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Abstract

The role of turbulent effects for dynamos in the Sun and stars continues to be debated. Mean-field (MF) theory
provides a broadly used framework to connect these effects to fundamental magnetohydrodynamics. While
inaccessible observationally, turbulent effects can be directly studied using global convective dynamo (GCD)
simulations. We measure the turbulent effects in terms of turbulent transport coefficients, based on the MF
framework, from an exemplary GCD simulation using the test-field method. These coefficients are then used as an
input into an MF model. We find a good agreement between the MF and GCD solutions, which validates our
theoretical approach. This agreement requires all turbulent effects to be included, even those which have been
regarded as unimportant so far. Our results suggest that simple dynamo models, as are commonly used in the solar
and stellar community, relying on very few, precisely fine-tuned turbulent effects, may not be representative of the
full dynamics of dynamos in global convective simulations and astronomical objects.

Unified Astronomy Thesaurus concepts:Magnetohydrodynamics (1964); Solar dynamo (2001); Solar cycle (1487);
Stellar activity (1580); Stellar magnetic fields (1610)

1. Introduction

The magnetic fields of the Sun and other cool stars are generated
by a dynamo mechanism operating in their interiors. Despite
plentiful observations, over an extensive history with many at high
resolution, the nature of the solar dynamo is not yet fully
understood. One of the difficulties lies in the poor knowledge of
the turbulent effects, which are expected to play an important part
in the magnetic field generation. These effects are often described
by a parameterization based on mean-field (MF) theory. Because
of their intricacy, however, it is common in the solar context to
simplify the parameterizations such that they can be fine-tuned to
fit some of the magnetic field observations (e.g., Karak et al. 2014;
Cameron & Schüssler 2015). As an alternative approach, global
convective dynamo (GCD)models can be used to self-consistently
generate these turbulent effects. While these models have
parameters far from real astrophysical objects, they currently
represent the best laboratories to this end. Nevertheless,
investigating the nature of dynamos in global convective models
is very challenging and needs an analysis tool, which connects
properties of the GCD to established dynamo theories. In the
recent years the test-field method (TFM) has become such a well-
established tool to measure the turbulent transport coefficients
(TTCs), quantifying the turbulent effects, in such GCD models
(Schrinner et al. 2005, 2007, 2011, 2012; Schrinner 2011;
Warnecke 2018; Warnecke et al. 2018; Viviani et al. 2019;
Warnecke & Käpylä 2020). Already in these studies, it was found
that the turbulent effects play an important part in the magnetic
field evolution. However, to show that the TTCs measured by the
TFM capture the most important details of the magnetic field
evolution, the coefficients need to be employed in an MF model
and the results to be compared with the GCD simulations.
Furthermore, only with the use of an MF model one will be able to
pinpoint which of these turbulent effects are essential for a full

understanding of dynamo action in the GCD. Steps in this
direction, beyond the works of Schrinner et al., have been
performed using a small subset of TTCs (α tensor and turbulent
pumping) obtained from a GCD simulation using the singular
value decomposition (SVD)method (Simard et al. 2013; Simard &
Charbonneau 2020).
In our work, we use in an MF model the TTCs of an

exemplary GCD model, the magnetic field evolution of which
shows similarities to the Sun, to investigate whether or not this
evolution can be reproduced. Furthermore, we will investigate
which minimal subset of the coefficients is essential to
reproduce the dynamo solution and hence determine whether
or not it can be described by any of the commonly employed
simple dynamo models. We will conclude by discussing the
further implications of the results.

2. Models and Methods

We analyze Run M5 of Warnecke (2018) and Warnecke &
Käpylä (2020), a GCD simulation in a spherical shell. It has a
rotation rate roughly four times higher than the Sun, in terms of the
Coriolis number6 and a Rayleigh number7 two orders of
magnitude larger than the critical one for the onset of convection
(Warnecke et al. 2018); see also Käpylä et al. (2013) andWarnecke
(2018) for more details on this run and its comparison with solar
parameters. The axisymmetric (azimuthally averaged) part of the
generated magnetic field shows rather regular oscillations with a
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6 The Coriolis number is defined as ΩΔR/πurms with the overall angular
frequency Ω, the volume-integrated rms velocity urms, and the thickness of the
convective shell ΔR. For the Coriolis number of the Sun, see, e.g., Saar &
Brandenburg (1999).
7 The Rayleigh number is defined based on the mean entropy gradient in the
middle of the convection zone determined from the hydrostatic counterpart of
the run; see Käpylä et al. (2013) for details.
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magnetic cycle period = º P P 4.4 0.6cyc cyc
GCD yr (Warnecke

2018), and exhibits both equatorward and poleward branches of
field migration in the butterfly (time–latitude) diagram, thus
capturing main solar cycle features; see Figure 1. We note here that
this is not a one-to-one representation of the Sun and its dynamo,
but a good example of state-of-the-art models of solar-like stars in
the scientific community (e.g., Augustson et al. 2015; Strugarek
et al. 2017). A second, weaker dynamo mode with a much shorter
period of about 0.11 yr is present at low latitudes near the surface;
see Figure 1 and Käpylä et al. (2016) for a detailed discussion.

