S, and Sn (resp., Sn) for the set of all formal n × 1 (resp., 1 × n) matrices
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whose entries are elements of S. Let N be a left R-module, X ⊆ Nn and A ⊆ Rn. Then we definite
rNn(A) = {u ∈ Nn : au = 0, ∀a ∈ A}, and lRn(X) = {a ∈ Rn : ax = 0, ∀x ∈ X}.

Recall that a left R-module M is called FP-injective [1] or absolutely pure [2] if Ext1R(A,M) = 0
for every finitely presented left R-module A; a right R-module M is flat if and only if TorR1 (M,A) = 0
for every finitely presented left R-module A; a ring R is left coherent [3] if every finitely generated left
ideal of R is finitely presented, or equivalently, if every finitely generated submodule of a projective left
R-module is finitely presented ; a ring R is left semihereditary [4] if every finitely generated left ideal
of R is projective, or equivalently, if every finitely generated submodule of a projective left R-module
is projective. We recall also that: given a right R-module U with submodule U ′, then U ′ is called a
pure submodule of U if the canonical map U ′ ⊗R V → U ⊗R V is a monomorphism for every finitely
presented left R-module V . Pure submodules, FP-injective modules, flat modules, coherent rings,
semihereditary rings , and their generalizations have been studied extensively by many authors (see,
for example, [1, 3, 5, 6, 7, 8]).

In this article, we wish to introduce a new generalization for pure submodules, FP -injective
modules, flat modules, coherent rings, semihereditary rings respectively.

Let I be an ideal of R. In section 2 of this paper, we introduce the concept of I-pure submodules.
Given a right R-module U with submodule U ′, then U ′ is called an I-pure submodule of U if the
canonical map U ′ ⊗R V → U ⊗R V is a monomorphism for every I-finitely presented left R-module
V , where a left R-module V is said to be I-finitely presented, if there is a positive integer m and an
exact sequence of left R-modules 0→ K → Rm → V → 0 with K a finitely generated submodule of
Im. We give some characterizations and properties of I-pure submodules.

In section 3 and section 4, we introduce the concepts of I-FP-injective modules and I-flat modules.
A left R-module M is called I-FP -injective, if Ext1R(V,M) = 0 for every I-finitely presented left R-
module V ; a right R-module M is called I-flat, if TorR1 (M,V ) = 0 for every I-finitely presented left
R-module V . We give some characterizations and properties of I-FP -injective modules and I-flat
modules. For instance, we prove that a left R-module M is I-FP -injective if and only if it is I-pure in
every module containing it.

In section 5, we introduce the concepst of I-coherent rings and I-semihereditary rings. The ring R
is called I-coherent if every finitely generated left ideal in I is finitely presented. The ringR is called I-
semihereditary if every finitely generated left ideal in I is projective. We give some characterizations
and properties of I-coherent rings and I-semihereditary rings, especially, I-coherent rings and I-
semihereditary rings are characterized by I-FP -injective modules and I-flat modules, some interesting
results are obtained. For instance, we prove that R is a left I-coherent ring ⇔ any direct product of
I-flat right R-modules is I-flat ⇔ any direct limit of I-FP -injective left R-modules is I-FP -injective
⇔ every right R-module has an I-flat preenvelope; R is a left I-semihereditary ring ⇔ R is left I-
coherent and every submodule of an I-flat right R-module is I-flat ⇔ every quotient module of an
I-FP -injective left R-module is I-FP -injective ⇔ every left R-module has a monic I-FP -injective
cover⇔ every right R-module has an epic I-flat envelope.

2 I-pure Submodules
Recall that a left R-module V is said to be (m,n)-presented [8], if there is an exact sequence of left R-
modules 0→ K → Rm → V → 0 with K n-generated. We extend the definitions of (m,n)-presented
modules and finitely presented modules respectively as follows.

Definition 2.1. A left R-module V is said to be I-(m,n)-presented, if there is an exact sequence
of left R-modules 0→ K → Rm → V → 0 with K an n-generated submodule of Im. A left R-module
V is said to be I-finitely presented if it is I-(m,n)-presented for a pair of positive integers m, n.
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Clearly, a left R-module V is (m,n)-presented if and only if it is R-(m,n)-presented, a left R-
module V is finitely presented if and only if it is R-finitely presented.

Definition 2.2. Given a right R-module U with submodule U ′. Then:
(1) U ′ is called I-(m,n)-pure in U if the canonical map U ′ ⊗R V → U ⊗R V is a monomorphism

for every I-(m,n)-presented left R-module V . U ′ is said to be I-(m,∞-pure (resp., I-(∞, n)-pure in U
in case U ′ is I-(m,n)-pure in U for all positive integers n (resp., m).

(2) U ′ is called I-pure in U if the canonical map U ′ ⊗R V → U ⊗R V is a monomorphism for
every I- finitely presented left R-module V .

Example 2.3. (1) It is easy to see that U ′ is (m,n)-pure in U if and only if U ′ is R-(m,n)-pure in
U . U ′ is pure in U if and only if U ′ is R-pure in U .

(2) Let I1 and I2 be two ideals with I1 ⊆ I2. If U ′ is I2-(m,n)-pure in U, then U ′ is I1-(m,n)-pure
in U. 2

Theorem 2.4 Let U ′R ≤ UR. Then the following statements are equivalent :
(1) U ′ is I-(m,n)-pure in U .
(1)′ For allC ∈ In×m, the canonical map U ′⊗R(Rm/RnC)→ U⊗R(Rm/RnC) is a monomorphism.
(2) For every I-(m,n)-presented leftR-module V , the canonical map TorR1 (U, V )→ TorR1 (U/U ′, V )

is surjective.
(3) For all C ∈ In×m, (U ′)m ∩ UnC = (U ′)nC.
(4) For every n-generated submodule T of RIm, (U ′)m ∩ UT = U ′T .
(5) For every I-(n,m)-presented rightR-moduleA, the canonical map HomR(A,U)→ HomR(A,U/U ′)

is surjective.
(5)′ For all C ∈ In×m, the canonical map

HomR(Rn/CRm, U)→ HomR(Rn/CRm, U/U
′)

is surjective.
(6) For every I-(n,m)-presented rightR-moduleA, the canonical map Ext1(A,U ′)→ Ext1(A,U)

is a monomorphism.

Proof. (1)⇔(1)′ and (5)⇔(5)′ are obvious.
(1)⇔(2). This follows from the exact sequence

TorR1 (U, V )→ TorR1 (U/U ′, V )→ U ′ ⊗ V → U ⊗ V.

(1)⇒(3). Let C = (cij)n×m ∈ In×m and x ∈ (U ′)m ∩ UnC. Then there exist a1, a2, · · · , am ∈
U ′, u1, u2, · · · , un ∈ U such that x = (a1, a2, · · · , am) and ai =

∑n
j=1 ujcji, i = 1, 2, · · · , m. Let

V = Rm/L , where

L = Rα1 + · · ·+Rαn, αj = (cj1, cj2, · · · , cjm), j = 1, 2, · · · , n

. Then V is I-(m,n)-presented and we have
∑m
i=1 ai ⊗ ei =

∑m
i=1(

∑n
j=1 ujcji) ⊗ ei =

∑n
j=1(uj ⊗∑m

i=1 cjiei) =
∑n
j=1(uj⊗αj) = 0 in U⊗V . Since U ′ is I-(m,n)-pure in U ,

∑m
i=1 ai⊗ei = 0 in U ′⊗V .

