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Abstract 
Spreading COVID-19 disease caused by coronavirus 2 causes tremendous 
health challenges worldwide. Owing to a high transmission rate, fast-spreading 
disease, asymptomatic carriers, and high infectivity, we observe a pandemic 
status that we follow today. Although there are different reports of case fa-
tality rates around the globe, the primary determinant of mortality is age. 
Symptoms of COVID-19 disease vary from asymptomatic individuals to se-
vere acute respiratory distress syndrome (ARDS) and death. The most com-
mon complication of COVID-19 is ARDS. Hyperinflammation due to exces-
sive immune response to coronavirus is the leading cause of severe symptoms 
seen in the course of COVID-19. The virus enters cells utilizing the S1 sub-
unit through the ACE2 receptor. The innate immune response is the primary 
immune reaction to virus entry. RNA viruses, including coronavirus, repli-
cate in the cytoplasm, assemble, and then exit by exocytosis. Some suggest 
that SARS-Cov2 uses cell-cell fusion to infect adjacent cells. Different sensors 
detect the virus particles in the endosomal compartment and cytoplasm, and 
infected cells induce an immune response to surrounding cells. As a result, 
the production of cytokines and chemokines such as interferons (INFs) will 
be augmented. Since coronavirus uses different means to evade the immune 
system, it is difficult for immune cells to “sense” them; thus, the coronavirus 
response is not adequate. It has been showing that even a sufficient level of 
immunoglobulin response couldn’t neutralize virus replication. Therefore, the 
innate immune response is unable to eradicate SARS-Cov2, causes overex-
pression of cytokines and chemokines that cannot eliminate the virus. Dimi-
nished INFs secretion and apoptosis of regulatory T cells (Treg) are the lead-
ing cause of dysregulated immune response in a cytokine storm. Inflamma-
tory cells attack infected and uninfected cells, causing more inflammation 
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and apoptosis of endothelial and epithelial cells. In the end, organ failure oc-
curs due to immune cells’ overactivity, cell proliferation, hemorrhage, micro-
thrombi, and remodeling of tissue cells. This review discusses the immune 
response and pathomechanisms of the associated symptoms in COVID-19. 
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1. Introduction 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syn-
drome coronavirus (SARS-Cov-2), is spreading rapidly, and the number of cases 
is still rising around the globe. The emerging of this fast-spreading virus became 
a challenging health problem worldwide due to the high transmission rate and 
asymptomatic carriers [1] [2]. Presymptomatic virus shedding is another attribute 
to further raises the transmission rate [3]. Due to the higher affinity to host cells, 
the novel coronavirus2 has much more infectivity than SARS-Cov-1 [4]. SARS- 
Cov-2 transmits by respiratory droplets that may travel 3 - 6 feet [5]. COVID19 
symptoms range from asymptomatic individuals to severe acute respiratory dis-
tress syndrome (ARDS) and death [6]. The major outbreak of severe acute res-
piratory syndrome by SARS-Cov1 in 2002-2003 had an overall case-fatality rate 
of 9.6% [7], and the Middle East respiratory syndrome virus (MERS-Cov) in 
2017 had a nearly 36% mortality rate [8]. Although there are different case fatal-
ity rates based on age and countries as the virus reached the pandemic, all stu-
dies support increased mortality with higher age [9]. The estimated overall case- 
fatality rate for SARS-Cov-2 is nearly 6% in the USA and differs by country 
[10].  

Based on age and baseline comorbidities, COVID-19 symptoms vary, ranging 
from asymptomatic individuals to severe organ failure and death [11]. The most 
common complication seen in patients who were admitted to the hospital was 
ARDS [12]. The way that the immune system responds to coronavirus defines 
the course and manifestation of COVID-19. A large body of evidence supports 
that the etiology of tissue damage is immunopathology rather than direct viral 
invasion. Overexpression of innate immunity in COVID-19 causes tissue destruc-
tion and organ failure and are the most common causes of morbidity and mor-
tality. First described in influenza virus infection, hyper inflammation by cyto-
kine storm [13] causes ARDS, distant organ damage, and failure. 

There is a growing need for clinicians to understand the pathomechanism and 
cause of diverse presentations of COVID-19. This review discusses the immune 
response to coronavirus and how the host response causes clinical manifesta-
tions in the novel COVID-19.  
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2. Overview of the Human Immune Response to  
Coronaviruses 

SARS-CoV-2 is an enveloped, positive-sense, single-stranded, and non-segmented 
RNA virus with an 80% genomic composition of SARS-CoV-1 and 96% bat co-
ronavirus [14]. 