Our MF approach employs azimuthal averaging, indicated by
an overbar, which adheres to the Reynolds rules; fluctuating fields
are indicated by primes. The MF induction equation reads

h  ¶ = ´ ´ + - ´ ´B U B B , 1t ( ) ( )

where U and B are mean flow and mean magnetic field,
respectively, and η is the magnetic diffusivity. To establish the
MF model, a parameterization of the mean electromotive force

¢ ¢= ´ u B in terms of the mean field itself is crucial.
Employing Taylor expansion, leaving out time derivatives and
restricting to first-order spatial derivatives, a commonly quoted
ansatz reads (Krause & Rädler 1980)

a g b
d k


 

= + ´ - ´
- ´ ´ -

 B B B

B B , 2s

· · ( )
( ) · ( ) ( )( )

where B s( )( ) is the symmetric part of the (covariant)
derivative tensor of B . The most general representation of 
at some position (r, θ) and time t would involve a convolution
integral over a neighborhood of (r, θ, t), thus covering nonlocal
and memory effects (Krause & Rädler 1980). In contrast,
Equation (2) is completely instantaneous in time and only
rudimentarily nonlocal in space.

α and β are symmetric rank-two tensors, γ and δ are vectors,
and κ is a rank-three tensor, with symmetry κijk= κikj. These
five tensors can be associated with different turbulent effects

important for the magnetic field evolution: the α effect
(Steenbeck et al. 1966) can lead to field amplification via
helical flows, e.g., in stratified rotating convection, the γ effect
describes turbulent pumping of the mean magnetic field, in
analogy to a mean flow. β describes turbulent diffusion; and
the δ, or Rädler effect (Rädler 1969), can lead to dynamo action
in the presence of, e.g., α effect or shear, but not alone
(Brandenburg & Subramanian 2005). The physical interpreta-
tion of κ is yet unclear, but quite generally it may contribute to
both amplification and diffusion of B . More details on these
effects and its parameterization can be found, e.g., in Krause &
Rädler (1980) and Brandenburg & Subramanian (2005).
Accounting for all symmetries in Equation (2) and

¶ =f q fB 0r, , , a total of 27 coefficients must be identified to
close Equation (1). Note that due to the axisymmetry of B , the
representation of Equation (2) is nonunique. In particular,
components of κ can be recast into components of β. Here we
have chosen a formulation of β and κ that maximizes the
number of vanishing entries inκ, that is, allocates as much
information on the diffusive aspects of turbulent transport as
possible in β, thus facilitating physical interpretation; see
Viviani et al. (2019) for details.
To determine the required 27 coefficients we apply the quasi-

kinematic TFM to the original GCD model. The original TTCs
are already published (Warnecke 2018;Warnecke &Käpylä 2020)
and available online.8 The TFM, as utilized in Schrinner et al.
(2005, 2007) and Warnecke et al. (2018), requires nine
additional realizations of the induction equation for the
fluctuating magnetic field B′ to be solved simultaneously with
the GCD simulation. They are obtained by replacing B in

¢ ´ ´u B( ) by one out of nine linearly independent test
fields B i( ), i= 1,K,9, while the velocity ¢= +u U u is taken
directly from the GCD simulation (see Schrinner et al. 2007 for
details). Employing the corresponding electromotive forces

Figure 1. Time–latitude (butterfly) diagrams of mean radial, Br , and azimuthal, fB , magnetic field from GCD (top) and the MF model (bottom) at fractional radius
0.95. The rightmost panels show a zoom-in to the first five years of the middle panels. The TTCs are symmetrized, and α is scaled by 1.5, while exponential growth
has been compensated for clarity. The color range is cut to make the northern hemisphere more visible. Black lines: zero contours of fB from the MF model at the
same time. See Appendix A for butterfly diagrams of the corresponding pure-parity solutions.

8 http://doi.org/10.5281/zenodo.3629665 (see also Warnecke et al. 2018 for
TTCs of a very similar run)
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¢ ¢= ´ u Bi i( ) ( ) , a uniquely solvable linear equation system
for the coefficients in Equation (2) can be formed.