So from the exactness of the sequence U ′⊗L
1U′⊗ι→ U ′⊗Rm

1U′⊗π→ U ′⊗V → 0, we have
∑m
i=1 ai⊗

ei = (1U′ ⊗ ι)(
∑n
j=1 u

′
j ⊗ αj) =

∑n
j=1 u

′
j ⊗ αj =

∑n
j=1 u

′
j ⊗ (

∑m
i=1 cjiei) =

∑m
i=1(

∑n
j=1 u

′
jcji)⊗ ei

for some u′1, u′2, · · · , u′m ∈ U ′. This follows that ai =
∑n
j=1 u

′
jcji, i = 1, 2, · · · , m, thus x ∈ (U ′)nC.

But (U ′)nC ⊆ (U ′)m ∩ UnC, so (U ′)m ∩ UnC = (U ′)nC.
(3)⇒(4). Let T = Rb1 + · · · + Rbn, where bj = (c1j , c2j , · · · , cmj) ∈ Im, j = 1, 2, · · · , n.

If x = (a1, · · · , am) =
∑n
j=1 ujbj ∈ (U ′)m ∩ UT , where each ai ∈ U ′ and each uj ∈ U , then
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x = (u1, u2, · · · , un)C ∈ UnC ∩ (U ′)m, where C is the n ×m matrix with row vectors b1, · · · , bn.
Clearly, C ∈ In×m. By (3), x = (u′1, u

′
2, · · · , u′n)C for some u′1, u

′
2, · · · , u′n ∈ U ′. It follows that

x ∈ U ′T , and so (U ′)m ∩ UT = U ′T .
(4)⇒(5). Consider the following diagram with exact rows

0 - K -iK
Rn -π2

A - 0

?
f

0 - U ′ -iU′
U -π1

U/U ′ - 0

where f ∈ HomR(A,U/U ′) and K is an m-generated submodule of In, with generators yi =
(ci1, ci2, · · · , cin), i = 1, 2, · · · , m. Since Rn is projective, there exist g ∈ HomR(Rn, U) and
h ∈ HomR(K,U ′) such that the diagram commutes. Now let bj = (c1j , c2j , · · · , cmj) ∈ Im,
j = 1, 2, · · · , n, T = Rb1 + · · · + Rbn and ui =

∑n
j=1 g(ej)cij , where ej = (0, · · · , 0, 1, 0, · · · , 0)

(with 1 in the jth position and 0’s in all other positions), i = 1, 2, · · · ,m, j = 1, 2, · · · , n. Then ui =
g(
∑n
j=1 ejcij) = g(yi) = h(yi) ∈ U ′, i = 1, 2, · · · , m. Note that (u1, u2, · · · , um) =

∑n
j=1 g(ej)bj ∈

UT , by (4), (u1, u2, · · · , um) =
∑n
j=1 u

′
jbj for some u′1, u′2, · · · , u′n ∈ U ′. Therefore, ui =

∑n
j=1 u

′
jcij ,

i = 1, 2, · · · , m. Define σ ∈ HomR(Rn, U ′) such that σ(ej) = u′j , j = 1, 2, · · · , n. Then σiK = h.
Finally, we define τ : A → U by τ(z + K) = g(z) − σ(z), then τ is a well-defined right R-
homomorphism and π1τ = f . Whence HomR(A,U)→ HomR(A,U/U ′) is surjective.

(5)⇒(3). Suppose thatC = (cij)n×m ∈ In×m and x ∈ (U ′)m∩UnC. Then x = (a1, a2, · · · , am) =
(u1, u2, · · · , un)C for some a1, a2, · · · , am ∈ U ′ and u1, u2, · · · , un ∈ U . Take yi = (c1i, c2i, · · · , cni) (i =
1, 2, · · · , m), K = y1R + y2R + · · · + ymR and A = Rn/K. Then A is I-(n,m)-presented and we
have the following commutative diagram with exact rows

0 - K -iK
Rn -π2

A - 0

?
f1

?
f2

0 - U ′ -iU′
U -π1

U/U ′ - 0

where f2 is defined by f2(ej) = uj , j = 1, 2, · · · , n and f1 = f2|K . Define f3 : A → U/U ′ by
f3(z + K) = π1f2(z). Then it is easy to see that f3 is well defined and f3π2 = π1f2. By hypothesis,
f3 = π1τ for some τ ∈ HomR(A,U). Now we define σ : Rn → U ′ by σ(z) = f2(z) − τπ2(z). Then
σ ∈ HomR(Rn, U ′) and iU′σ = f2. Hence ai = f2(yi) = σ(yi) =

∑n
j=1 σ(ej)cji, i = 1, 2, · · · ,m, and

x = (σ(e1), σ(e2), · · · , σ(en))C ∈ (U ′)nC. Therefore (U ′)m ∩ UnC = (U ′)nC.
(3)⇒(1). Let RV be I-(m,n)-presented. Without loss of generality, write V = Rm/L , where

L = Rα1 + · · ·+Rαn, αj = (cj1, cj2, · · · , cjm) ∈ Im, j = 1, 2, · · · , n.

If
∑s
k=1 ak⊗bk = 0 in U⊗V , where ak ∈ U ′, bk =

∑m
j=1 rkjej ∈ V , then

∑m
j=1(

∑s
k=1 akrkj)⊗ej = 0

in U ⊗ V . Consider the exact sequence of U ⊗ L 1U⊗ι→ U ⊗ Rm 1U⊗π→ U ⊗ Rm/L → 0, we have∑m
j=1(

∑s
k=1 akrkj) ⊗ ej ∈ Ker(1U ⊗ π) = Im(1U ⊗ ι), so there exists u1, · · · , un ∈ U such that∑m

j=1(
∑s
k=1 akrkj) ⊗ ej =

∑n
i=1 ui ⊗ αi =

∑n
i=1 ui ⊗ (

∑m
j=1 cijej) =

∑m
j=1(

∑n
i=1 uicij) ⊗ ej ,

and so
∑s
k=1 akrkj =

∑n
i=1 uicij . By (3), there exist u′1, u′2, · · · , u′n ∈ U ′ such that

∑s
k=1 akrkj =∑n

i=1 u
′
icij , j = 1, · · · ,m. Thus

∑s
k=1 ak ⊗ bk =

∑n
i=1 u

′
i ⊗ (

∑m
j=1 cij)ej = 0 in U ′ ⊗ V .

(5)⇔(6). It follows from the exact sequence
HomR(A,U)→ HomR(A,U/U ′)→ Ext1R(A,U ′)→ Ext1R(A,U). 2

Corollary 2.5. Let U ′R ≤ UR. Then U ′ is I-(1,∞)-pure in U if and only if UT ∩ U ′ = U ′T for all
finitely generated left ideals T ⊆ I. 2

173



Zhu; BJMCS, 8(3), 170-188, 2015; Article no.BJMCS.2015.154

Proposition 2.6 Let U ′R ≤ UR. Then
(1) If U is n-generated, then U ′ is I-(m,n)-pure in U if and only if U ′ is I-(m,∞)-pure in U .
(2) If each finitely generated left ideal in I is n-generated, then U ′ is I-(1, n)-pure in U if and only

if U ′ is I-(1,∞)-pure in U .
(3) If each finitely generated right ideal in I is m-generated, then U ′ is I-(m, 1)-pure in U if and

only if U ′ is I-(∞, 1)-pure in U .

Proof. (2) can be proved by Theorem 2.4(4), and (3) can be proved by Theorem 2.4(5). Now we
prove only the necessity of (1).

