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Abstract

The discovery of two neutron star–black hole coalescences by LIGO and Virgo brings the total number of likely
neutron stars observed in gravitational waves to six. We perform the first inference of the mass distribution of this
extragalactic population of neutron stars. In contrast to the bimodal Galactic population detected primarily as radio
pulsars, the masses of neutron stars in gravitational-wave binaries are thus far consistent with a uniform
distribution, with a greater prevalence of high-mass neutron stars. The maximum mass in the gravitational-wave
population agrees with that inferred from the neutron stars in our Galaxy and with expectations from dense matter.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Gravitational waves (678); Compact objects (288);
Bayesian statistics (1900)

1. Introduction

To date, the vast majority of neutron star (NS) masses have
been measured through the binary interactions of Galactic radio
pulsars (Özel & Freire 2016). Beginning with Thorsett &
Chakrabarty (1999), population-level analyses have been per-
formed on these Galactic pulsars, revealing a mass distribution
with a double-peaked structure (Antoniadis et al. 2016; Alsing
et al. 2018; Farr & Chatziioannou 2020; Shao et al. 2020).
The double NSs among these Galactic observations, however,
have only been found with both component masses near 1.35 Me
(Özel et al. 2012; Kiziltan et al. 2013).

The first NS binary observed in gravitational waves (GWs),
GW170817 (Abbott et al. 2017), fell neatly into the mass range
anticipated from these radio observations. On the other hand,
GW190425 (Abbott et al. 2020a), the second low-mass GW binary
discovered, illustrated that the compact object population detected
with GWs need not be the same as that observed in our Galaxy: its
total mass is a 5σ outlier relative to known Galactic double NSs.
With the recent neutron star–black hole (NSBH) discoveries
GW200105 and GW200115 (Abbott et al. 2021a), LIGO (LIGO
Scientific Collaboration et al. 2015) and Virgo (Acernese et al.
2015) have now recorded four confirmed signals whose progenitor
likely contains at least one NS. In this Letter, we consider these to
be six extragalactic NSs known through GW astronomy, and
investigate the collective properties of this incipient NS population.
We follow the hierarchical Bayesian population inference frame-
work of Mandel (2010) and Mandel et al. (2019), which accounts
for statistical uncertainty in the measured parameters of each GW
signal and for selection effects in the observed population. This
kind of population inference has a history of applications inside
(e.g., Abbott et al. 2019, 2021b; Roulet et al. 2020) and outside
(e.g., Loredo 2004; Hogg et al. 2010; Foreman-Mackey et al.
2014) of GW astronomy.

One of the chief aims of this work is to compare the GW and
Galactic NS mass distributions. We also investigate the
maximum mass inferred for the extragalactic NS population,
the NS pairing probability for assembling BNSs, and the effect

of including or excluding an outlier observation, GW190814
(Abbott et al. 2020b); the nature of its 2.6 Me secondary
component is challenging to interpret, as it falls into the mass
gap between known high-mass NSs (Cromartie et al. 2020) and
low-mass black holes (BHs; Thompson et al. 2019).
On the whole, we find that a minimalistic model consisting

of a uniform mass distribution with random pairing into BNSs
is adequate for explaining the population of NSs observed so
far with GWs. Moreover, these first observations already reveal
interesting differences between this extragalactic NS popula-
tion and that which we observe in our own Galaxy.

2. Neutron Stars in Gravitational-wave Binaries

The set of observations informing our population inference
consists of the BNS mergers GW170817 and GW190425, and
the NSBH mergers GW200105 and GW200115. We separately
consider treating GW190814 as another NSBH merger, given
the uncertainty in the nature of its secondary component. GWs
from compact binary inspirals such as these provide accurate
measurements of their source’s primary and secondary masses,
m1,2, as well as its luminosity distance DL. These measure-
ments, in the form of a three-dimensional marginal likelihood
P(d|m1, m2, DL), are the observational input for our population
inference. The marginal likelihood can be obtained from the
full GW likelihood P(d|m1, m2, DL, θ) by marginalizing over
nuisance parameters θ, such as the source’s inclination and
spins. Although our NS population model is independent of DL,
we must retain the luminosity distance dependence in the
likelihood in order to model GW selection effects.
For each of the observations, we calculate the marginal

