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ABSTRACT 
 
In this note, the non-sampling information in portfolio management is considered. These information 
may be the past belief of investor about a special asset. They are characterized as the correlated 
binary random variables. Then, the Monte Carlo is applied to derive the posterior distribution of 
binary variables given the past returns which indicates the tendency of investor to keep or drop a 
portfolio via using the non-sampling and sampling information simultaneously. The posterior 
distribution of belief of investor and the accuracy of Bayesian method are shown via plotting 
histograms. 
 

 
Keywords: Copula; dirichlet distribution; mixture distribution; ModelRisk software. 
 
1. INTRODUCTION 
 
Modern portfolio management (MPT) is highly 
related to theoretical contributions of [1]. The 
MPT has been extended substantially by the 
Capital Asset Pricing Model (CAPM) of [2]. 
However, in portfolio management, to reduce the 
unsystematic risk, a diversified different financial 

assets is held in a portfolio. However, from a 
Bayesian point of view to the problem, investors 
have prior information about including or 
excluding a special asset in a specified portfolio. 
These are important non-sampling information 
which should be considered in determining 
weights of assets. These information may be the 
past belief of investor about a special asset. 
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Therefore, let (��, … , ����)  is a vector of Binary 
random variables comes from the Dirichlet 
distribution. Here, �	  is one if 

 − th	asset	exists	in	portfolio and zero, otherwise. 
Let �� = � − ∑ �	���	�� . 
 
Let �	  be the return of i-th asset. If an asset 
exists in the portfolio its share is �	 . Then, the 
portfolio return is given by 
 

� = (1/�)#�	�	
�

	��
�	 , 

 
such that (1/�)∑ �	�	�	�� = 1 . Obviously, the 
distribution of �  is mixture, which its exact 
functional form is too difficult. Let �	∗ = 	�	�	 . 
 
By implementing the Markovitz mean-variance 
portfolio selection on �	∗'s, weights �	 are derived 
by minimizing the &'((� ), for a predetermined 
level of )*� +. Thus, in this paper, it is assumed 
that �	 's are known. A useful instrument in this 
problem is the posterior distribution of 
(��, … , ����)  given observing the historical data 
� . More precisely, what the posterior probability 
of configuration of (,	- , … , ,	./-) is?, i.e., 
 

0(�� = ,	- , … , ���� = ,	./-1� +. 
 
Studied the normal approximation and normal 
power (NP) approximation for mixture distribution 
and concluded that NP approximation is too 
useful [3]. They used the Monte Carlo simulation 
to obtain the accuracy of approximation. 
ModelRisk (see [4]) is an Excel-based software 
for Monte Carlo simulation, sensitivity analysis 
and optimization in financial problems. It has 
many applications in advanced risk analysis. 
ModeRisk is applied by researchers in financial 
literatures. For example, [5] introduced the 
concept of Net present value at risk (NPVaR) for 
financed  infrastructure projects [6]. applied the 
Monte Carlo method for risk analysis for large 
engineering projects by modeling cost 
uncertainty for ship production activities [7]. 
Applied Monte Carlo simulation of investment 
returns for toll projects [8]. studied the business 
valuation under uncertainty (considering 
dependency between cash flows) using copula 
concept [9]. considered sensitivity assessment 
modeling in European funded projects proposed 
by Romanian companies. 
 

The rest of paper is organized as follows. In this 
paper, to find the marginal distribution of �  and 
posterior (��, … , ����) given � ,	the Monte Carlo is 
used. First, returns of each asset are assumed to 
be independent, mutually, however, several 
types of correlations based on copula function is 
considered in the simulation section. 
 
2. SIMULATIONS 
 
In this section, two examples are considered. 
The first example studies the central limit 
theorem approximation for aggregate risk of a 
portfolio. The second example considers the 
effect of correlation between assets and the use 
of copula function in modeling the correlation. 
 
Example 1.  The data is taken from Excel sheet 
entitled "CLT_risk_portfolio_approximation" 
downloadable from "Example models and tutorial 
videos - Vose Software1". The portfolio contains 
132 risky assets with Lognormal, PERT, Normal, 
ModPERT and Triangle distributions. Investor 
belief on each risk assets comes from 
independent Bernoulli random variable. The 
following histogram (Fig. 1) shows the marginal 
distribution of portfolio return, 23. The number of 
simulation is 1000. 

 
Some summaries statistics are given as follows 
Table 1. 
 
The value at risk (VaR ) for some significance 
level α are given as follows (V6 is the initial value 
of portfolio). 
 
However, if the belief of investor isn't included to 
the problem, then the density of , R7 is as follows 
(Fig. 2). Again, some summaries statistics are 
given as follows. In this special case, the 
performance of Markovitz portfolio and the R7 
are the same. 
 
Example 2. In this example, the Gaussian 
copula is considered between all financial assets. 
The following histogram (Fig. 3) shows the 
probability density function of R7. 
 
It is seen that the use of copula improves the 
skewness and kurtosis of marginal distribution of 
portfolio return. 
 