Let u1, u2, · · · , un be a generating set of U . For every positive integer k and each C ∈ Ik×m, if
x ∈ (U ′)m ∩ UkC, then x = (u1, u2, · · · , un)AC for some A ∈ Rn×k. Since U ′ is I − (m,n)-pure
in U , by Theorem 2.4(3), x = (u′1, u

′
2, · · · , u′n)AC for some u′1, u′2, · · · , u′n ∈ U . So x ∈ (U ′)kC, and

thus (U ′)m ∩ UkC = (U ′)kC. Therefore U ′ is (m, k)-pure in U . 2

Corollary 2.7 Let U ′R ≤ UR. Then the following statements are equivalent :
(1) U ′ is I-pure in U .
(2) For every I-finitely presented leftR-module V , the canonical map TorR1 (U, V )→ TorR1 (U/U ′, V )

is surjective.
(3) For any positive integers m, n and any C ∈ In×m, (U ′)m ∩ UnC = (U ′)nC.
(4) For any positive integers m, n and any n-generated submodule T of RIm, (U ′)m∩UT = U ′T

.
(5) For every I-finitely presented rightR-moduleA, the canonical map HomR(A,U)→ HomR(A,U/U ′)

is surjective.
(6) For every I-finitely presented rightR-moduleA, the canonical map Ext1(A,U ′)→ Ext1(A,U)

is a monomorphism. 2

Proposition 2.8 Suppose E, F and G are right R-modules such that E ⊆ F ⊆ G. Then:
(1) If E is I-(m,n)-pure in F and F is I-(m,n)-pure in G, then E is I-(m,n)-pure in G.
(2) If E is I-(m,n)-pure in G, then E is I-(m,n)-pure in F .
(3) If F is I-(m,n)-pure in G, then F/E is I-(m,n)-pure in G/E.
(4) If E is I-(m,n)-pure in G and F/E is I-(m,n)-pure in G/E, then F is I-(m,n)-pure in G.

Proof. (1) and (2) follows from the definition of I-(m,n)-pure submodules or Theorem 2.4(3).
(3). Let A be an I-(n,m)-presented right R-module. Since F is I-(m,n)-pure in G, by Theorem

2.4(5), the canonical map HomR(A,G)
α→ HomR(A,G/F ) is surjective. Considering the following

commutative diagram

HomR(A,G)
α−−−−−→ HomR(A,G/F )y yσ

HomR(A,G/E)
τ−−−−−→ HomR(A, (G/E)/(F/E))

, where σ is an isomorphism and hence a epimorphism, we have that the canonical map τ is epic. By
Theorem 2.4(5), F/E is I-(m,n)-pure in G/E.

(4). Let V be an I-(n,m)-presented left R-module. Since E is I-(m,n)-pure in G, E is also
I-(m,n)-pure in F , and so we have a commutative diagram with exact rows

0 −−−−−→ E ⊗ V −−−−−→ F ⊗ V −−−−−→ F/E ⊗ V −−−−−→ 0y1

yf yg
0 −−−−−→ E ⊗ V −−−−−→ G⊗ V −−−−−→ G/E ⊗ V −−−−−→ 0
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. Since F/E is I-(m,n)-pure in G/E, g is monic. By five Lemma [9, 7.18], f is also monic, and thus
F is I-(m,n)-pure in G. 2

Corollary 2.9 Suppose E, F and G are right R-modules such that E ⊆ F ⊆ G. Then:
(1) If E is I-pure in F and F is I-pure in G, then E is I-pure in G.
(2) If E is I-pure in G, then E is I-pure in F .
(3) If F is I-pure in G, then F/E is I-pure in G/E.
(4) If E is I-pure in G and F/E is I-pure in G/E, then F is I-pure in G. 2

3 I-FP -injective Modules
Recall that a left R-module M is FP -injective if and only if every R-homomorphism from a finitely
generated submodule of a free left R-module F to M extends to a homomorphism of F to M [1,
Proposition 2.6] . FP -injective modules and their generalizations have been studied by many authors,
for example, see [6, 7, 10, 11, 12, 13, 14]. Following [11], a leftR-moduleM is called (m,n)-injective if
every R-homomorphism from an n-generated submodule T of Rm to M extends to a homomorphism
of Rm to M . It is easy to see that a left R-module M is FP -injective if and only if M is (m,n)-
injective for each pair of positive integers m,n. Following [7], a left R-module M is called F-injective if
every R-homomorphism from a finitely generated left ideal to M extends to a homomorphism of R to
M . Following [10, 12], a left R-module M is called n-injective if every R-homomorphism from an n-
generated left ideal to M extends to a homomorphism of R to M . Following [6], a left R-module M is
called J-injective if every R-homomorphism from a finitely generated left ideal in J(R) to M extends
to a homomorphism of R to M . We extends the concepts of (m,n)-injective modules, FP -injective
modules and J-injective modules as follows.

Definition 3.1. A left R-module M is called I-(m,n)-injective, if every R-homomorphism from an
n-generated submodule T of Im to M extends to a homomorphism of Rm to M . A left R-module M is
called I-FP-injective if M is I-(m,n)-injective for every pair of positive integers m, n. A left R-module M
is called I-F-injective if M is I-(1,n)-injective for every positive integer n.

It is easy to see that direct sums and direct summands of I-(m,n)-injective modules are I-(m,n)-
injective. A left R-module M is (m,n)-injective if and only if M is R-(m,n)-injective, a left R-module
M is FP -injective if and only if M is R-FP -injective, a left R-module M is J-injective if and only if M
is J-F -injective. According to [15], a ring R is said to be left Soc-injective if every R-homomorphism
from a semisimple submodule of RR to R extends to R. Clearly, if Soc(RR) is finitely generated, then
R is left Soc-injective if and only if RR is Soc(RR)-F -injective. Following [14], a left R-module M
is called N -injective if Ext1(R/T,M) = 0 for every finitely generated left ideal T in Nil∗(R), where
Nil∗(R) is the prime radical of R, it is equal to the intersection of all the prime ideals in R [16]. It is
clear that a left R-module M is N -injective if and only if M is N(R)-F -injective.

Theorem 3.2. Let M be a left R-module. Then the following statements are equivalent:
(1) M is I-(m,n)-injective.
(2) Ext1(V,M) = 0 for every I-(m,n)-presented left R-module V.
(3) rMn lRn{α1, ..., αm} = α1M + · · ·+ αmM for any m elements α1, ..., αm ∈ In.
(4) If x = (m1,m2, . . . ,mn)′ ∈ Mn and A ∈ In×m satisfy lRn(A) ⊆ lRn(x), then x = Ay for

some y ∈Mm.
(5) rMn(RnB∩ lRn{α1, ..., αm}) = rMn(B)+α1M + · · ·+αmM for any m elements α1, ..., αm ∈

In and B ∈ Rn×n.
(6)M is I-(m,1)-injective and rMm(K∩L) = rMm(K)+rMm(L), WhereK and L are submodules

of the left R-module Im such that K + L is n-generated.
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(7)M is I-(m,1)-injective and rMm(K∩L) = rMm(K)+rMm(L), WhereK and L are submodules
of the left R-module Im such that K is cyclic and L is (n− 1)-generated.

(8) For each n-generated submodule T of Im and any f ∈ Hom(T,M), if (α, g) is the pushout of
(f, i) in the following diagram

T
i−−−−−→ Rm

f

y yg
M

α−−−−−→ P

where i is the inclusion map, there exists a homomorphism h : P →M such that hα = 1M .
(9) M is absolutely I-(n,m)-pure, that is, M is I-(n,m)-pure in each module containing M.
(10) M is I-(n,m)-pure in E(M).
(11) M is an I-(n,m)-pure submodule of an I-(m, n)-injective module.

Proof. (1)⇔ (2) ; (8)⇒ (1) and (9)⇒ (10), (11) are clear.
(1) ⇒ (3). Always α1M + · · · + αmM ⊆ rMn lRn{α1, ..., αm}. If x ∈ rMn lRn{α1, ..., αm}.