likelihood from the GW posterior samples released by the LIGO–
Virgo Collaboration.1 That is, we weight every posterior sample
(m1, m2, DL) by a factor of pÆ m m D1 , , L1 2( ) to convert from
the prior pÆ m m D, , L1 2( ) adopted for GW parameter estimation,
which is uniform in redshifted masses = +m z m1z

1,2 1,2( ) and
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1 We use the minimal spin-assumption (“high spin”) posterior samples from
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ligo.org/LIGO-P2000026/public for GW190425, https://dcc.ligo.org/
LIGO-P2100143/public for GW200105 and GW200115, and https://dcc.
ligo.org/LIGO-P2000183/public for GW190814. These samples are available
through the Gravitational-Wave Open Science Center (https://www.gw-
openscience.org; Vallisneri et al. 2015; Abbott et al. 2021c).
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quadratic in the luminosity distance, to the uniform-in-m1,2-DL

prior required for the likelihood. Gaussian kernel density
estimates of the one-dimensional marginal component mass
likelihoods constructed from these weighted samples are
plotted in the upper panel of Figure 1 to illustrate the mass
measurements that drive the population inference.

3. Modeling the Neutron Star Mass Distribution

Motivated by a few basic considerations, we investigate
several simple models for the NS mass distribution. First,
causality arguments place an upper bound of ∼3 Me on the
maximum NS mass (Rhoades & Ruffini 1974; Kalogera &
Baym 1996). Plausible supernova formation channels do not
produce NSs below 1 Me (Fryer et al. 2012; Woosley et al.
2020) and the standard LIGO/Virgo searches target masses
greater than 1 Me (Abbott et al. 2016; Usman et al. 2016;
Mukherjee et al. 2021). Our population models are conse-
quently formulated for m ä [1, 3)Me.

Second, although there is evidence that recycled and
nonrecycled pulsars in the Galactic population originate from
different mass distributions (Özel et al. 2012; Farrow et al.
2019), we do not expect the current limited set of GW mass
measurements to have the resolving power to discriminate
between different subpopulations. We therefore assume that all
NSs in BNSs and NSBHs originate from a common mass
distribution π(m|λ).

Third, again because of the relatively small number of NS
observations at hand, we prefer simple shapes—uniform or
Gaussian—for the common mass distribution. We also consider a

sum of two Gaussians to facilitate a direct comparison with the
bimodal Galactic population (Antoniadis et al. 2016; Alsing et al.
2018; Farr & Chatziioannou 2020; Shao et al. 2020).
Given these considerations, we adopt one of three models for

the basic NS mass distribution:
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and subject the population parameters λ to the constraint
m m< < ¢ < <M m m M1 3min max . The normalization

constants A, B, and C in Equations 1(b)–(c) ensure that ∫π
(m|λ) dm= 1.
The astrophysical processes of stellar evolution and binary

interaction that eventually result in a merging system containing
one or two NSs have significant complexity and uncertainty
(Dominik et al. 2012; Fragos et al. 2019; Broekgaarden et al.
2021; Mandel et al. 2021; Santoliquido et al. 2021). In the absence
of a definite, astrophysically motivated prescription for the pairing
function that connects the masses of the two components in a GW
binary, we suppose that the pairing probability is a power law in
the mass ratio q=m2/m1. This phenomenological model is a
good descriptor of pairing in the binary BH population (Kovetz
et al. 2017; Abbott et al. 2019, 2021b; Fishbach & Holz 2020).
The binary mass distribution characteristic of BNSs and NSBHs is
thus taken to be

l
l l

l
p

p p
p p

µ
b

b
m m

m m q

m m q
,

if BNS

if NSBH,
21 2

1 2

BH 1 2 BH

⎧
⎨⎩
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( ∣ ) ( ∣ )