 

 

1http://www.vosesoftware.com/vosesoftware/ModelRiskHelp/Resources/Example_models/Example_models_introduction.htm 
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Fig. 1. Marginal density of 89 

 

 
 

Fig. 2. Density of usual 23 
 

Table 1. Summaries statistics 
 

Min Mean Max St.dev Variance CV Skew Kurt. 
0.45 1.42 2.84 0.29 0.153 0.275 0.406 3.04 

 
Table 2. :;2 for some significance level < 

 
< 0.005 0.01 0.05 0.1 
VaR 0.58V6 0.62V6 0.83V6 0.94V6 

 
Table 3. Summaries statistics  

 
Min Mean Max St.dev Variance CV Skew Kurt. 
0.35 1.43 2.99 0.404 0.163 0.28 0.5 3.15 
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Table 4. Summaries statistics 
 

Min Mean Max St.dev  Variance  CV Skew  Kurt.  
0.35 1.43 2.99 0.294 0.087 0.206 0.9 4.1 

 

 

 
 

Fig. 3. Marginal density of 89 
 
3. TWO CONCEPTS 
 

In this section, two important concepts are 
studied. The first is the posterior distribution of 
investor belief and the second is the stochastic 
programming applied in this paper. 
 
3.1 Posterior Distribution 
 
An MCMC method is really suitable for 
estimating the posterior distribution of the 
investor belief sequence. The reversible jump 
algorithm is based on the fact that the dimension 
of the model can change, according to the 
number of segments. Unfortunately, this 
algorithm converges slowly, and many iterations 
are needed for estimating correctly the posterior 
distribution. Therefore, the Hastings Metropolis 
algorithm with the Gibbs sampler is applied. The 

following Table gives some posterior values for 
investor belief for Example 1. In the Table, for 
example, (95,125) means the investor has 
selected the assets numbered 95 and 125. 
 
3.2 Stochastic Programming 
 
Consider the portfolio management in which the 
return of portfolio by considering the pre-
information of investor is maximized as well as 
the diversified risk should be in controlled. That 
is, to 
 

max	()*R7+) 
 
s.t. &'(*R7+ ≤ LB.  The following Table gives 
some values of weights for the first asset by this 
method. 

 
Table 5. Posterior belief of investor 

 

(1,2,3) (3,4,75) (60,61,62) (95,125) (1,…,132) (1,…,66) (67,…,132) (131,132) 
0.09 0.1 0.05 0.09 0.1 0.51 0.60 0.55 

 
Table 6. The weight of the first asset 

 
LB 0.05 0.1 0.15 0.2 0.5 0.75 0.9 
Weight 0.023 0.051 0.055 0.063 0.064 0.081 0.1 
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4. CONCLUSIONS 
 
The portfolio management is an important part of 
finance. There are many well-known techniques 
such as efficient frontier method to find the best 
combinations of assets in a portfolio. In the 
regular methods, only the statistical properties of 
returns of assets are considered. However, 
sometimes, investors have belief about the 
returns. This fact motivates the use of Bayesian 
methods in portfolio management. This paper 
considers this concept and uses the 
computational tools such as MCMC and 
stochastic programming methods to perform the 
portfolio management using posterior belief of 
investor distribution. This paper also uses the 
ModelRisk software.  
 
ACKNOWLEDGEMENT 
 
The author is grateful to the referees for several 
suggestions for improving the paper. 
 
COMPETING INTERESTS 
 
Author has declared that no competing interests 
exist. 
 

REFERENCES 
 
1. Markowitz H. Portfolio selection. The 

Journal of Finance. 1952;1:77-91. 

2. Sharpe W. Capital asset prices: A theory of 
market equilibrium under conditions of risk. 
Journal of Finance. 1964;19:425-442. 

3. Kass R, Goovaerts M, Dhaene J, Denuit 
M. Modern actuarial risk theory: Using R. 
Springer; 2005. 

4. Vose Risk Analysis; 2015.  
Available: http://www.vosesoftware.com 

5. Ye S, Tiong RLK. NPV-at-risk method in 
infrastructure project investment 
evaluation. Journal of Construction 
Engineering and Management. 
2000;7:227-233. 

6. Duffey MR, Van Dorp JR. Risk analysis for 
large engineering projects: Modeling cost 
uncertainty for ship production activities. 
Journal of Engineering Valuation and Cost 
Analysis. 2002;2:285-301. 

7. Yuwen W. Simulation of investment returns 
for toll projects. Unpublished Thesis 
Master of Science in Engineering 
University of Texas at Austin; 2012. 

8. Nowak O, Hnilica J. Business valuation 
under uncertainty tech repo. Department of 
Business Economics University of 
Economics Prague Prague Czech; 2012. 

9. Laurentiu D, Gabriela D. Sensitivity 
assessment modeling in European funded 
projects proposed by Romanian 
companies. Tech Repo Faculty of 
Economics University of Oradea Oradea, 
Romania; 2014. 

_________________________________________________________________________________ 
© 2016 Habibi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://sciencedomain.org/review-history/14716 