Let A be the matrix with column vectors α1, ..., αm. Then the mapping f : RnA → M ;βA 7→ βx
is a well-defined left R-homomorphism. Since M is I-(m,n)-injective and RnA is an n-generated
submodule of Im, f can be extended to a homomorphism g of Rm to M . Now, for any β ∈ Rn,
we have β(α1g(e1) + · · · + αmg(em)) = g(βA) = f(βA) = βx, so x = α1g(e1) + · · · + αmg(em) ∈
α1M+· · ·+αmM . Thus rMn lRn{α1, ..., αm} ⊆ α1M+· · ·+αmM . Therefore, rMn lRn{α1, ..., αm} =
α1M + · · ·+ αmM .

(3) ⇒ (1). Let T =
∑n
i=1Rβi be an n-generated submodule of Im and f be a homomorphism

from T to M . Write ui = f(βi), i = 1, 2, . . . , n, u = (u1, u2, · · · , un)′ and let A be the matrix with
row vectors β1, ..., βn. Then u ∈ rMn lRn(A). By (3), there exists some x1, ..., xm ∈ M such that
u = α1x1 + · · · + αmxm, where α1, ..., αm are column vectors of A. Now we define g : Rm →
M ; (r1, · · · , rm) 7→ r1x1 + · · ·+ rmxm, then g is a left R-homomorphism, and it is easy to check that
f(βi) = ui = βi(x1, x2, · · · , xm)′ = g(βi), i = 1, ..., n, and so g extends f .

(3) ⇒ (4). If lRn(A) ⊆ lRn(x), where A ∈ In×m, x ∈ Mn, then x ∈ rMn lRn(x) ⊆ rMn lRn(A) =
α1M + · · ·+ αmM by (3), where α1, ..., αm are columns of A. Thus (4) is proved.

(4) ⇒ (5). Let x ∈ rMn(RnB ∩ lRn{α1, ..., αm}). Then lRn(BA) ⊆ lRn(Bx), where A is
the matrix whose column vectors are α1, ..., αm. By (4), Bx = BAy for some y ∈ Mm. Hence
x − Ay ∈ rMn(B), and so x = z + Ay for some z ∈ rMn(B), proving that rMn(RnB

⋂
lRn(α)) ⊆

rMn(B) + α1M + · · ·+ αmM . The other inclusion always holds.
(5)⇒ (3). By taking B = E in (5).
(1)⇒ (6). Clearly, M is I-(m, 1)-injective and

rMm(K) + rMm(L) ⊆ rMm(K ∩ L).

Conversely, let x ∈ rMm(K ∩ L). Then f : K + L → M is well defined by f(k + l) = kx for all
k ∈ K and l ∈ L. Since M is I-(m,n)-injective, f = ·y for some y ∈ Mm. Hence, for all k ∈ K and
l ∈ L, we have ky = f(k) = kx and ly = f(l) = 0. Thus x − y ∈ rMm(K) and y ∈ rMm(L), so
x = (x− y) + y ∈ rMm(K) + rMm(L).

(6)⇒ (7) is trivial.
(7) ⇒ (1). We proceed by induction on n. If n = 1, then (1) is clearly holds by hypothesis.

Suppose n > 1. Let T = Rβ1 +Rβ2 + · · ·+Rβn be an n-generated submodule of the left R-module
Im, T1 = Rβ1 and T2 = Rβ2 + · · · + Rβn. Suppose f : T → M is a left R-homomorphism. Then
f |T1 = ·y1 for some y1 ∈Mm by hypothesis and f |T2 = ·y2 for some y2 ∈Mm by induction hypothesis
. Thus y1−y2 ∈ rMm(T1∩T2) = rMm(T1)+rM (T2). So y1−y2 = z1 +z2 for some z1 ∈ rMm(T1) and
z2 ∈ rMm(T2). Let y = y1 − z1 = y2 + z2. Then for any β ∈ T , let β = β1 + β2, β1 ∈ T1, β2 ∈ T2, we
have β1z1 = 0, β2z2 = 0. Hence f(β) = f(β1) + f(β2) = β1y1 + β2y2 = β1(y1 − z1) + β2(y2 + z2) =
β1y + β2y = βy. So (1) follows.
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(1) ⇒ (8). Without loss of generality, we may assume that P = (M ⊕ Rm)/W , where W =
{f(a),−i(a)|a ∈ T}, g(y) = (0, y) + W,α(x) = (x, 0) + W for x ∈ M and y ∈ Rm. Since M is
I-(m,n)-injective, there is ϕ ∈ HomR(Rm,M) such that ϕi = f . Define h[(x, y) +W ] = x+ ϕ(y) for
all (x, y) +W ∈ P . Then it is easy to check that h is well-defined and hα = 1M .

(2)⇔ (10). It follows from the exact sequence

HomR(V,E(M))→ HomR(V,E(M)/M)→ Ext1R(V,M)→ 0

and Theorem 2.4(5).
(10) ⇒ (9). Suppose M ≤ M ′, then M ≤ E(M) ≤ E(M ′). Since M is I-(n,m)-pure in

E(M) and E(M) is pure in E(M ′), M is I-(n,m)-pure in E(M ′) by Proposition 2.8(1). Note that
M ≤M ′ ≤ E(M ′), by Proposition 2.8(2), M is I-(n,m)-pure is M ′.

(11)⇒ (10). Suppose that M is I-(n,m)-pure in M ′ and M ′ is I-(m,n)-injective. Then for every
I-(n,m)-presented module RV , since M is I-(n,m)-pure in M ′ and M ′ is I-(n,m)-pure in E(M ′),
M ⊗ V →M ′ ⊗ V and M ′ ⊗ V → E(M ′)⊗ V are monomorphisms. Thus the following commutative
diagram

M ⊗ V - M ′ ⊗ V

? ?
E(M)⊗ V - E(M ′)⊗ V

gives that the map M ⊗ V → E(M)⊗ V is a monomorphism, and so M is I-(n,m)-pure in E(M). 2

Corollary 3.3. Let M be a left R-module. Then the following statements are equivalent:
(1) M is (m,n)-injective.
(2) Ext1(V,M) = 0 for every (m,n)-presented left R-module V.
(3) rMn lRn{α1, ..., αm} = α1M + · · ·+ αmM for any m elements α1, ..., αm ∈ Rn.
(4) If x = (m1,m2, . . . ,mn)′ ∈ Mn and A ∈ Rn×m satisfy lRn(A) ⊆ lRn(x), then x = Ay for

some y ∈Mm.
(5) rMn(RnB∩ lRn{α1, ..., αm}) = rMn(B)+α1M + · · ·+αmM for any m elements α1, ..., αm ∈

Rn and B ∈ Rn×n.
(6) M is (m,1)-injective and rMm(K ∩L) = rMm(K) + rMm(L), Where K and L are submodules

of the left R-modules Rm such that K + L is n-generated.
(7) M is (m,1)-injective and rMm(K ∩L) = rMm(K) + rMm(L), Where K and L are submodules

of the left R-modules Rm such that K is cyclic and L is (n− 1)-generated.
(8) For each n-generated submodule T of Rm and any f ∈ Hom(T,M), if (α, g) is the pushout

of (f, i) in the following diagram

T
i−−−−−→ Rm

f

y yg
M

α−−−−−→ P

where i is the inclusion map, there exists a homomorphism h : P →M such that hα = 1M .
(9) M is absolutely (n,m)-pure, that is, M is (n,m)-pure in each module containing M.
(10) M is (n,m)-pure in E(M).
(11) M is an (n,m)-pure submodule of an (m, n)-injective module. 2

We note that the equivalence of (1), (3), (6), (7) in Corollary 3.3 appears in [11, Corollary 2.5 and
Corollary 2.10].
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Corollary 3.4. Let M be a left R-module. Then the following statements are equivalent:
(1) M is I-FP-injective.
(2) Ext1(V,M) = 0 for every I-finitely presented left R-module V.
(3) Every R-homomorphism from a finitely generated submodule of I(N) to M extends to a

homomorphism of R(N) to M , where N is the set of all positive integers.
(4) For any positive integers m, n, rMn lRn{α1, ..., αm} = α1M + · · ·+ αmM for any m elements

α1, ..., αm ∈ In.
(5) For any positive integers m, n, if x = (m1,m2, · · · ,mn)′ ∈ Mn and A ∈ In×m satisfy

lRn(A) ⊆ lRn(x), then x = Ay for some y ∈Mm.
(6) For any positive integers m, n, rMn(RnB ∩ lRn{α1, ..., αm}) = rMn(B) + α1M + · · ·+ αmM

for any m elements α1, ..., αm ∈ In and B ∈ Rn×n.
(7) For any positive integer m, M is I-(m,1)-injective and rMm(K ∩ L) = rMm(K) + rMm(L),

Where K and L are submodules of the left R-module Im such that K + L is finitely generated.
(8) For any positive integer m, M is I-(m,1)-injective and rMm(K ∩ L) = rMm(K) + rMm(L),

Where K and L are submodules of the left R-modules Im such that K is cyclic and L is finitely
generated.