The new coronavirus (SARS-CoV-2) binds to human epithelial cells by its spike 
protein (glycoprotein S), recognizes angiotensin-converting enzyme 2 (ACE2) 
receptor on human cells to initiate the first step of infection [15] [16]. Glyco-
protein S has two different subunits: S1 contains receptor binding domain inte-
racting with ACE2, and S2, which conveys fusion capabilities to exit endosome 
into the cytoplasm [15] [17]. Transmembrane proteases of host cells such as trans- 
membrane serine protease 2 (TRMPSS2) activate spike protein and its subunits 
and enhance coronavirus infectivity [18] [19]. Although ACE2 receptor is ex-
pressed in lungs, kidneys, heart, intestine, and testes, well-differentiated nasal 
epithelia and pneumocytes type 2 serve as the main port of entry and replication 
of coronavirus in the human body [20] [21] [22] [23] [24]. 

SARS-Cov-2 has a greater affinity for ACE2 receptors than SARS-Cov-1, al-
though it may enter cells independent of proteases [25]. Furthermore, it has 
been suggested that SARS-Cov-2 may spread to other cells through cell-cell fu-
sion, explaining the high rate of infectivity and fast-spreading of novel SARS- 
Cov-2 [4]. 

After entering the endosome, SARS-CoV-2 fuses to the endosomal membrane 
and releases its components into the cytoplasm to start replication [16] [26] [27]. 
SARS-CoV-2 has two different genes encoding structural and non-structural 
proteins [23]; a few of these proteins antagonize the antiviral activity of infected 
cells by coronaviruses [28] [29]. Then, the virus assembles all of its components 
and exits host cells by exocytosis [26].  

The presence of coronavirus in the endosomal complex is sensed by toll-like 
receptors (TLR). However, in the cytoplasm, virus replication components are 
recognized by CARDs (caspase activation and recruitment domain). In the 
presence of the virus, both TLRs and CARDs initiate gene transcriptions of type 
1 interferons (IFNs), interleukins IL-1, IL-6, tumor necrosis factor (TNF), and 
other chemokines [30] [31]. Type 1 INF augments immune response against vi-
ruses by stimulating macrophages, natural killer cells, CD8 cells, and B cells [32]. 
By binding of IFNs to their receptors on the same cells or surrounding cells, an-
tiviral gene transcription is enhanced [30] [33] [34]. In addition, IL-6 has a cru-
cial role in balancing immune response during infection; first, by activating 
plasma cells, Th17, and follicular helper cells. Second, by blocking CD8 cells and 
cell-mediated response during cytokine storm [35]. 

Macrophages and dendritic cells are part of innate immunity and work as an-
tigen-presenting cells (APC). They present antigens to T cells to promote ac-
quired immunity and produce different immune-modulatory cytokines to diffe-
rentiate T cells from various subclasses, such as T-helper 17 [36]. Th17 adjusts 

https://doi.org/10.4236/ojim.2021.113012


S. Kowsarnia 
 

 

DOI: 10.4236/ojim.2021.113012 154 Open Journal of Internal Medicine 
 

immune response during infection as well as systemic inflammation. Th17 se-
cretes IL-1, IL-6, IL-8, IL-21, TNF-β, and monocyte chemoattractant protein 
(MCP-1) to enhance acquired immunity [37] [38]. CD4 promotes B cells to 
produce antibodies and regulates immune response, but cytotoxic CD8 clears 
the body from the virus. CD4 and CD8 are the most abundant lymphocytes re-
ported in the pulmonary interstitial tissue of infected individuals by SARS-Cov. 
Thus, CD4 and CD8 activation need a balancing act between the eradication of 
the virus and overwhelming immune response [39] [40] [41]. APCs enhance IL-12 
release by CD4 helper cells that further enhance CD4 helper maturation and 
stimulate natural killer cells to eradicate the virus [42].  

In the persistent phase of infection, humoral immunity plays an essential role 
in virus eradication. Although antibodies against envelope protein and spike pro-
tein of SARS-Cov1 have a neutralizing effect, COVID-19 replication continues 
after detectable levels of IgG and Ig-M [40] [43] [44] [45]. The complement sys-
tem is another integral part of innate immunity activated by SARS-Cov19, lead-
ing to clinical symptoms driven by complement activity [46]. Host response to 
coronaviruses is responsible for the majority of symptoms attributed to corona-
viruses [7]. 