In the stationary, saturated state of the GCD simulation the
magnetic field acquires dynamically significant strength.
Hence, the velocity and TTCs derived from it are already
magnetically quenched, that is, they differ from their counter-
parts in the nonmagnetic (or kinematic) state. Consequently,
the MF model of Equation (1) is, strictly speaking, valid only
for the mean field that is observed in the GCD simulation
(Brandenburg et al. 2010).

We subject the TTCs to the following preprocessing steps: first,
we exclude the noise arising from large variations at small
timescales (Warnecke et al. 2018) by averaging over their full
time series; second, to damp spatial fluctuations, we apply a
Gaussian smoothing in θ using a kernel with a standard deviation
equal to the grid spacing; third, we remove negative values from
the diagonalβ components and apply a lower threshold of− 0.7η
for κfrθ to avoid unphysical local instabilities. For consistency, U
is time averaged, too. Additionally, we reduce the original
resolution of the coefficients from 180× 256 (radial× latitudinal)
to 40× 64 for computational efficiency.

The set of equations for GCD admits solutions with “pure”
equatorial symmetries, that is, equatorially symmetric velocity,
density, and entropy fields, combined with an either symmetric
(S) or antisymmetric (A) magnetic field. The degree of
equatorial symmetry of a field is quantified by the parity P,
which takes values between −1 for A and +1 for S. In the
GCD simulation, the parity of the magnetic field continuously
varies between +1 and −1, indicating that A and S dynamo
modes of similar strength are competing for dominance
(Käpylä et al. 2016); see also Appendix A. Each of the
measured TTC components, however, has near pure parity of
one or the other (Warnecke et al. 2018). Therefore, to study the
competing pure modes in isolation in the MF model we employ
TTCs, properly symmetrized so as to restrict their parity to,
respectively, P=± 1.9

For the MF simulations we solve Equation (1) using the
preprocessed U and TTCs and the same η as in the GCD model
without employing any quenching terms. Hence, the MF model
is entirely linear, and by virtue of the temporal constancy of all
its coefficients, all solutions show exponential behavior, in
general with a complex increment. The mean magnetic field is
initialized by a weak random seed.

All simulations were performed using the PENCIL CODE
(Pencil Code Collaboration et al. 2021); see Tuomisto (2019)
for details of its MF module.

3. Results

First we look at an MF solution, the parity of which is not
restricted while the symmetrized TTCs are employed, and
compare with the one of the GCD model. If the α tensor is
scaled by a factor fα between 1.40 and 1.525 we find growing
oscillatory solutions, which resemble the GCD solution very
well, as shown in Figure 1. Their periods of 4.5–4.9 yr are in
close agreement with º P 4.4 0.6cyc

GCD yr (Warnecke 2018).
The butterfly diagram is well reproduced, too: the poleward
migrating Br pattern has the same shape and slope as in the
GCD simulation. In fB , the agreement of the pattern shapes is

also striking as signified by the zero contours of the MF
solution plotted over the GCD one. Deviations are visible at the
highest latitudes where the test-field measurements are likely to
be contaminated by the unphysical latitudinal boundaries. Also,
at midlatitudes patches of equal polarity appear not to be
equatorward connected as in the GCD solution.
Like the GCD solution, this MF one is neither purely

antisymmetric nor symmetric about the equator. See Appendix A
for details of the corresponding pure-parity solutions of the MF
model. The zoom-in to the early phases of the MF model (see the
lower rightmost panel of Figure 1) shows the high-frequency,
poleward migrating mode with roughly 0.11 yr period length at low
latitudes. Field migration and period of this mode match closely
those of the GCD. While it is regular in the MF model, it appears
temporally incoherent in GCD, agreeing with the findings of
Käpylä et al. (2016) for a very similar run. Given the absence of
nonlinearities, this mode becomes subdominant in the MF model.
We note here that the absence of nonlinearities also implies that
there is no interaction between the two pure-parity modes of the
MF model.
We have repeated some of the MF runs with the nonsymme-

trized TTCs. Their slight hemispheric asymmetries are sufficient to
excite a strongly asymmetric eigenmode, such that one hemisphere
exhibits a magnetic field up to two orders of magnitude stronger
than the other. The GCD simulation does not show such strong
disparities, which we attribute to the nonlinearities in the GCD
providing a self-regulation mechanism: whenever significant
disparity occurs, the hemisphere showing the higher dynamo
efficiency would also experience a stronger back-reaction of the
magnetic field on the flow (quenching). Thus, dominance of one
hemisphere likely cannot persist for long. Instead, both the TTCs
and the mean field will stay close to a state of nearly pure parity.
The MF model, being linear, cannot provide such self-regulation.
Applying symmetrized coefficients, however, is sufficient to
maintain consistent growth between the hemispheres.
The consistencies between the MF and GCD solutions prove