(9) For each finitely generated submodule T of I(N) and any f ∈ Hom(T,M), if (α, g) is the
pushout of (f, i) in the following diagram

T
i−−−−−→ R(N)

f

y yg
M

α−−−−−→ P

where i is the inclusion map, there exists a homomorphism h : P →M such that hα = 1M .
(10) M is absolutely I-pure, that is, M is I-pure in each module containing M.
(11) M is I-pure in E(M).
(12) M is an I-pure submodule of an I-FP-injective module.

Proof. Since M is I-FP -injective if and only if M is I-(m,n)-injective for every pair of positive
integers m,n, the equivalence of (1), (2),(4), (5), (6), (7), (8), (10), (11), (12) follows from Theorem
3.2.

(1)⇔ (3), and (9)⇒ (3) are obvious.
(3)⇒ (9) is similar to the proof of (8)⇒ (1) in Theorem 3.2. 2

Proposition 3.5. Let {Mα}α∈A be a family of left R-modules. Then the following statements are
equivalent:

(1). Each Mα is I-(m,n)-injective.
(2)

∏
α∈A

Mα is I-(m,n)-injective .

(3) ⊕α∈AMα is I-(m,n)-injective .

Proof. It is trivial. 2

Corollary 3.6. Let {Mα}α∈A be a family of left R-modules. Then the following statements are
equivalent:

(1). Each Mα is I-FP-injective.
(2)

∏
α∈A

Mα is I-FP-injective .

(3) ⊕α∈AMα is I-FP-injective . 2
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Recall that a submodule K of an R-module M is called small in M [9, 19.1], written K << M , if,
for every submodule L ⊆M , the equality K + L = M implies L = M . A ring R is called semiregular
[17] if for any a ∈ R, R/Ra has a projective cover. A left R-module M is called semiregular [17] if for
any m ∈ M , we have M = P ⊕ K, where P is projective, P ⊆ Rm, and Rm ∩ K << K. By [17,
Lemma B.40, Lemma B.48], a ring R is semiregular if and only if the left R-module RR is semiregular.

Proposition 3.7. If R is a semiregular ring, then a left R-module M is FP-injective if and only if it
is J-FP-injective.

Proof. Necessity is clear. To prove sufficiency, let N be a finitely generated submodule of a finitely
generated free left R-module F and f : N →M be a left R-homomorphism. Since R is semiregular,
by [17, Lemma B.54], F is semiregular. So, by [17, Lemma B.51], F = P ⊕K, where P is projective,
P ⊆ N and N ∩ K is small in K. Hence F = N + K, N = P ⊕ (N ∩ K), and so N ∩ K is
finitely generated. Since M is J-FP–injective, there exists a homomorphism g : F → M such that
g(x) = f(x) for all x ∈ N ∩K. Now let h : F →M ;x 7→ f(n) + g(k), where x = n+ k, n ∈ N, k ∈ K.
Then h is a well-defined left R-homomorphism and h extends f . 2

4 I-flat Modules
Recall that a right R-module B is said to be flat if the functor B⊗R is exact, it is well-known that a
right R-module B is flat if and only if the canonical map B ⊗ T → B ⊗ R is monic for every finitely
generated left ideal T , if and only if Tor1(B, V ) = 0 for every finitely presented left R-module V . A
right R-module B is said to be n-flat [10, 18], if for every n-generated left ideal T , the canonical map
V ⊗ T → V ⊗ R is monic. 1-flat modules are also called P -flat by some authors [19, 20]. Following
Zhang and Chen, a right R-module B is said to be (m,n)-flat [8] , if for every n-generated submodule
T of the left R-module Rm, the canonical map B ⊗ T → B ⊗ Rm is monic. It is easy to see that a
right R-module B is n-flat if and only if and only if it is (1, n)-flat, a right R-module B is flat if and only
if and only if it is (m,n)-flat for each pair of positive integers m,n if and only if it is (1, n)-flat for each
positive integer n. We extend the concepts of (m,n)-flat modules and flat modules respectively as
follows.

Definition 4.1. A right R-module B is said to be I-(m,n)-flat, if for every n-generated submodule
T in Im, the canonical map B⊗T → B⊗Rm is monic. A right R-module B is said to be I-flat in case
it is I-(m,n)-flat for any positive integers m and n.

Theorem 4.2. For a right R-module B, the following statements are equivalent :
(1) B is I-(m,n)-flat.
(2) Tor1(B,Rm/T ) = 0 for every n-generated submodule T of the left R-module Im.
(3) B+ is I-(m,n)-injective .
(4) For every n-generated submodule T of the left R-module Im, the map µT : B ⊗ T →

BT ;
∑
bi ⊗ ai 7→

∑
biai is a monomorphism.

(5) For all X ∈ Bn, A ∈ In×m, if XA = 0, then exist positive integer l and Y ∈ Bl, C ∈ Rl×n,
such that CA = 0 and X = Y C.

Proof. (1)⇔ (2) follows from the exact sequence 0→ Tor1(B,Rm/T )→ B ⊗ T → B ⊗Rm.
(2)⇔ (3) follows from the isomorphism Tor1(B,Rm/T )+ ∼= Ext1(Rm/T,B+).
(1)⇔ (4). Consider the following commutative diagram
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B ⊗ T 1B⊗iT−−−−−→ B ⊗Rm

µT

y yσ
BT

iV T−−−−−→ V m

, where σ : b⊗ (r1, · · · , rm) 7→ (br1, · · · , brm) is an isomorphism, and iV T is the inclusion map. Then
it is easy to see that 1B ⊗ iT is monic if and only if µT is monic.

(4) ⇒ (5). Let X = (b1, b2, · · · , bn) and let A1, A2, · · · , An be the row vectors of A, T =∑n
j=1RAj . Write ej be the element in Rn with 1 in the jth position and 0’s in all other positions,

j = 1, 2, . . . , n. Consider the short exact sequence

0→ K
iK→ Rn

f→ T → 0

where f(ej) = Aj for each j = 1, 2, . . . , n. Since XA = 0, by (4),
∑n
j=1(bj ⊗ f(ej)) =

∑n
j=1(bj ⊗

Aj) = 0 as an element in B ⊗R T . So in the exact sequence

B ⊗K 1B⊗iK→ B ⊗Rn 1B⊗f→ B ⊗ T → 0

we have
∑n
j=1(bj⊗ej) ∈ Ker(1B⊗f) = Im(1B⊗iK). Thus there exist uh ∈ B, kh ∈ K,h = 1, 2, . . . , l

such that
∑n
j=1(bj ⊗ ej) =

∑l
h=1(uh⊗ kh). Let kh =

∑n
j=1 chjej , h = 1, 2, . . . , l. Then

∑n
j=1 chjaj =∑n

j=1 chjf(ej) = f(kh) = 0, h = 1, 2, . . . , l. Write C = (chj)ln, then CA = 0. Moreover, since∑n
j=1(bj ⊗ ej) =

∑l
h=1(uh⊗kh) =

∑l
h=1(uh⊗ (

∑n
j=1 chjej)) =

∑n
j=1((

∑l
h=1 uhchj)⊗ ej), we have

bj =
∑l
h=1 uhchj , j = 1, 2, . . . , n. Now, let Y = (u1, u2, · · · , ul). Then Y ∈ Bl and X = Y C.