( ) ( ∣ )
( )

with separate pairing parameters β and βBH for the BNSs and
NSBHs. We assume definite a priori classifications for the GW
sources.2 Because there are so few observations of BHs in NSBH
systems, we do not attempt to infer the BH mass distribution
πBH(m); rather, we fix it to be uniform and nonoverlapping with
the NS mass distribution: πBH(m)=U(m|3Me, 30Me). In
practice, the criterion in Equation (2) that distinguishes BNSs
from NSBHs is m1< 3Me. The BH mass distribution’s upper
bound is chosen to encompass the measurement for GW190814ʼs
primary component. We also choose to fix the NSBH pairing
parameter to βBH= 0, which corresponds to a minimal assumption
of random pairing. These choices do not strongly impact the
inferred NS mass distribution, which is driven by the NS mass
model and measurements. Indeed, we have tested a different BH
mass model—a power law ∝m−2

—and a different NSBH pairing
parameter—βBH= 2, a value that lies within the 90% credible
region preferred by the entire compact binary population in the
second LIGO–Virgo GW transient catalog (Abbott et al.
2021b, 2021d)—and found a negligible impact on the inferred
NS mass distribution.
We also take Equation (2) to be independent of the GW

binary’s luminosity distance. This amounts to an assumption that

Figure 1. Measured masses and inferred mass distribution for NSs in GW
binaries. Top: marginal one-dimensional mass likelihoods P(d|m) for the NSs
in the BNS mergers GW170817 and GW190425, the NSBH mergers
GW200105 and GW200115, and the candidate NSBH merger GW190814.
Bottom: median and symmetric 90% confidence interval of the mass
distribution inferred for the FLAT model. The gray traces plot 1000 independent
samples from the FLAT population posterior. The dashed line is the median for
the FLAT_Q model. The dotted line is the FLAT median when GW190814 is
interpreted as an NSBH.

2 If we were instead to classify the sources probabilistically based on their
measured parameters, Equation (2) would involve a mixing fraction between
BNSs and NSBHs that depends on their relative detection rate.
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the NS and BH populations do not evolve with distance, which is
a reasonable approximation for nearby signals (Fishbach et al.
2018; Mapelli et al. 2019).

Hence, the binary mass model (2) is specified by a choice of
basic NS mass distribution π(m|λ) and a choice of BNS pairing
parameter β. In light of limited existing GW observations, we
make a minimalistic assumption for the latter: we assume
random pairing, i.e., β= 0. (We will revisit this assumption at
the end of Section 5.) Our three fiducial models, which we call
FLAT, PEAK, and BIMODAL in Table 1, therefore differ only by
the basic NS mass distribution shape they adopt: respectively
uniform, Gaussian, and double Gaussian.

4. Gravitational-wave Population Inference

Bayesian population inference supplies a prescription for
evaluating the likelihood of our set d of GW observations, given
a population model π(m1, m2|λ) that depends on unknown
population parameters λ (Mandel 2010; Mandel et al. 2019).
Formally,

òl
l
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z
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´
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where the three-dimensional marginal likelihood P(d|m1, m2,
DL) is the observational input from the GWs. The detection
fraction
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which acts as a normalization in Equation (3), captures GW
selection effects. The selection function P m m D, , Ldet 1 2( ) gives
the probability of detection for a GW signal as a function of its
source properties. We adopt a simple analytic model of a hard
signal-to-noise ratio threshold following Chatziioannou & Farr
(2020), which produces a selection function that scales like
z

5 2, where = + + z m m m m1z 1 2
3 5

1 2
1 5( )( ) ( ) is the

redshifted chirp mass. In Equations (3)–(4), the distance prior
µP D DL L

2( ) encodes the quadratic increase in a GW survey’s
ratio of sensitive volume to distance in the local universe.