Coronaviruses evade the immune system by different means [47]. The coor-
dinated innate immune response is the first step against viral infections, but ex-
cessive and disorganized immune responses may contribute to immunopathol-
ogy [48]. In addition, the natural immune response tends to act more dysregu-
lated by aging [49]. When the immune system cannot mount the adequate adap-
tive immune response, a persistent reaction from the innate immune system leads 
to hyperinflammation states such as cytokine storm, ARDS, and ultimately or-
gan failure [50].  

3. Cytokine Storm 

Cytokine storm is characterized by increased inflammatory markers and mul-
tiple organ failure. Infected T cells, and especially CD4, may cause lymphopenia 
and decrease IFNs production [51]. It has been shown that CD4 numbers may 
predict viral shedding duration in affected individuals [52]. Infected APCs may 
cause suboptimal T cells responses leading to excessive immune responses. In this 
case, host efforts to clear the virus manifests as an immunopathological lethal 
disease [53]. Coronavirus infection induces dysregulated responses by a dendrit-
ic cell such as low-level expression of antiviral cytokines IFN-α and β, moderate 
up-regulation of pro-inflammatory cytokines TNF and IL-6, and a significant 
up-regulation of inflammatory chemokines C-C ligands like CCL3, CCL5, CCL2, 
and C-X-C ligand like CXCL10 [54]. Infected macrophages reveal delayed IFN 
gene induction [55]. Infected airway epithelial cells produce excessive chemo-
kines CCL3, CCL5, CCL2, and CXCL10 [56].  

Well-known factors are causing the extreme immune response to coronavi-
ruses. First is coronaviruses’ rapid replication. High replication rates and higher 
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viral loads enhance the more extensive immune response to infection, manifest-
ing as more severe symptoms [57] [58]. The second is the extension of disease to 
pneumocytes. Animal studies revealed that immune response to coronavirus is 
much more extensive when both airway epithelial cells and pneumocytes are in-
fected than when only airway epithelial cells are infected [59]. The third is de-
layed IFN response due to inhibitory actions of some structural or non-struc- 
tural proteins encoded by the coronavirus genome. The fast replicating virus 
hampers INF synthesis, dysregulates monocyte and macrophage response, and 
subsequently increases T cell apoptosis [48] [51]. 

Cell destruction is the main aftermath of the extreme immune response. Dif-
ferent studies demonstrate spleen atrophy with necrosis, focal hemorrhages, de-
creased number of lymphocytes, and increased macrophages’ proliferation. The 
number and size of lymph nodes and the number of CD4 and CD8 in lymphoid 
tissues may diminish [41] [60]. Due to the accumulation of excessive cytokines, 
chemokines, and inflammatory cells, apoptosis occurs in endothelial and epi-
thelial cells. INFs and TNF promote apoptosis of tissue cells and compromise 
microvasculature causing vascular leakage and thrombosis. Organ failure occurs 
later as tissue damage progress [61] [62]. Another consequence of coronaviruses 
infection is T cell apoptosis. Decreased number and function of T cells may sig-
nificantly impair immunoregulation and virus clearance [63]. As an immune re-
sponse regulator, CD4 loss causes an increased number of macrophages and pha-
gocytosis in the spleen and lungs [64]. 

Coronavirus hyper inflammation features are lymphopenia plus increased vi-
tal markers such as C-reactive protein (CRP), IL-1β, IL-6, IL-2, IL-7, IL-33, TNF 
-α, IFN-γ, TGF-β, inducible protein-10 (IP-10), monocyte chemoattractant pro-
tein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), chemokines 
like CCL2, CCL3, CCL5, C-X-C ligand (CXCL8), CXCL9, CXCL10, granulocyte- 
colony stimulating factor (G-CSF), procalcitonin, and ferritin [12] [65] [66] [67] 
[68]. These cytokines and chemokines increase the production, mobilization, 
and maturation of inflammatory cells in the infection site [69]. Compared to 
mild cases, fatal cases had significantly elevated biomarkers [66]. IP-10, MCP-3, 
and interleukin-1 receptor antagonist (IL-1Ra) were independent predictors for 
the progression of COVID-19 in severe cases [70]. Clinical characteristic analys-
es found that cytokine storm highly (increased levels of cytokines IL-1β, IL-6, 
IL-8, IL-10, and TNFα), lymphopenia (decreased CD4+ and CD8+ T lympho-
cytes), and decreased IFNγ expression in CD4+ T cells are associated with severe 
presentations in COVID-19 [71]. In a retrospective study of 187 COVID-19 pa-
tients, IL-6, IL-10, and serum ferritin were strong discriminators for severe dis-
ease [72]. Inflammatory marker elevation leads to hyperinflammation and ARDS 
and increases mortality in extreme cases [69]. Table 1 presents the laboratory 
results from the articles cited in this review.  