(5) ⇒ (4). Let T =
∑n
j=1RXj be an n-generated submodule of RIm and suppose Ai =∑n

j=1 rijXj ∈ T, bi ∈ B with
∑k
i=1 biAi = 0. Then

∑n
j=1(

∑k
i=1 birij)Xj = 0. By (5), there exists

elements u1, . . . , um ∈ B and elements cij ∈ R(i = 1, . . . ,m, j = 1, . . . , n) such that
∑n
j=1 cijXj =

0(i = 1, . . . ,m) and
∑m
i=1 uicij =

∑k
i=1 birij(j = 1, . . . , n). Thus,

∑k
i=1 bi ⊗ Ai =

∑k
i=1 bi ⊗

(
∑n
j=1 rijXj) =

∑n
j=1(

∑k
i=1 birij)⊗Xj =

∑n
j=1(

∑m
i=1 uicij)⊗Xj =

∑m
i=1(ui ⊗

∑n
j=1 cijXj) = 0.

And so (4) is proved. 2

Corollary 4.3. For a right R-module B, the following statements are equivalent :
(1) B is I-flat.
(2) Tor1(B, V ) = 0 for every I-finitely presented left R-module V.
(3) B+ is I-FP-injective .
(4) For every positive integer m and every finitely generated submodule T of the left R-module

Im, the map µT : B ⊗ T → BT ;
∑
bi ⊗ ai 7→

∑
biai is a monomorphism.

(5) For any positive integers m, n and all X ∈ Bn, A ∈ In×m, if XA = 0, then exist positive
integer l and Y ∈ Bl, C ∈ Rl×n, such that CA = 0 and X = Y C.

Remark 4.4. From Corollary 4.3, the I-flatness ofBR can be characterized by the I-FP -injectivity
of B+. On the other hand, by [5, Lemma 2.7(1)], the sequence Tor1(B+, V ) → Ext1(V,B)+ → 0 is
exact for all finitely presented left R-module V , so if B+ is I-flat, then B is I-FP -injective.

Proposition 4.5. If R is a semiregular ring, then a right R-module B is flat if and only if it is J-flat.

Proof. Clearly, flat module is J-flat. Conversely, if B is J-flat, then by Corollary 4.3, B+ is J-FP -
injective. But R is a semiregular ring, by Proposition 3.7, B+ is FP -injective, and so B is flat.
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Proposition 4.6. Let U ′R ≤ UR.
(1) If U/U ′ is I-(m,n)-flat, then U ′ is I-(m,n)-pure in U .
(2) If U ′ is I-(m,n)-pure in U and U is I-(m,n)-flat, then U/U ′ is I-(m,n)-flat.

Proof. It follows from the exact sequence

Tor1(U,Rm/T )→ Tor1(U/U ′, Rm/T )→ U ′ ⊗Rm/T → U ⊗Rm/T

and Theorem 4.2(2). 2

Corollary 4.7. Let F be an I-(m,n)-flat module and K a submodule of F. Then F/K is I-(m,n)-flat
if and only if K is I-(m,n)-pure in F . 2

The results of following Corollary 4.8 are well-known.

Corollary 4.8. Let F be a flat module and K a submodule of F. Then the following statements
are equivalent:

(1) F/K is flat.
(2) K ∩ FT = KT for every finitely generated left ideal T .
(3) K ∩ FT = KT for every left ideal T .

Proof. (1)⇔ (2). Since a module is flat if and only if it is R-(1,∞) flat, so , by Corollary 4.7. F/K
is flat if and only if K is R-(1,∞)-pure in F . Thus, by Theorem 2.4(4), we have that F/K is flat if and
only if K ∩ FT = KT for every finitely generated left ideal T .

(2)⇔ (3). It is obvious. 2

Corollary 4.9. I-(n,m)-presented I-(m,n)-flat module is projective.

Proof. By Proposition 4.6(1) and Theorem 2.4(5). 2

Corollary 4.10. I-finitely presented I-flat module is projective. In particular, finitely presented flat
module is projective, and J-finitely presented J-flat module is projective. 2

Theorem 4.11. Every pure submodule of an I-(m,n)-flat module is I-(m,n)-flat. In particular, every
pure submodule of an (m,n)-flat module is (m,n)-flat.

Proof. Let A be a pure submodule of an I-(m,n)-flat right R-module B. Then the pure exact
sequence 0→ A→ B → B/A→ 0 induces a split exact sequence 0→ (B/A)+ → B+ → A+ → 0.
Since B is I-(m,n)-flat, by Theorem 4.2, B+ is I-(m,n)-injective, and so A+ is I-(m,n)-injective.
Thus A is I-(m,n)-flat by Theorem 4.2 again. 2

Corollary 4.12. Every pure submodule of an I-flat module is I-flat. 2

Proposition 4.13. Let {Mα}α∈A be a family of right R-modules. Then ⊕α∈AMα is I-flat if and
only if each Mα is I-flat.

Proof. It follows from the isomorphism Tor1(⊕α∈AMα, N) ∼= ⊕α∈ATor1(Mα, N). 2
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5 I-coherent Rings and I-semihereditary Rings
Recall that a ring R is called left coherent if every finitely generated left ideal of R is finitely presented,
a ring R is called left J-coherent [6] if every finitely generated left ideal in J is finitely presented, a ring
R is called left Nil∗-coherent [14] if every finitely generated left ideal in Nil∗(R) is finitely presented.
We extend these concepts as follows.

Definition 5.1. Let R be a ring and I be an ideal of R. Then R is called left I-coherent if every
finitely generated left ideal in I is finitely presented.

Following [21], a ring R is called left min-coherent if every minimal left ideal of R is finitely
presented.

Example 5.2. A ring R is left min-coherent if and only if R is left Soc(RR)-coherent.

We note that since left J-coherent rings need not be left coherent [6, Example 2.8], and left min-
coherent rings need not be left coherent [21, Remark 4.2(1)]. So, a left I-coherent ring need not be
left coherent for any ideal I.

Recall that a left R-module A is called 2-presented if there exists an exact sequence F2 → F1 →
F0 → A→ 0 in which every Fi is a finitely generated free module.

Theorem 5.3. Let R be a ring and I be an ideal of R. Then the following statements are
equivalent:

(1) R is a left I-coherent ring.
(2) For every positive integer m, every finitely generated submodule A of the left R-module Im is

finitely presented.
(3) Every I-finitely presented left R-module is 2-presented.

Proof. (1) ⇒ (2). We prove by induction on m. If m = 1, then A is a finitely generated left ideal
in I, by hypothesis, A is finitely presented. Assume that every finitely generated submodule of the
left R-module Im−1 is finitely presented. Then for any finitely generated submodule A of the left R-
module Im. Let B = A∩(Re1⊕· · ·⊕Rem−1). Then each a ∈ A has a unique expression a = b+rem,
where b ∈ Re1 ⊕ · · · ⊕ Rem−1, r ∈ R, where ej ∈ Rm with 1 in the jth position and 0’s in all other
positions. If ϕ : A→ R is defined by a 7→ r, then there is an exact sequence 0→ B → A

ϕ→ L→ 0,
where L = Im(ϕ) is a finitely generated left ideal in I. By hypothesis, L is finitely presented, and
so B is finitely generated. Since B is contained in Im−1, the induction hypothesis gives B is finitely
presented. Therefore, A is also finitely presented by [9, 25.1(2)(ii)].