The posterior probability of a set of population parameters λ
within a given population model follows from Equation (3) via
Bayes’ theorem: P(λ|d)∝ P(d|λ)P(λ), where P(λ) is their
prior distribution. The model’s prediction for the intrinsic NS
mass distribution is obtained by marginalizing its binary mass
distribution over the posterior uncertainty in λ and averaging

over the individual m1 and m2 distributions:
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The corresponding prediction for the observed NS mass
distribution l dP mobs( ∣ )—i.e., the one filtered through selection
effects—can be obtained by inserting factors of ζ(λ) within the
integrals.

5. Results and Discussion

For each of the models described in Section 3, we follow the
previous section’s formalism and evaluate P(λ|d) with a
Markov Chain Monte Carlo algorithm implemented with
emcee (Foreman-Mackey et al. 2013). We use the marginal
likelihoods from GW170817, GW190425, GW200105, and
GW200115 as the observational input. We sample from
uniform priors over the population parameters, subject to the
constraints listed after Equation ((1)), within the ranges

Îm 1.0, 1.5min [ ) Me, Îm 1.5, 3.0max [ ) Me, m m¢ Î, 1.0,[
3.0) Me, s s¢ Î, 0.01, 2.00[ ]Me, and wä [0.0, 1.0]. For the
BIMODAL model, we fix =m 1.0min to reduce the dimension-
ality of the population parameter space. The detection fraction
ζ(λ) for each realization of the population model is evaluated
via Monte Carlo integration of Equation (4), and likewise the
inferred mass distribution (5) is computed from the posterior
distribution P(λ|d).
Inferred neutron star mass distribution. We first examine the

inferred mass distribution for the three fiducial models
described above to discern the key characteristics of the NS
population in GW binaries. The median and symmetric 90%
confidence interval of the mass distribution inferred for the
FLAT, BIMODAL, and PEAK models are plotted in Figures 1–3,
respectively. These plots also feature traces of individual
realizations of the mass distribution drawn from the population
posterior. Table 1 reports the median and symmetric 90%
confidence interval of the one-dimensional marginal posterior
distribution for each population parameter.
The inferred FLAT mass distribution extends from approxi-

mately 1–2 Me, with considerable uncertainty in the minimum
and maximum mass cutoffs, as expected from only a handful of
GW observations; Chatziioannou & Farr (2020) estimate that
50 BNS signals are needed to determine both cutoffs to within
0.2 Me. Nonetheless, the observations constrain the mmin and
mmax parameters away from the prior, disfavoring in particular
the largest maximum mass values allowed a priori. The lower
bound on mmax is driven by the precise mass measurement for

Table 1
Inferred Population Parameters for the NS Mass Distribution According to Each of the Models Considered