4. Overview of Clinical Manifestations 

Symptoms severity of coronavirus infection depends on airway viral load, age,  
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Table 1. Summary of the selected papers cited in this review. 

Author Results 

Chen, N et al. Neutrophils ↑, IL-6 ↑, CRP ↑, Lymph ↓ 

Fu, L et al. C.K. ↑, Procalcitonin ↑, Cr ↑, D-dimer ↑, LDH ↑, WBC ↓, Lymph ↓ 

Henry, BM et al. 
WBC ↑, Neutrophils ↑, IL-6 ↑, Cr ↑, C.K. ↑, ESR ↑, CRP↑, Ferritin↑, ALT ↑,  
AST ↑, Lymph ↓, Alb ↓ 

Huang, C et al. 
Neutrophils ↑, Procalcitonin ↑, PT ↑, D-dimer ↑, LDH ↑, Alb ↓, Lymph ↓,  
WBC ↓ 

Qin, C et al. 
WBC ↑, Lymph ↓, Procalcitonin ↑, Ferritin ↑, CRP ↑, IL-2R ↑, IL-6 ↑, IL-8 ↑, 
IL-10 ↑, CD4 ↑, B cell ↑, NK cell ↑, Naïve cell ↑, memory cells ↑, CD28 ↑ 

Wang, D et al. 
WBC ↑, Lymph ↓, Neutrophils ↑, Procalcitonin ↑, LDH ↑, D-Dimer ↑, C.K. ↑,  
Cr ↑, BUN ↑, AST ↑, ALT ↑ 

Chen, G et al. ALT ↑, LDH ↑, CRP ↑, Ferritin ↑, D-dimer ↑, IL-2R ↑, IL-6 ↑, IL-10 ↑, TNF-α ↑, 
Lymph ↓, CD4+ ↓, CD8+ ↓ 

 
and comorbid conditions [73], although age is the most critical determinant of 
survival and disease course [9]. Compared to children who have numerous naïve 
cells ready to respond to new antigens, the number of naïve T cells diminishes 
over time in the elderly [74]. In animal models of SARS, aged mice had more 
expressed cytokine and chemokine responses with lower virus clearance and 
worse outcomes than young ones [75]. 

The course of presentation in COVID-19 infected individuals can be divided 
into three phases: initial infection phase, pulmonary phase, and hyper inflamma-
tion phase, including ARDS [76]. 

Most cases are asymptomatic or mild (81%). The most common reported 
symptoms are flu-like illness including fever (83%), cough (82%), shortness of 
breath (31%), muscle ache (11%), confusion (9%), headache (8%), sore throat 
(5%), rhinorrhea (4%), chest pain (2%), diarrhea (2%), and nausea and vomiting 
(1%) [6] [77]. The average incubation period from contact to the first symptom 
was 4 days [78]. In a pooled analysis of 181 COVID-19 patients, the first symp-
toms presented within 14 days after probable exposure in 99% of cases [79]. 
Analysis of 72314 COVID-19 issues from China revealed that 87% were mild 
cases defined by no or mild symptoms, 14% were described as severe with sig-
nificant lung infiltrates or signs of respiratory compromise, and 5% were critical 
cases of respiratory failure, shock, or multiorgan failure [6]. 

Although a retrospective study of 201 confirmed COVID-19 Chinese patients, 
44 individuals (52.4%) of 84 (41.8%) patients who suffered from ARDS died 
(11), another retrospective study of 68 fatal cases, 5 patients (7%) died from car-
diovascular damage, and 22 patients (33%) died from both respiratory failure 
and cardiovascular damage [11] [66]. Many studies demonstrated that age and 
baseline comorbidities are associated with increased risk of severe complications 
such as ARDS, kidney injury, ICU admission, and death. A vast body of evidence 
suggests that elevated biomarkers and inflammatory indexes are correlated with 
increased severity and death rate through the course of disease [11] [12] [80]. A 
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severe manifestation usually occurred in 8 - 14 days after the first symptoms, the 
median time of death within 6 - 19 days after the illness onset, and discharge 
time was around 3 weeks on average [66] [81] [82] [83]. Figure 1 depicts the 
immune response to the coronaviruses. The consequences of immunopathologic 
response showed in red. 