that in our case  , i.e., the contributing turbulent effects, are well
described by the parameterization of Equation (2) meaning that
higher-order terms, and also scale dependence and memory effect,
can be neglected. Another surprising aspect is that employing only
the time-averaged, smoothed, and downsampled TTCs, that is,
ignoring their large temporal and small-scale spatial variations, is
not detrimental to the agreement with the GCD solution, but
might explain the necessity of a moderate upscaling ofα.
For values of fα< 1.40, the solutions are growing with a

dominantly nonoscillatory field; see Figure 2. Interestingly, the

Figure 2. Cycle period Pcyc as function of the scaling factor fα. Red: S, blue: A
solutions. Nonoscillatory solutions have been assigned Pcyc = 50 yr. Dashed
line: scaling of Pcyc ∼ α−0.5 according to a Parker dynamo wave.

9 A scalar F is said to be symmetrized for parity 1 by (F(r, θ) + F(r, π − θ))/
2 and for parity −1 by (F(r, θ) − F(r, π − θ))/2, while for a vector field the r
and f components have the same parity as the field as a whole, but the θ
component has opposite parity.
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oscillation period is closest to that of the GCD model, when the
growth rates of the A and S solutions are nearly identical, hence
enabling a mixed solution. For fα> 1.525, the oscillation
period of the S mode is strongly reduced, closely matching that
of the high-frequency mode reported for the GCD model.
Oscillation periods close to Pcyc

GCD depend only weakly on fα,
consistent with the expected scaling of the period of an αΩ
dynamo wave, Pcyc∼ α−0.5 (Parker 1955; Yoshimura 1975);
see Figure 2. This agrees with earlier findings that direction and
period of dynamo waves in GCD models of this kind can be
well explained by the Parker–Yoshimura rule (Warnecke et al.
2014, 2018; Warnecke 2018).

Next we analyze which of the TTCs and mean flow
components are essential for reproducing the GCD solution.
For this we perform around 2000 MF simulations with fα= 1.5,
where we turn on/off the various components of a certain TTC
tensor at a time, while fixing all the others at their nominal
values, to investigate the changes in the resulting MF solution.
To classify the solutions, we define three different classes based
on their period; see Figure 3. The first class (C for “correct”)
has a period in the interval (3.0K 6.0) yr around Pcyc

GCD, the
second (N) has dominantly nonoscillatory solutions, the third
(H for “high frequency”) has oscillatory solutions, close to the
near-surface high-frequency dynamo mode with Pcyc= 0.11 yr.

For a set of coefficients to be considered essential to reproduce
the GCD solution we require that both the S and A solutions
fall into class C (details in Table 1 of Appendix C).
First, we consider the effect of U . As illustrated in Figure 3,

only solutions with a nonzero fU are oscillatory with a period
close to P ;cyc

GCD all other cases have only nonoscillatory
solutions. This means that the meridional circulation (Ur , qU )
has a negligible contribution, while differential rotation (Ω
effect) is crucial, in clear contrast to the often invoked flux-
transport dynamo models (e.g., Karak et al. 2014), where the
meridional circulation plays an essential part. All solutions with
the full α tensor (or at best missing αθf) fall into class C. Most
of the other solutions fall either in the N or H class; see
Figure 3. Given the prime importance ofα and fU , we conclude
that an α2Ω-type dynamo is operating in our model. This is in
agreement with the analysis performed in Warnecke & Käpylä
(2020) for this run, where the α and Ω effects were estimated
to be comparable in generating the toroidal field; see their
Figure 13. We further point out that the high-frequency mode
(class H) is already present if from all the TTCs only certain α
components are active, and therefore we identify it as an α2

dynamo mode in agreement with earlier findings (Warnecke
et al. 2018).

Figure 3. S and A solutions for all combinations of turned-on components for each coefficient tensor with Pcyc coded by colors. Gray: nonoscillatory (N), red:
correctly oscillatory (C), and dark blue: high-frequency oscillatory (H) solutions. For κ, “others” includes all coefficients other than κfθr and κθθr. Empty boxes or
dashed vertical lines: all components are turned off (not shown for κ). Dotted lines in color bar: interval (3.0 K 6.0) yr.
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Next, focusing on γ and δ, we find that for obtaining class-C
solutions, γr and γθ are important as without one of them only
class-N or class-H solutions (additionally one with Pcyc;
1.8 yr) arise. Likewise, class-C solutions require δr and δf;
otherwise, only class-N solutions, or periods between those of
classes C and H, are possible; see Figure 3.