Model π(m|λ) β m Mmin ( ) m Mmax ( ) μ (Me) σ (Me) m¢ M( ) s¢ M( ) w ΔAIC

FLAT U 0 -
+1.1 0.1

0.2
-
+2.0 0.3

0.4 L L L L L 0.0

PEAK N 0 -
+1.1 0.1

0.2
-
+2.1 0.3

0.7
-
+1.5 0.3

0.5
-
+1.0 0.7

0.9 L L L 3.7

BIMODAL NN 0 1.0 -
+2.1 0.3

0.7
-
+1.3 0.3

0.5
-
+1.0 0.8

0.9
-
+1.7 0.4

0.6
-
+1.0 0.9

0.9
-
+0.5 0.4

0.5 5.5

FLAT_Q U 2 -
+1.2 0.2

0.1
-
+2.0 0.3

0.3 L L L L L 1.1

PEAK_Q N 2 -
+1.1 0.1

0.2
-
+2.0 0.2

0.7
-
+1.5 0.3

0.5
-
+1.0 0.7

0.9 L L L 4.8

BIMODAL_Q NN 2 1.0 -
+2.1 0.3

0.7
-
+1.3 0.3

0.5
-
+0.9 0.8

1.0
-
+1.7 0.4

0.5
-
+1.0 0.9

0.9
-
+0.5 0.4

0.5 8.1

Note. Medians and symmetric 90% credible intervals of the marginal one-dimensional posterior distributions are reported. The minimum mass is fixed to 1 Me for the
BIMODAL and BIMODAL_Q models. The Akaike information criterion (AIC) statistic, used for ranking the models, is also reported relative to the FLAT model.
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GW200105ʼs 1.9 Me secondary, which must be accommo-
dated by the mass distribution; this causes the pileup in traces
that corresponds to the precipitous fall in the median at 2 Me in
Figure 1. The overlap of the less sharply peaked likelihoods in
the 1.1–1.6 Me range is responsible for the slightly more
gradual initial rise in the median.

The mass distributions inferred with the BIMODAL and PEAK
models are very similar. Both are unimodal on average, with a
broad peak at ∼1.6 Me; although many BIMODAL traces have
two peaks, the peak locations are relatively unconstrained by
the observational data, which washes out the bimodality in the
median. Similarly, despite many individual realizations of the
mass distribution having a sharp high-mass cutoff, the GW
observations primarily bound m M2max  for these models,
allowing the median to taper off smoothly at high masses. At
the low-mass end, we observe a similar tapering in the PEAK
mass distribution, while the BIMODAL mass distribution is
dominated by the imposed sharp cutoff at =m M1min .

Besides examining the NS mass distribution predicted by each
of the three models, we can attempt to determine which model is
preferred by the observations. We adopt the Akaike information
criterion (AIC; Akaike 1981), l= - dn PAIC 2 2 log ( ∣ ˆ ), as the
metric for this comparison. The AIC is simply the (logarithm of
the) maximal likelihood ldP ( ∣ ˆ ) for a given population model,
where l̂ are the maximum-likelihood parameters, plus a
correction term that penalizes the model according to its number

of free parameters n. The smaller the AIC, the greater the data’s
preference for the model. The AIC is used for model selection in
the astrophysics literature (e.g., Shi et al. 2012; Krishak & Desai
2020), with Dexp AIC 2( ) corresponding to the relative like-
lihood of model B compared to model A for ΔAIC=AICA−
AICB. Values of ΔAIC> 6 are considered significant for model
selection (Liddle 2009).
To rank our population models, for each one we identify the

mass distribution realization with the largest likelihood among
our discrete population posterior and calculateΔAIC relative to
the FLAT model. Based on the results listed in Table 1, we find
that the PEAK and BIMODAL models are moderately disfavored
by the data, in part from their larger number of free parameters
(n= 4 and n= 6, respectively). The more parsimonious (n= 2)
FLAT model is preferred.
Thus, a uniform NS mass distribution is sufficient to fit

current GW observations. There is no clear evidence of
bimodality in this GW population of NSs, nor is there
unambiguous evidence of a sharp minimum or maximum mass
cutoff; these latter features only appear in the inferred FLAT
mass distribution, which includes them by construction.
Comparison with the Galactic neutron star population. The

Galactic population of NSs, observed via electromagnetic
astronomy, has been studied extensively (Özel & Freire 2016).
The double NS subpopulation appears to conform to a sharply
peaked Gaussian mass distribution with μ= 1.33Me and
σ≈ 0.11Me (Kiziltan et al. 2013), at least when assuming a
common distribution for recycled and nonrecycled pulsars (Özel
et al. 2012; Farrow et al. 2019). The full NS population is
characterized by a bimodal mass distribution (Antoniadis et al.
2016; Alsing et al. 2018; Farr & Chatziioannou 2020; Shao et al.
2020). A recent study (Farr & Chatziioannou 2020) found
Gaussian peaks at m = -

+ M1.35 0.03
0.04

 and m¢ = -
+ M1.8 0.2

0.6
, with

Figure 2. Comparison between the inferred mass distributions for NSs in GW
binaries and NSs in the Galaxy. Top: posterior predictive check of the
BIMODAL and Galactic population models. One hundred realizations of the
observed NS masses are plotted against 100 samples from the predicted
BIMODAL and Galactic mass distributions l dP mobs( ∣ ). The black line with unit
slope indicates perfect agreement between the model and the observations; a
model that overpredicts (underpredicts) the number of NS observations of a
given mass will systematically produce scatter points below (above) the line.
Bottom: same as Figure 1, but for the BIMODAL model as compared to the
median of the Farr & Chatziioannou (2020) Galactic mass distribution.