5. Pulmonary Involvement 

We learned from severe acute respiratory syndrome (SARS) that the initial phase 
of Coronaviridae infection is pulmonary epithelial cell proliferation with innate 
immune response mediated by macrophages and monocytes [84].  

The pulmonary phase proceeds to further lung injury by vasodilation and en-
dothelial permeability due to leukocyte recruitment. Despite diminished viral 
load, in this phase, hypoxemia and cardiac stress progress further, proportionate 
to the extent of lung injury [58] [76]. Simultaneous with the decreased viral 
burden, pulmonary symptoms worsen 1 - 2 weeks after initial respiratory symp-
toms [85]. 

Diffuse alveolar damage (DAD) is the leading histological feature in lung in-
jury. DAD pathology reveals lung consolidation and edema with pleural effu-
sions and focal hemorrhages with infiltration of neutrophils and macrophages. 
The viral antigen is detected in vascular and respiratory endothelium, macro-
phages, lymphocytes, and monocytes [86]. Autopsy of fatal cases revealed fibrin 
microthrombi and micro infarct [41] [87]. Focal desquamation of alveolar epi-
thelial cells and proliferation of type II pneumocytes were also reported [41]. 
Prolonged prothrombin time (PT), elevated D-dimer, and activated partial throm- 
boplastin time (APTT) has been reported in hospitalized COVID-19 cases [71] 
[81] [83]. Despite increased white blood cells and neutrophilia, lymphopenia is a 
grave sign of disease progression to ARDS in patients with critical conditions 
[12] [71]. SARS-Cov infection, a virus from the same family of COVID-19 virus, 
infects lymphocytes and, as a result, decreases both CD4 and CD8 till the end of 
recovery. T regulatory cells maintain homeostasis of the immune response dur-
ing infection and recovery to prevent excess immune response, and in SARS- 
Cov-2, the number of regulatory and helper T cells is decreased [86] [88] [89]. 
Older age, hypertension, diabetes, high fever, lymphopenia, injury to other or-
gans, and elevated D-dimer and inflammatory markers are predictors of ARDS. 
Advanced age, neutropenia, elevated D-dimer, and inflammation is associated 
with higher mortality in those with ARDS among all risk factors [11].  

Soluble ACE 2 in blood has a protective role in heart failure and respiratory 
failure [90]. Tumor necrosis factor-α convertase (ADAM17) has cleavage activity 
on ACE 2 receptors and releases soluble ACE 2 [91]. Administration of soluble 
ACE 2 had a favorable result in ARDS and lung injury [90] [92]. It’s still unclear 
if the use of ADAMS17 could be protective against viral entry in ARDS asso-
ciated with SARS-Cov 2. However, a new study reported that recombinant Hu-
man ACE 2 (hrsACE2) could significantly block early SARS-CoV-2 infections 
on engineered human cells infected by SARS-Cov 2 [93].  

https://doi.org/10.4236/ojim.2021.113012


S. Kowsarnia 
 

 

DOI: 10.4236/ojim.2021.113012 158 Open Journal of Internal Medicine 
 

 
Figure 1. Consequences of extreme immune response to coronaviruses. Created with BioRender.com. 

 
Despite diminishing viral loads, some patients may suffer from distant organ 

injury with excessive immune response. Distant Organ injury without virus in-
filtration shows the role of Systemic inflammation in distant organ failure [41]. 

6. Radiologic Findings 

Bilateral pulmonary infiltrations were more common than unilateral infiltration 
(95% vs. 5%) [11]. Bilateral reticulonodular opacities (52.4%), ground-glass 
opacities (47.6%), pleural effusion (28.6%), peribronchial thickening (23.8%), 
focal consolidation (19%), pulmonary edema (9.5%), venous congestion (4.8%), 
atelectasis (4.8%), and clear chest x-ray (4.8%) [94] are the most common find-
ings in patients who were admitted due to COVID-19. Ground-glass opacities 
(80.0%) and bilateral pneumonia (73.2%) were the most common findings on 
chest CT scans [78]. 