The plentiful spectrum of solutions obtained by varying the
selection of β components (Figure 3) includes a large fraction
that is nonphysically unstable.10 This is because arbitrarily
dropping components ofβ can in general destroy its positive
definiteness. Interestingly, only when at least the diagonal
components plus βrf and βθf are active, a class-C solution can
be reproduced. However, =P Pcyc cyc

GCD requires the full β
tensor.

From approximately 1500 solutions with various selections
of κ components, we find that around a third fall into class C,
requiring the components κθθr and κfθr to be turned on; see
Figure 3. Other solutions populate the H class or show periods
of Pcyc; 1.7 yr. Interestingly, many solutions have growth
rates larger than that of the full MF model. Thus the κ tensor
provides additional diffusion to the system. Despite the fact
that κ is often discarded, we thus find that at least two
components are essential for reproducing the GCD solution.

To conclude, we find that a minimum set of TTCs, capable
of reproducing the GCD solution, requires WfU ( ), the full α
(except αθf) and β tensors, γr and γθ, δr and δf, and κθθr and
κfθr. For further testing this, we performed an MF run with the
minimal set of coefficients and found a very good match with
the GCD simulation; see Table 1 and Appendix B.

4. Conclusion

In our work, we find that the full spectrum of turbulent effects
(Ω, α, β, γr, γθ, δr, δf, κθθr, κfθr) is required to reproduce the
GCD solution. This has two noteworthy implications.

First, all our findings agree with previous works (Warnecke
et al. 2014, 2018; Warnecke 2018; Warnecke & Käpylä 2020)
insofar as we found that the oscillation period is mostly
controlled by the α and Ω effects and not by the advection due
to meridional circulation. This is in stark contrast to simplified
flux-transport dynamo models (e.g., Karak et al. 2014), which
are commonly invoked to describe the solar dynamo and rely
crucially on meridional flow. Furthermore, our results support
the concepts of turbulent pumping (γ) and Rädler effect (δ) to
be essential for the dynamo (e.g., Schrinner et al. 2005, 2012;
Squire & Bhattacharjee 2015; Shi et al. 2016; Gent et al. 2017;
Warnecke et al. 2018; Viviani et al. 2019; Gressel &
Elstner 2020; Warnecke & Käpylä 2020; Pipin 2021).

Second, and more importantly, our work shows that most
probably, all turbulent effects considered here are required in
the generation of the magnetic field, and therefore are all
needed to understand the dynamo operating in GCD simula-
tions (in agreement with Schrinner et al. 2005). Our results
hence suggest that simple models based on a handful of fine-
tuned coefficients, as commonly used in the solar and stellar
context, miss crucial effects at play in GCD models.

Our results are in agreement with the study of Simard et al.
(2013), where the authors found that the contributions of the
full α and γ are important to reproduce their GCD solution.
However, they did not consider the effect of β, δ, andκ. In
addition, their TTCs have been measured using the SVD
method, which has been shown to give misleading results if
applied to our GCD simulations (Warnecke et al. 2018).
Given the severely limited observability of stellar interiors,

even in the case of the Sun, such models are currently the only
laboratories for quantifying the turbulent effects. Furthermore,
simply investigating the electromotive force (e.g., Augustson
et al. 2015; Strugarek et al. 2017) or measuring the TTCs and
evaluating the relative strengths of the corresponding effects is
insufficient. Only by examining these coefficients within an
MF model, one can comprehend the dynamo at work in the
GCD. Even though the GCD simulations do not attain realistic
parameters yet, the understanding of their dynamos is a
fundamental step (together with observations and experiments)
toward understanding dynamos in many astrophysical objects,
in particular in the Sun and other stars.
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received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 818665 “UniSDyn”),
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Appendix A
Time–Latitude Diagram of Pure A and S Solutions

We show in Figure 4 the purely symmetric (S) and
antisymmetric (A) solutions of the MF model together with
the GCD simulation. The solution shown in Figure 1 should be
regarded as a weighted sum of these two solutions. As the MF
model is linear, the weight depends on the initial condition, and
is, in this sense, arbitrary. In that particular MF run, the parity,
computed over all depths, is −0.6, indicating a larger
contribution from the A than the S solution. This also closely
matches the GCD simulation, where the parity switches back
and forth between −1 and +1 with a period of around 20 yr;
the average parity is −0.31± 0.3 (see also Käpylä et al. 2016
for a detailed analysis of the parity for a similar GCD
simulation). We note that, while the dominating modes of the A
and S solutions have equal growth rates, the high-frequency
mode has a clearly higher growth rate in the S than in the A
solution.