Figure 3. Same as Figure 2, but for the PEAK model and the best-fit Gaussian
Galactic double NS mass distribution from Kiziltan et al. (2013).
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respective widths s = -
+ M0.08 0.03

0.03
 and s¢ = -

+ M0.3 0.1
0.3

, a
maximum mass cutoff at = -

+m M2.3max 0.3
0.8

, and = -
+w 0.7 0.2

0.1.3

Comparing these two Galactic models with our inferred PEAK
and BIMODAL mass distributions, which are directly analogous,
allows us to investigate the differences between the Galactic
and GW populations of NSs.

In Figure 2, we compare the double-Gaussian mass
distribution from Farr & Chatziioannou (2020) with the
BIMODAL model. Unlike the Galactic mass distribution, the
one inferred from GWs is unimodal, predicting far fewer low-
mass and moderately more high-mass NSs in the population.
The BIMODAL mass distribution may also support a gentler
maximum mass cutoff. The apparent difference at the low-mass
end of the Galactic and GW mass distributions is an artifact
of our choice to fix =m M1min  in the BIMODAL model—
consistent with our prior bounds—whereas Farr & Chatziioannou
(2020) set =m 0min .

Similarly, in Figure 3, we compare the Gaussian double
NS mass distribution from Kiziltan et al. (2013) against the
PEAK model. The peak in the latter mass distribution is much
broader than the Galactic one and occurs at a higher mass scale.
Hence, the PEAK model predicts many more heavy double
NSs in the population than are observed in our Galaxy. This is
consistent with the discovery of GW190425, whose total mass
of approximately 3.4Me is already recognized as an outlier
from the observed Galactic double NS population (Abbott et al.
2020a).

To reinforce the conclusion that the observed populations of
NSs in the Galaxy and in GW binaries are distinct, we perform
a posterior predictive check of the models. Essentially, we test
whether the Galactic models provide an equally good fit to the
observed GW population of NSs as our BIMODAL and PEAK
models. To do so, we draw one mass sample from each of the
GW marginal mass likelihoods to constitute a realization of the
observed NS population, and we draw the same number of
samples from either the GW or Galactic mass distribution
l dP mobs( ∣ ). This constitutes the prediction for the detected NS
population, accounting for selection effects. Iterating over 100
instances of this procedure, we pair up the observed and
predicted masses in sequence of increasing mass, and plot the
resulting scatter points in the upper panels of Figures 2 and 3.
A model that fits the observations perfectly would have its
scatter points distributed along the line of unit slope. Despite
the considerable statistical uncertainty in the mass likelihoods
and inferred mass distribution for the GW population models,
we see that their scatter points are generally oriented along this
line. On the other hand, the scatter points for both Galactic
models skew above the line, indicating that they underpredict
the number of high-mass NSs observed with GWs. This is
especially apparent for the double NS model from Kiziltan
et al. (2013) in Figure 3.

Thus, a mass model distinct from the existing Galactic ones is
indeed required to accurately describe the detected GW population
of NSs. We account for the GW selection bias toward detecting
heavy masses, so this may reflect a difference in the observed
properties of Galactic pulsars versus the intrinsic properties of
merging compact binaries as a result of different binary evolution
pathways. For example, Galaudage et al. (2021) suggest that the
rapid merger of high-mass systems reduces their radio visibility,
which could explain the relative lack of such systems seen in our