7. Cardiovascular Involvement 

The rate of cardiac injury among different studies was variable from 7% to 18% 
in hospitalized cases [12] [81] [82] [83]. Cardiac injury is the independent risk of 
mortality along with lung injury [82]. Mortality was 51.2% in cases with cardiac 
injury versus 4.5% of patients without cardiac injury [82]. Initial cardiac injury 
with elevated troponin has been reported with no lung injury [95] [96]. COVID- 
19 associated heart failure was 23% among all the patients and 58% among fatal 
cases [83]. ACE 2 receptor, the port of entry for SARS-Cov 2, basically regulates 
heart function, and in an animal study, mice with dysfunctional ACE 2 receptors 
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developed left ventricular failure [97]. SARS-Cov infection downregulates heart 
ACE 2 receptors, theoretically enhancing heart dysfunction [98]. Severe cases of 
COVID-19 had a higher level of troponin I and brain natriuretic peptide (BNP) 
[66] [94]. Equally important, there is a correlation between cardiac enzyme levels 
and prognosis and mortality rate in patients with SARS-Cov 2 infection [83]. 
Among all mortality factors in COVID 19 patients, cardiac injury has a more 
significant weight [81] [82].  

The cardiac injury mechanism is not precise, but a combination of direct viral 
infiltration, systemic inflammation, hypoxia, and cardiac stress is plausible. Like 
SARS-Cov1, SARS-Cov 2 viral inclusions have been seen in the myocardium and 
cardiac vasculature [98] [99]. Animal studies show that IL-6 and TNF can cause 
systolic dysfunction [100] [101]. Mitochondrial dysfunction may lead to cardiac 
dysfunction in septicemia [102]. Cleavage of ACE 2 receptors by TNF α conver-
tase (ADAMS-17) may decrease local membrane ACE 2 and play a protective 
role against the virus entry. Soluble ACE 2 may diminish ACE 2 receptors and 
reduce the risk of heart dysfunction, although it may act as a compensatory me-
chanism in heart failure [103] [104]. Pericytes have the highest number of ACE 2 
receptors in the heart, and their dysfunction disrupts microcirculation, causing 
ischemia [105]. ACE 2 interacts with inflammatory cells, including macro-
phages, to reduce inflammation; thus, lower angiotensin 2 levels have pro-inflam- 
matory effects [106] [107]. Study shows that macrophages and CD4 cells myo-
cardial infiltration in SARS-Cov1 were detected in 35% human heart autopsy 
samples [98]. The significant risk factors associated with elevated troponin are 
age, male gender, and associated comorbidities such as hypertension. In addi-
tion, elevated troponin was associated with an increased risk of ARDS, kidney 
injury arrhythmia, and coagulopathy [81]. 

Blood pressure and heart rhythm abnormalities are frequently seen in criti-
cally ill SARS-Cov 2 patients. However, it’s not clear whether blood pressure 
changes are due to ACE 2 receptor or vagoplegic status in critically ill patients 
[66] [71]. 

Although one study shows different arrhythmias from tachycardia and bra-
dycardia to asystole is prevalent in 16.7% - 44.4% of severe ICU cases [12], 
another study reported 5.9% ventricular tachycardia and fibrillation [81]. In ad-
dition, patients with pneumonia have a higher risk of cardiovascular events [108]. 
Presumably, acute myocardial events risk factors in COVID-19 patients are plate-
let, endothelial cells, and macrophage activation associated with hyperinflamma-
tion.  

A systemic infection such as influenza may activate the immune system and 
inflammatory cytokine cascade. Study shows that local arterial inflammation may 
activate inflammatory cells in atheroma, leading to plaque rupture [109] [110]. 
Vasoconstriction may also occur with the activation of vascular endothelial cells 
due to inflammation [111]. The D-Dimer level was significantly increased in 
COVID-19 cases, showing that hypercoagulability state may lead to myocardial 
injury or vasculature thrombosis [112]. 
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8. Renal Involvement 

Overall, 40% of COVID-19 cases have abnormal kidney function [80], and kid-
ney injury may occur in 0.5% to 15% of cases. Both virus proliferation and hyper 
inflammation may contribute to kidney injury of COVID-19 patients [80]. Kid-
ney injury incidence was significantly higher in males, older patients with com-
orbidities such as hypertension and chronic kidney disease. Fatal hospitalized 
cases had a significantly higher rate of kidney injury that is more common in Pa-
tients with higher leukocyte count and procalcitonin levels (69). Although the 
urinary system, including the kidney, has a very high ACE 2 receptor expression, 
microscopic examination of SARS patients did not show any electron-dense de-
posits [113] [114]. However, in COVID-19 patients with nephropathies, SARS- 
cov2 induced cytoplasmic renal tubular inclusions [115]. Cytokine storm and 
systemic inflammatory response cause endothelial dysfunction and thrombosis, 
causing microangiopathies [116]. Injured renal tubular cells upregulated the IL-6 
that has a key role in cytokine storm [11]. Since COVID-19 patients have in-
creased creatinine kinase due to hypoxia and shock, thus rhabdomyolysis may 
contribute to kidney injury [12].  