10 This refers to extremely localized rapidly growing field structures on the
grid scale, typically appearing as a checkerboard pattern and being
characteristic for negative diffusivity.
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Appendix B
Time–Latitude Diagram for Minimal Set of Coefficients

To show that the minimal set of coefficients, Uf, α, γr,θ, β,
δr,f, κθθr,fθr, is able to reproduce the main features of and the

dynamo mode of the GCD simulation, we show in Figure 5 for
comparison time–latitude diagrams of the GCD simulation and
the MF model. Similar to the MF model including all
coefficients, we find a very good agreement, most pronounced
at midlatitudes.

Figure 4. Time–latitude (butterfly) diagrams of mean radial, Br , and azimuthal, fB , magnetic field from the GCD simulation (top) together with the symmetric (S) and
antisymmetric (A) solutions of the MF model (middle and bottom) at fractional radius 0.95 (similar to Figure 1). The TTCs are symmetrized, and α is scaled by 1.5,
while exponential growth has been compensated for clarity.
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Appendix C
Solutions Close to Cycle Period of GCD Simulation

In Table 1 we show growth rates and oscillation frequencies
of those solutions that are close in cycle period to the GCD
simulation with = P 4.4 0.6cyc

GCD yr (Class C). The solutions
are labeled by their TTC selection. We also define a quality
factor Q based on the cycle period defined as

= -
-

Q
P P

P
1 , C1

cyc cyc
GCD

cyc
GCD

2
⎛

⎝
⎜

⎞

⎠
⎟ ( )

where the exact match of Pcyc and Pcyc
GCD yields unity. If the

growth rate is negative (no dynamo) we set Q to 0.
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Table 1
Solutions with Cycles between 3 and 5.8 yr, Corresponding to Q � 0.9

TTC Selection Symmetry λ (1/yr) Pcyc (yr) Q

fU S/A 0.85 4.86 0.99

qU fU S/A 0.99 5.28 0.96

Ur fU S/A 0.82 4.29 1.00

Ur qU fU S/A 0.92 4.54 1.00

αrr αrθ αrf αθθ αff
S 1.29 4.67 1.00
A 1.29 4.60 1.00

αrr αrθαrf αθθ αθf αff S/A 0.92 4.54 1.00
αrθ αrf αθθ αff S −0.12 5.69 0.00

γr γθ
S 1.16 5.55 0.93
A 1.15 5.54 0.93

γr γθ γf S/A 0.92 4.54 1.00
γr A 1.30 3.25 0.93

βrr βrf βθθ βθf βff
S 0.56 4.00 0.99
A 1.13 4.01 0.99

βrr βrθ βrf βθθ βθf βff S/A 0.92 4.54 1.00

Table 1
(Continued)

TTC Selection Symmetry λ (1/yr) Pcyc (yr) Q

βrr βθθ βff S 0.34 4.00 0.99
βrr βrf βθθ βff S 0.37 3.78 0.98
βrr βrθ βrf βθθ βff S 0.16 4.89 0.99

δr δf S/A 0.94 4.86 0.99
δr δθ δf S/A 0.92 4.54 1.00
δθ δf A 0.50 5.31 0.96

fU α γr γθ β δr δf κθθr κfθr
S 1.38 5.58 0.93

A 1.38 5.56 0.93

GCD mixed 0.00 4.4 ± 0.6 1 to 0.98

Note. “Symmetry” indicates symmetric (S) and antisymmetric (A) solutions. λ is
the growth rate of the volume-integrated rms B , Pcyc is the period of the dominant
oscillatory mode, and Q is the quality factor defined in Equation (C1). For each set
of TTC selections (separated by solid horizontal lines) all other tensors are fully
active. In the penultimate block all active TTCs are listed explicitly for the minimal
set of coefficients, while the last line shows the solution parameters of the GCD
simulation.

7

The Astrophysical Journal Letters, 919:L13 (8pp), 2021 October 1 Warnecke et al.