Galaxy. More generally, the properties of the observed Galactic
population are affected by radio selection effects (Chattopadhyay
et al. 2020), which we do not explore in this work. It may be
possible to reconcile the two observed populations by building
additional parameters such as the spins or the orbital period into
the model (Kruckow 2020).
Maximum mass. The best-constrained population parameter

in each model is the maximum mass, mmax. We investigate
whether the maximum mass in the GW population of NSs
agrees with (1) the maximum mass in the Galactic population,
and (2) the maximum Tolman–Oppenheimer–Volkoff (TOV)
mass supported by the NS equation of state (EOS). A
discrepancy with the former could be informative about
differences between GW and electromagnetic selection effects;
a discrepancy with the latter could indicate that the NS mass
spectrum is limited by the astrophysical formation channel
rather than the EOS.
In Figure 4, we plot the mmax posterior distribution inferred

with the FLAT and BIMODAL models. Both posteriors peak around
2Me, but the BIMODAL model has support for mmax as large as
3Me because its allows for tapering instead of a sharp cutoff. The
FLAT model predicts a maximum mass of -

+ M2.0 0.3
0.4

, while the
BIMODAL model predicts -

+ M2.1 0.3
0.7

. The lower bound on mmax

is driven by the well-resolved mass of the secondary in
GW200105 in both cases. The mmax posterior for the PEAK
model is almost identical to the BIMODAL model.
Our estimate of the Galactic NS population’s maximum

mass comes from the double-Gaussian model of Farr &
Chatziioannou (2020), which predicts = -

+m M2.3max 0.3
0.8

. The

Figure 4. Inferred maximum mass for the population of NSs in GW binaries.
Posterior distributions dP mmax( ∣ ) for the maximum mass parameter in the FLAT
and BIMODAL models are compared against the maximum mass inferred from
the Galactic NS population in Farr & Chatziioannou (2020) and the maximum
TOV mass from the EOS inference in Landry et al. (2020). The dotted curves
show the maximum mass posterior when GW190814ʼs secondary is treated as
a NS; we simulate the impact of this assumption on MTOV by discarding
samples with MTOV < 2.5 Me, the 90% credible lower bound on GW190814ʼs
secondary mass, from the Landry et al. (2020) posterior.

3 We use the population posterior samples from Farr & Chatziioannou (2020)
made available at https://github.com/farr/AlsingNSMassReplication.
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corresponding posterior distribution is displayed in Figure 4.
As can be seen, this Galactic maximum mass is completely
consistent with the FLAT and BIMODAL estimates of mmax
within current uncertainties: there is no discrepancy in the
maximum masses of Galactic and extragalactic NSs.

For the maximum TOV mass—the maximum mass of a
nonrotating NS—predicted by the dense-matter EOS, we take
the value of = -

+M M2.2TOV 0.2
0.4

 obtained by Landry et al.
(2020) from nonparametric inference based on radio pulsar,
X-ray, and GW observations of NSs, an analysis that did not
interpret GW190814ʼs secondary as a NS. We find good
agreement between the EOS-informed maximum NS mass
posterior, also shown in Figure 4, and that inferred from the
GW population with both the FLAT and BIMODAL models: the
maximum mass for extragalactic NSs is consistent with MTOV,
suggesting that stellar and binary evolution are able to produce
GW binaries containing the heaviest NSs. This conclusion
persists even when GW190814 is incorporated into the
population inference as an NSBH observation, as long we also
account for it in the analysis of the EOS; as a high-mass outlier,
it dictates MTOV.

GW190814. The results presented up to this point have
relied on four GW observations—GW170817, GW190425,
GW200105, and GW200115—that are readily interpretable as
BNS or NSBH mergers. In this subsection, we also consider
GW190814, whose secondary component has a mass of

-
+ M2.6 0.1

0.1
 (Abbott et al. 2020b). Although its nature is uncertain

(e.g., Most et al. 2020; Biswas et al. 2021; Tews et al. 2021), and
comparisons with various maximum NS mass estimates suggest
its secondary may be a low-mass BH (Abbott et al. 2020b; Essick
& Landry 2020), we now entertain the scenario in which it is a NS
and revisit our population inference under this assumption.
Because GW190814 is such an outlier relative to the other GW
observations, its inclusion in the population has a significant
impact on the inferred mass distribution.