9. Hepatic Involvement 

The elevated liver enzyme was a common finding in nearly 21% - 37% of COVID- 
19 cases [6] [83], and liver failure defined as high liver enzyme > 3 times of 
standard limit reported in 48% - 62% fatal cases [94]. Although ACE 2 receptors 
present in cholangiocytes, they do not exist on hepatocytes, Kupffer cells, and 
endothelial cells [117]. Because of the average level of alkaline phosphates in 
COVID-19 patients, there should be another mechanism for liver injury by SARS- 
Cov 2. Hypoxemia and shock are the possible liver injury etiologies in COVID- 
19 patients [118]. Studies showed the correlation between Lymphopenia and 
C-reactive protein and liver injury in patients with COVID-19 [119]. In addi-
tion, viral RNA was detected in the liver in post mortem studies showing mild 
lobular lymphocytic infiltration with focal macrovesicular steatosis and mild si-
nusoidal dilatation [120].  

10. Thrombosis 

Systemic infection may be complicated with coagulation dysfunction mediated 
by cytokines leading to multiple organ failure [121]. Inflammatory cytokines 
such as TNF-α, IL-1α, IL-1β, IL-6, IL-8, leukemia inhibitory factor, IFN-γ, and 
monocyte chemoattractant protein 1 (MCP-1) in addition to endothelial injury, 
activate tissue factor and enhance prothrombotic state [122] [123] [124]. Infec-
tion may activate platelets, enhancing coagulation [125]. Post mortem reports of 
fatal cases of ARDS due to SARS-Cov 1 revealed pulmonary vascular thrombosis 
[99]. IL-1β and IL-6 promote the expression of adhesion molecules on endo-
thelial cells leading to inflammatory cell infiltration and vascular inflammation. 
Indeed, cellular damage and local viral proliferation enhance endothelial dys-
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function and microthrombi further [126] [127]. The localized macrophages can 
also release pro-coagulant factors such as plasminogen activators, secreted by 
macrophages angiotensin II, enhancing a prothrombotic state manifested by the 
microthrombi formation in several organs. 

11. Nervous System Involvement 

Several studies reported neurologic involvement by coronaviruses. Coronavirus-
es infected the brain could cause polyneuropathy, encephalitis, and ischemic 
stroke [128]. Infection-induced encephalopathy may present as cerebral edema 
without evidence of inflammation in cerebrospinal fluid analysis. Patients may 
develop headaches, dysphoria, mental illnesses, and delirium. Disorientation, 
loss of consciousness, coma, and paralysis may occur in severe cases [129]. 
Nearly 20% of patients infected by MERS-Cov exhibited neurologic complica-
tions that appeared approximately 2 - 3 weeks after resolving respiratory symp-
toms. Ranging from neuropathies to encephalitis, symptoms varied from hyper-
esthesia, toxic and infectious neuropathies, intensive-care-unit-acquired weak-
ness, and Bickerstaff’s encephalitis overlapping with Guillain-Barré syndrome 
[130]. As well in Post-mortem reports of SARS-CoV cases, infiltration of mono-
cytes and lymphocytes in the vessels, demyelination of nerve fibers, ischemic 
changes of neurons, and virus particles were noted [86]. Brain Biopsy of Patients 
with multiple sclerosis(MS) showed that Human coronaHCOV viruses particles 
in tissues [131] [132]. Nearly 50% of patients with MS had RNA of HcoV-Oc43 
in their CSF [133]. It appeared that activated T cells in These patients were hy-
per-reactive to myelin as well as the virus 16. Few patients have new reports of 
Miller Fisher syndrome, a variant of Guillain-Barré syndrome, and polyneuritis 
cranialis in COVID-19 patients [134]. About 36.5% of COVID-19 patients may 
develop neurological symptoms and more commonly seen in patients with se-
vere symptoms. Both central and peripheral nervous systems may be involved. 
Headache, paresthesia, loss of consciousness, hypogeusia, anosmia, and seizures 
are among the most prevalent symptoms [135]. Approximately 33.9% of Patients 
with CoVID-19 reported olfactory or taste involvement, with 18.6% reported 
both [136]. Studies defined coronaviruses probably gaining access to the CNS by 
At least 3 routes, including the olfactory nerve, a hematogenous route, and lym-
phatic systems [137] [138]. Infected macrophages circulating in the blood through- 
out the body may contribute to direct nervous system invasion. Coronaviruses 
infect macrophages, microglia, and astrocytes in CNS and infected. Glial cells 
may secrete numerous inflammatory cytokines such as IL-6, IL-12, IL-15, and 
TNF-α [139]. CNS infection with SARS-CoV 2 activates CD4+, which induces 
the macrophages to secrete interleukin-6 (IL6) [140]. Sparse perivascular and 
leptomeningeal infiltrates of CD3+ T lymphocytes in COVID-19 brains, simi-
larly encountered in sepsis or systemic inflammation [140]. Increased permea-
bility of the blood-brain barrier by hyperinflammation facilitating more cyto-
kines entry and viral invasion is another possibility [141] [142]. SARS-Cov in-