https://orcid.org/0000-0002-9292-4600
https://orcid.org/0000-0002-9292-4600
https://orcid.org/0000-0002-9292-4600
https://orcid.org/0000-0002-9292-4600
https://orcid.org/0000-0002-9292-4600
https://orcid.org/0000-0002-9292-4600
https://orcid.org/0000-0002-9292-4600
https://orcid.org/0000-0002-9292-4600
https://orcid.org/0000-0001-9840-5986
https://orcid.org/0000-0001-9840-5986
https://orcid.org/0000-0001-9840-5986
https://orcid.org/0000-0001-9840-5986
https://orcid.org/0000-0001-9840-5986
https://orcid.org/0000-0001-9840-5986
https://orcid.org/0000-0001-9840-5986
https://orcid.org/0000-0001-9840-5986
https://orcid.org/0000-0003-3317-5889
https://orcid.org/0000-0003-3317-5889
https://orcid.org/0000-0003-3317-5889
https://orcid.org/0000-0003-3317-5889
https://orcid.org/0000-0003-3317-5889
https://orcid.org/0000-0003-3317-5889
https://orcid.org/0000-0003-3317-5889
https://orcid.org/0000-0003-3317-5889
https://orcid.org/0000-0002-1331-2260
https://orcid.org/0000-0002-1331-2260
https://orcid.org/0000-0002-1331-2260
https://orcid.org/0000-0002-1331-2260
https://orcid.org/0000-0002-1331-2260
https://orcid.org/0000-0002-1331-2260
https://orcid.org/0000-0002-1331-2260
https://orcid.org/0000-0002-1331-2260
https://orcid.org/0000-0003-3317-6777
https://orcid.org/0000-0003-3317-6777
https://orcid.org/0000-0003-3317-6777
https://orcid.org/0000-0003-3317-6777
https://orcid.org/0000-0003-3317-6777
https://orcid.org/0000-0003-3317-6777
https://orcid.org/0000-0003-3317-6777
https://orcid.org/0000-0003-3317-6777
https://orcid.org/0000-0002-9614-2200
https://orcid.org/0000-0002-9614-2200
https://orcid.org/0000-0002-9614-2200
https://orcid.org/0000-0002-9614-2200
https://orcid.org/0000-0002-9614-2200
https://orcid.org/0000-0002-9614-2200
https://orcid.org/0000-0002-9614-2200
https://orcid.org/0000-0002-9614-2200
https://doi.org/10.1088/0004-637X/809/2/149
https://ui.adsabs.harvard.edu/abs/2015ApJ...809..149A/abstract
https://doi.org/10.1088/0031-8949/2010/T142/014028
https://ui.adsabs.harvard.edu/abs/2010PhST..142a4028B/abstract


Brandenburg, A., & Subramanian, K. 2005, PhR, 417, 1
Cameron, R., & Schüssler, M. 2015, Sci, 347, 1333
Gent, F. A., Käpylä, M. J., & Warnecke, J. 2017, AN, 338, 885
Gressel, O., & Elstner, D. 2020, MNRAS, 494, 1180
Käpylä, M. J., Käpylä, P. J., Olspert, N., et al. 2016, A&A, 589, A56
Käpylä, P. J., Mantere, M. J., Cole, E., Warnecke, J., & Brandenburg, A. 2013,

ApJ, 778, 41
Karak, B. B., Jiang, J., Miesch, M. S., Charbonneau, P., & Choudhuri, A. R.

2014, SSRv, 186, 561
Krause, F., & Rädler, K.-H. 1980, Mean-field Magnetohydrodynamics and

Dynamo Theory (Oxford: Pergamon)
Parker, E. N. 1955, ApJ, 122, 293
Pencil Code Collaboration, Brandenburg, A., Johansen, A., et al. 2021, JOSS,

6, 2807
Pipin, V. V. 2021, MNRAS, 502, 2565
Rädler, K.-H. 1969, Veröffentl. Geod. Geophys, 13, 131
Saar, S. H., & Brandenburg, A. 1999, ApJ, 524, 295
Schrinner, M. 2011, A&A, 533, A108
Schrinner, M., Petitdemange, L., & Dormy, E. 2011, A&A, 530, A140
Schrinner, M., Petitdemange, L., & Dormy, E. 2012, ApJ, 752, 121

Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., & Christensen, U.
2005, AN, 326, 245

Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., & Christensen, U. R.
2007, GApFD, 101, 81

Shi, J.-M., Stone, J. M., & Huang, C. X. 2016, MNRAS, 456, 2273
Simard, C., & Charbonneau, P. 2020, JSWSC, 10, 9
Simard, C., Charbonneau, P., & Bouchat, A. 2013, ApJ, 768, 16
Squire, J., & Bhattacharjee, A. 2015, ApJ, 813, 52
Steenbeck, M., Krause, F., & Rädler, K.-H. 1966, ZNatA, 21, 369
Strugarek, A., Beaudoin, P., Charbonneau, P., Brun, A. S., & do Nascimento, J.-D.

2017, Sci, 357, 185
Tuomisto, S. 2019, Masterʼs thesis, Univ. of Helsinki, Faculty of Science
Viviani, M., Käpylä, M. J., Warnecke, J., Käpylä, P. J., & Rheinhardt, M.