(2)⇒ (1), and (2)⇔ (3) are obvious. 2

LetF be a class ofR-modules andM anR-module. Following [22], we say that a homomorphism
ϕ : M → F where F ∈ F is an F-preenvelope of M if for any morphism f : M → F ′ with F ′ ∈ F ,
there is a g : F → F ′ such that gϕ = f . An F-preenvelope ϕ : M → F is said to be an F-envelope if
every endomorphism g : F → F such that gϕ = ϕ is an isomorphism. Dually, we have the definitions
of an F-precover and an F-cover. F-envelopes (F-covers) may not exist in general, but if they exist,
they are unique up to isomorphism.

Theorem 5.4. Let R be a ring and I be an ideal of R. Then the following statements are
equivalent:

(1) R is left I-coherent.
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(2) lim−→ Ext1R(V,Mα) ∼= Ext1R(V, lim−→Mα) for any I-finitely presented left R-module V and direct
system (Mα)α∈A of left R-modules.

(3) TorR1 (
∏
Nα, V ) ∼=

∏
TorR1 (Nα, V ) for any family {Nα} of right R-modules and any I-finitely

presented left R-module V .
(4) Any direct product of copies of RR is I-flat.
(5) Any direct product of I-flat right R-modules is I-flat.
(6) Any direct limit of I-FP -injective left R-modules is I-FP -injective.
(7) Any direct limit of injective left R-modules is I-FP -injective.
(8) A left R-module M is I-FP -injective if and only if M+ is I-flat.
(9) A left R-module M is I-FP -injective if and only if M++ is I-FP -injective.
(10) A right R-module M is I-flat if and only if M++ is I-flat.
(11) For any ring S, TorR1 (HomS(B,E), V ) ∼= HomS(Ext1R(V,B), E) for the situation (RV,RBS , ES)

with V I-finitely presented and ES injective.
(12) Every right R-module has an I-flat preenvelope.

Proof. (1)⇒ (2) follows from [5, Lemma 2.9(2)].
(1)⇒ (3) follows from [5, Lemma 2.10(2)].
(2)⇒ (6)⇒ (7), (3)⇒ (5)⇒ (4) are trivial.
(7) ⇒ (1). Let V = Rm/T be an I-finitely presented left R-module, where T be a finitely

generated submodule of Im, and let (Mα)α∈A a direct system of FP -injective left R-modules (with
A directed). Then lim−→Mα is I-FP -injective by (7), and so Ext1(V, lim−→Mα) = 0. Thus we have a
commutative diagram with exact rows:

lim−→Hom(V,Mα) −−−−−→ lim−→Hom(Rm,Mα) −−−−−→ lim−→Hom(T,Mα) −−−−−→ 0yf yg yh
Hom(V, lim−→Mα) −−−−−→ Hom(Rm, lim−→Mα) −−−−−→ Hom(T, lim−→Mα) −−−−−→ 0.

Since f and g are isomorphism by [9, 25.4(d)], h is also an isomorphism by the Five Lemma. So T is
finitely presented by [9, 25.4(e)] and then V is 2-presented. Hence R is left I-coherent.

(4)⇒ (1). Let T be a finitely generated submodule of the leftR-module Im. By (4), Tor1(ΠR,Rm/T ) =
0. Thus we have a commutative diagram with exact rows:

0 −−−−−→ (ΠR)⊗ T −−−−−→ (ΠR)⊗Rm −−−−−→ (ΠR)⊗Rm/T −−−−−→ 0yf1 yf2 yf3
0 −−−−−→ ΠT −−−−−→ ΠRm −−−−−→ Π(Rm/T ) −−−−−→ 0

Since f2 and f3 are isomorphism by [22, Theorem 3.2.22], f1 is an isomorphism by the Five Lemma.
So T is finitely presented by [22, Theorem 3.2.22] again. Hence R is left I-coherent.

(5)⇒ (12). Let N be any right R-module. By [22, Lemma 5.3.12], there is a cardinal number ℵα
dependent on Card(N ) and Card(R) such that for any homomorphism f : N → F with F I-flat, there
is a pure submodule S of F such that f(N) ⊆ S and Card S ≤ ℵα. Thus f has a factorization N →
S → F with S I-flat by Corollary 4.12. Now let {ϕβ}β∈B be all such homomorphisms ϕβ : N → Sβ
with Card Sβ ≤ ℵα and Sβ I-flat. Then any homomorphism N → F with F I-flat has a factorization
N → Si → F for some i ∈ B. Thus the homomorphism N → Πβ∈BSβ induced by all ϕβ is an I-flat
preenvelope since Πβ∈BSβ is I-flat by (5).

(12)⇒ (5) follows from [23, Lemma 1].
(1) ⇒ (11). Let V be any I-finitely presented left R-module. Since R is left I-coherent, V is

2-presented. And so (11) follows from [5, Lemma 2.7(2)].
(11) ⇒ (8). Let S = Z, C = Q/Z and B = M . Then Tor1(M+, V ) ∼= Ext1(V,M)+ for any

I-finitely presented left R-module V by (11), and hence (8) holds.
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(8) ⇒ (9). Let M be a left R-module. If M is I-FP -injective, then M+ is I-flat by (8), and so
M++ is I-FP -injective by Corollary 4.3. Conversely, if M++ is I-FP -injective, then M , being a pure
submodule of M++ (see [24, Exercise 41, p.48]), is I-FP -injective by Corollary 3.4.

(9) ⇒ (10). If M is an I-flat right R-module, then M+ is an I-FP -injective left R-module by
Corollary 4.3, and so M+++ is I-FP -injective by (9). Thus M++ is I-flat by Corollary 4.3 again.
Conversely, if M++ is I-flat, then M is I-flat by Corollary 4.12 since M is a pure submodule of M++.

(10) ⇒ (5). Let {Nα}α∈A be a family of I-flat right R-modules. Then by Proposition 4.13,
⊕α∈ANα is I-flat, and so (Πα∈AN

+
α )+ ∼= (⊕α∈ANα)++ is I-flat by (10). Since ⊕α∈AN+

α is a pure
submodule of Πα∈AN

+
α by [25, Lemma 1(1)], (Πα∈AN

+
α )+ → (⊕α∈AN+

α )+ → 0 splits, and hence
(⊕α∈AN+

α )+ is I-flat. Thus Πα∈AN
++
α
∼= (⊕α∈AN+

α )+ is I-flat. Since Πα∈ANα is a pure submodule
of Πα∈AN

++
α by [25, Lemma 1(2)], Πα∈ANα is I-flat by Corollary 4.12. 2

Corollary 5.5. Let R be a left I-coherent ring. Then every left R-module has an I-FP-injective
cover.

Proof. Let 0 → A → B → C → 0 be a pure exact sequence of left R-modules with B I-FP -
injective. Then 0→ C+ → B+ → A+ → 0 is split. Since R is left I-coherent, B+ is I-flat by Theorem
5.4, so C+ is I-flat, and hence C is I-FP -injective by Remark 4.4. Thus, the class of I-FP -injective
modules is closed under pure quotients. By [26, Theorem 2.5], every left R-module has an I-FP -
injective cover. 2

Recall that a ring R is called left semihereditary if every finitely generated left ideal of R is
projective, a ring R is called left J-semihereditary [6] if every finitely generated left ideal in J is
projective. We extend these concepts as follows.

Definition 5.6. Let R be a ring and I be an ideal of R. Then R is called left I-semihereditary if
every finitely generated left ideal in I is projective.

Example 5.7. Recall that a ring R is called left PS [27] if every minimal left ideal of R is projective.
It is easy to see that a ring R is left PS if and only if R is left Soc(RR)-semihereditary.