https://doi.org/10.4236/ojim.2021.113012


S. Kowsarnia 
 

 

DOI: 10.4236/ojim.2021.113012 162 Open Journal of Internal Medicine 
 

volves Brain tissue through attachment to the endothelial lining of the blood- 
brain barrier and brain vessels. SARS-Cov enters the brain cells by virus budding 
during replication as well 50. Vascular Endothelial damage by viral replication 
results in vascular rupture and may cause cerebral hemorrhage and death seen in 
a patient with COVID-19 [143] [144] [145]. The olfactory nerve has been sug-
gested as one of the neuronal portal entries of respiratory viruses, including co-
ronaviruses [145] [146]. Direct Viral entry to the nervous system occurs through 
the cribriform plate or olfactory bulb by trans-synaptic route [138] [147] [148] 
[149]. There are reports of encephalitis with detection of viral RNA in cerebros-
pinal fluid with the possibility of direct central nervous system invasion by 
SARS-Cov2 [150] [151]. Post mortem studies of COVID-19 cases showed lym-
phocytic endotheliitis (endothelialitis) in vessels and Lymphatic drainage of in 
internal organs such as heart, kidney, lung, liver, the small intestine and brain. 
Endothelialitis causes vascular dysfunction that leads to organ ischemia, tissue 
edema, and a prothrombic state due to vasoconstriction and associated inflam-
mation [152] [153]. 

Mice infected with SARS-Cov had brain involvement that was more promi-
nent in the brain stem and thalamus area, cardiopulmonary regulation, and it 
may play a role in cardiopulmonary compromise in COVID-19 patients [154] 
[155]. SARS-Cov downregulates replication of ACE protein in infected cells of 
organs like the brain. Decreased level of ACE leads to the insensitivity of baro-
receptors and fluctuation of heart rates and blood pressure and, in addition to 
sympathetic overactivity, result in blood pressure elevation and cardiac dysfunc-
tion [156]. 

Another cause of brain damage in patients with COVID-19 is toxic encepha-
lopathy caused by Severe hypoxia and viremia [137]. Subsequent brain injury 
ensues with further hypoxemia, which causes brain edema and intracranial hyper-
tension with deterioration of brain function [157]. Cytokine storm during lung 
injury, hypoxemia, and sympathetic overactivity leads to CNS hyperactivity which 
might play a crucial role in the pathogenesis of neurogenic pulmonary edema 
(NPE), result of neurologic insult, and which finally deteriorate respiratory and 
cardiovascular function in COVID-19 patients [158] [159]. 

Increased D-dimer and platelet has been reported frequently in a cytokine 
storm, showing the propensity to hypercoagulation and cerebrovascular accident 
in COVID-19 [94] [160]. Nearly 5% of COVID-19 patients developed signs of 
cerebrovascular accidents, which was more common in patients with older age, 
cardiovascular risk factors, and higher C-reactive protein and D-dimer [135] 
[161]. 

12. Conclusion 

Inadequate adaptive immune response leads to immune dysregulation, destroy-
ing infected and uninfected cells. Hyper inflammation and apoptosis of endo-
thelial and epithelial cells lead to organ failure due to immune cells’ overactivity. 
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Cell proliferation, hemorrhage, microthrombi, and tissue remodeling are all con-
sequent, making the symptoms we on\bserve with SARS-Cov 2 infection. 
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