2019, ApJ, 886, 21
Warnecke, J. 2018, A&A, 616, A72
Warnecke, J., & Käpylä, M. J. 2020, A&A, 642, A66
Warnecke, J., Käpylä, P. J., Käpylä, M. J., & Brandenburg, A. 2014, ApJL,

796, L12
Warnecke, J., Rheinhardt, M., Tuomisto, S., et al. 2018, A&A, 609, A51
Yoshimura, H. 1975, ApJ, 201, 740

8

The Astrophysical Journal Letters, 919:L13 (8pp), 2021 October 1 Warnecke et al.

https://doi.org/10.1016/j.physrep.2005.06.005
https://ui.adsabs.harvard.edu/abs/2005PhR...417....1B/abstract
https://doi.org/10.1126/science.1261470
https://ui.adsabs.harvard.edu/abs/2015Sci...347.1333C/abstract
https://doi.org/10.1002/asna.201713406
https://ui.adsabs.harvard.edu/abs/2017AN....338..885G/abstract
https://doi.org/10.1093/mnras/staa663
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.1180G/abstract
https://doi.org/10.1051/0004-6361/201527002
https://ui.adsabs.harvard.edu/abs/2016A&A...589A..56K/abstract
https://doi.org/10.1088/0004-637X/778/1/41
https://ui.adsabs.harvard.edu/abs/2013ApJ...778...41K/abstract
https://doi.org/10.1007/s11214-014-0099-6
https://ui.adsabs.harvard.edu/abs/2014SSRv..186..561K/abstract
https://doi.org/10.1086/146087
https://ui.adsabs.harvard.edu/abs/1955ApJ...122..293P/abstract
https://doi.org/10.21105/joss.02807
https://ui.adsabs.harvard.edu/abs/2021JOSS....6.2807P/abstract
https://ui.adsabs.harvard.edu/abs/2021JOSS....6.2807P/abstract
https://doi.org/10.1093/mnras/stab033
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.2565P/abstract
https://ui.adsabs.harvard.edu/abs/1969VeGG...13..131R/abstract
https://doi.org/10.1086/307794
https://ui.adsabs.harvard.edu/abs/1999ApJ...524..295S/abstract
https://doi.org/10.1051/0004-6361/201116642
https://ui.adsabs.harvard.edu/abs/2011A&A...533A.108S/abstract
https://doi.org/10.1051/0004-6361/201016372
https://ui.adsabs.harvard.edu/abs/2011A&A...530A.140S/abstract
https://doi.org/10.1088/0004-637X/752/2/121
https://ui.adsabs.harvard.edu/abs/2012ApJ...752..121S/abstract
https://doi.org/10.1002/asna.200410384
https://ui.adsabs.harvard.edu/abs/2005AN....326..245S/abstract
https://doi.org/10.1080/03091920701345707
https://ui.adsabs.harvard.edu/abs/2007GApFD.101...81S/abstract
https://doi.org/10.1093/mnras/stv2815
https://ui.adsabs.harvard.edu/abs/2016MNRAS.456.2273S/abstract
https://doi.org/10.1051/swsc/2020006
https://ui.adsabs.harvard.edu/abs/2020JSWSC..10....9S/abstract
https://doi.org/10.1088/0004-637X/768/1/16
https://ui.adsabs.harvard.edu/abs/2013ApJ...768...16S/abstract
https://doi.org/10.1088/0004-637X/813/1/52
https://ui.adsabs.harvard.edu/abs/2015ApJ...813...52S/abstract
https://doi.org/10.1515/zna-1966-0401
https://ui.adsabs.harvard.edu/abs/1966ZNatA..21..369S/abstract
https://doi.org/10.1126/science.aal3999
https://ui.adsabs.harvard.edu/abs/2017Sci...357..185S/abstract
https://doi.org/10.3847/1538-4357/ab3e07
https://ui.adsabs.harvard.edu/abs/2019ApJ...886...21V/abstract
https://doi.org/10.1051/0004-6361/201732413
https://ui.adsabs.harvard.edu/abs/2018A&A...616A..72W/abstract
https://doi.org/10.1051/0004-6361/201936922
https://ui.adsabs.harvard.edu/abs/2020A&A...642A..66W/abstract
https://doi.org/10.1088/2041-8205/796/1/L12
https://ui.adsabs.harvard.edu/abs/2014ApJ...796L..12W/abstract
https://ui.adsabs.harvard.edu/abs/2014ApJ...796L..12W/abstract
https://doi.org/10.1051/0004-6361/201628136
https://ui.adsabs.harvard.edu/abs/2018A&A...609A..51W/abstract
https://doi.org/10.1086/153940
https://ui.adsabs.harvard.edu/abs/1975ApJ...201..740Y/abstract

	1. Introduction
	2. Models and Methods
	3. Results
	4. Conclusion
	Appendix ATime–Latitude Diagram of Pure A and S Solutions
	Appendix BTime–Latitude Diagram for Minimal Set of Coefficients
	Appendix CSolutions Close to Cycle Period of GCD Simulation
	References