Let R be a non-coherent commutative domain and G a free abelian group with rank G = ∞.
Then the group ring RG is left J-semihereditary but not left semihereditary (see [6, p.152]). So, a let
I-semihereditary ring need not be left semihereditary for a general ideal I.

Theorem 5.8. Let R be a ring and I be an ideal of R. Then the following statements are
equivalent:

(1) R is a left I-semihereditary ring.
(2) For every positive integer m, every finitely generated submodule A of the left R-module Im is

projective.
(3) If 0 → K → P → V → 0 is exact , where V is I-finitely presented , P is finitely generated

projective and K is finitely generated, then K is projective.

Proof. (1) ⇒ (2). We prove by induction on m. If m = 1, then A is a finitely generated left ideal
in I, by hypothesis, A is projective. Assume that every finitely generated submodule of the left R-
module Im−1 is projective. Then for any finitely generated submodule A of the left R-module Im.
Let B = A ∩ (Re1 ⊕ · · · ⊕ Rem−1). Then each a ∈ A has a unique expression a = b + rem, where
b ∈ Re1 ⊕ · · · ⊕Rem−1, r ∈ R, where ej ∈ Rm with 1 in the jth position and 0’s in all other positions.
If ϕ : A → R is defined by a 7→ r, then there is an exact sequence 0 → B → A

ϕ→ L → 0, where
L = Im(ϕ) is a finitely generated left ideal in I. By hypothesis, L is projective, so A ∼= B ⊕ L and
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then B is finitely generated. Since B is contained in Im−1, the induction hypothesis gives B, hence
A, is projective.

(2)⇒ (1). It is clear.
(2)⇔ (3) . By the dual of Schanuel’s lemma [9, 50.2(1)]. 2

Corollary 5.9. If R is a left J-semihereditary ring, then for every positive integer m, every finitely
generated submodule of the left R-module Jm is projective.

Corollary 5.10. If R is a left semihereditary ring, then every finitely generated submodule of a
projective left R-module is projective.

Theorem 5.11. The following statements are equivalent for a ring R:
(1) R is a left I-semihereditary ring.
(2) R is left I-coherent and every submodule of an I-flat right R-module is I-flat.
(3) R is left I-coherent and every right ideal is I-flat.
(4) R is left I-coherent and every finitely generated right ideal is I-flat.
(5) Every quotient module of an I-FP-injective left R-module is I-FP-injective.
(6) Every quotient module of an injective left R-module is I-FP-injective.
(7) Every left R-module has a monic I-FP-injective cover.
(8) Every right R-module has an epic I-flat envelope.

Proof. (2)⇒(3)⇒ (4), and (5)⇒(6) are trivial.
(1)⇒(2). Let V = Rm/L be an I-finitely presented left R-module, where L is a finitely generated

submodule of Im. Then by Theorem 5.8, L is projective, and so finitely presented, it shows that V is
2-presented, and thus R is left I-coherent. Let A be a submodule of an I-flat right R-module B, and
let m be any positive and T a finitely generated submodule of RIm. Then T is projective by Theorem
5.8 again, and hence T is flat. So the exactness of 0 = Tor2(B/A,Rm) → Tor2(B/A,Rm/T ) →
Tor1(B/A, T ) = 0 implies that Tor2(B/A,Rm/T ) = 0. And thus from the exactness of the sequence
0 = Tor2(B/A,Rm/T ) → Tor1(A,Rm/T ) → Tor1(B,Rm/T ) = 0 we have Tor1(A,Rm/T ) = 0, it
follows that A is I-flat.

(4)⇒(1). Let T be a finitely generated left ideal in I. Then for any finitely generated right
ideal K of R, the exact sequence 0 → K → R → R/K → 0 implies the exact sequence 0 →
Tor2(R/K,R/T ) → Tor1(K,R/T ) = 0 since K is I-flat. So Tor2(R/K,R/T ) = 0, and hence we
obtain an exact sequence 0 = Tor2(R/K,R/T ) → Tor1(R/K, T ) → 0. Thus, Tor1(R/K, T ) = 0.
Note that T is finitely presented for R is left I-coherent, so T is a finitely presented flat left R-module.
Therefore, T is projective.

(1)⇒(5). Let M be an I-FP -injective left R-module and N be a submodule of M . Then for
any positive integer m and finitely generated submodule T of RIm, since T is projective, the exact
sequence 0 = Ext1(T,N) → Ext2(Rm/T,N) → Ext2(Rm, N) = 0 implies that Ext2(Rm/T,N) =
0. Thus the exact sequence 0 = Ext1(Rm/T,M) → Ext1(Rm/T,M/N) → Ext2(Rm/T,N) = 0
implies that Ext1(Rm/T,M/N) = 0. Consequently, M/N is I-FP -injective.

(6)⇒(1). Let T be a finitely generated left ideal in I. Then for any left R-module M , by (6),
E(M)/M is I-FP -injective , and so Ext1(R/T,E(M)/M) = 0. Thus, the exactness of the sequence
0 = Ext1(R/T,E(M)/M)→ Ext2(R/T,M)→ Ext2(R/T,E(M)) = 0 implies that Ext2(R/T,M) =
0. And so, the exactness of the sequence 0 = Ext1(R,M) → Ext1(T,M) → Ext2(R/T,M) = 0
implies that Ext1(T,M) = 0, this follows that T is projective, as required.

(2), (5)⇒(7). Since R is left I-coherent by (2), for any left R-module M , there is an I-FP -injective
cover f : E →M by Corollary 5.4. Note that Im(f) is I-n-injective by (5), and f : E →M is an I-FP -
injective precover, so for the inclusion map i : Im(f)→M , there is a homomorphism g : Im(f)→ E
such that i = fg. Hence f = f(gf). Observing that f : E → M is an I-FP -injective cover and
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gf is an endomorphism of E, so gf is an automorphisms of E, and thus f : E → M is a monic
I-FP -injective cover.

(7)⇒(5). Let M be an I-FP -injective left R-module and N be a submodule of M . By (7), M/N
has a monic I-FP -injective cover f : E → M/N . Let π : M → M/N be the natural epimorphism.
Then there exists a homomorphism g : M → E such that π = fg. Thus f is an isomorphism, and so
M/N ∼= E is I-FP -injective.

(2)⇔(8). By Theorem 5.4 and [23, Theorem 2]. 2

Corollary 5.12. The following statements are equivalent for a ring R:
(1) R is a left semihereditary ring.
(2) R is left coherent and every submodule of a flat right R-module is flat.
(3) R is left coherent and every right ideal is flat.
(4) R is left coherent and every finitely generated right ideal is flat.
(5) Every quotient module of an FP-injective left R-module is FP-injective.
(6) Every quotient module of an injective left R-module is FP-injective.
(7) Every left R-module has a monic FP-injective cover.
(8) Every right R-module has an epic flat envelope. 2

Corollary 5.13. The following statements are equivalent for a ring R:
(1) R is a left J-semihereditary ring.
(2) R is left J-coherent and every submodules of a J-flat right R-modules is flat.
(3) R is left J-coherent and every right ideal is J-flat.
(4) R is left J-coherent and every finitely generated right ideal is J-flat.
(5) Every quotient module of an J-FP-injective left R-module is J-FP-injective.
(6) Every quotient module of an injective left R-module is J-FP-injective.
(7) Every left R-module has a monic J-FP-injective cover.
(8) Every right R-module has an epic J-flat envelope. 2

6 Conclusion

Let R be a ring and I an ideal of R . In this paper, we define and study I-pure submodules ,
I-FP -injective modules, I-flat modules , I-coherent rings and I-semihereditary rings, a series of
interesting results are obtained, some results generalize the well-known results on pure submodules
, FP -injective modules, flat modules , coherent rings and semihereditary rings, respectively.
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