Its primary effect is to flatten and extend the NS mass
distribution beyond 2.5Me, as can be seen in Figures 1–3
when it is included in the FLAT, BIMODAL, and PEAK analyses,
respectively. Indeed, the mmax posterior is particularly sensitive
to the inclusion of GW190814. For the FLAT model, the
inferred maximum mass in the GW population of NSs shifts
from -

+ M2.0 0.3
0.4

 to -
+ M2.7 0.2

0.2
, as illustrated in Figure 4. For

the BIMODAL model, a comparable shift from -
+ M2.1 0.3

0.7
 to

-
+ M2.7 0.1

0.3
 occurs (the mmax values for the PEAK model are

very similar). If the population of NSs in GW binaries is taken
to include GW190814ʼs secondary component, there is likely a
difference between the maximum masses observed in the
Galactic and GW populations, although the uncertainties in
mmax are large enough that the posteriors still overlap. This
difference could be indicative of a radio selection effect like the
one discussed in Galaudage et al. (2021). Of course, the
simplest reconciliation of this discrepancy between the Galactic
and GW populations is that GW190814 does not contain a NS,
as is suggested by a detailed comparison of its secondary mass
with an EOS-informed estimate of MTOV based on other
astrophysical observations (Essick & Landry 2020).

Pairing function. Thus far, our population models have
assumed random pairing of NSs into BNSs. We now revise that
assumption and investigate mass-ratio-dependent pairing as an
alternative, using a power-law pairing function as in Fishbach
& Holz (2020). We choose β= 2 as our fixed BNS pairing
parameter to match our aforementioned alternative NSBH

pairing parameter choice βBH= 2. We introduce FLAT_Q,
PEAK_Q, and BIMODAL_Q models that differ from the fiducial
ones only by this choice of β in Equation (2). For each of these
new models, we repeat the analysis described at the beginning
of this section and examine how the inferred mass distributions
and population parameter constraints change. We then compute
AICs to determine whether the data prefer random or q-
dependent pairing.
The medians of the inferred mass distributions for the

FLAT_Q, BIMODAL_Q, and PEAK_Q models are plotted in
Figures 1–3, respectively, alongside their random-pairing
counterparts. In all cases there is little difference between the
mass distributions inferred with and without q-dependent
pairing. This is also apparent from the population parameter
constraints in Table 1.
We compute AICs for the new models, listing their ΔAIC

values relative to the FLAT model in Table 1. The AIC is
marginally larger for the FLAT_Q, PEAK_Q, and BIMODAL_Q
models than their respective random-pairing counterparts.
Overall, we find no systematic evidence that a q2 pairing
function is preferred over random pairing for BNSs. This
conclusion also holds when we test a more extreme pairing
power law (β= 7); GW observations cannot yet constrain the
BNS pairing function.

6. Conclusions

With this first look at NSs in GW binaries as a population,
we find a broad spread of masses over the range compatible
with NSs, consistent with a uniform mass distribution. There
is no clear evidence in the GW population of the double-
peaked structure inferred from Galactic NS mass measure-
ments, nor of the narrow low-mass peak associated specifi-
cally with Galactic double NSs. Indeed, we find that high-
mass NSs are relatively more prevalent in GW binaries than in
the those surveyed with electromagnetic astronomy. However,
the maximum NS mass we infer from the GW population
agrees with the sharp high-mass cutoff in the Galactic NS
mass distribution, provided we do not interpret the outlier
event GW190814 as an NSBH. Regardless of GW190814ʼs
classification, this maximum mass is consistent with the
maximum nonrotating NS mass supported by the dense-matter
EOS. The current set of extragalactic NS observations does
not allow us to distinguish whether NSs pair randomly or
preferentially in equal-mass BNSs. Given the small number of
observations currently at hand, near-future NS mass measure-
ments with GWs will have a significant impact on this early
picture of the population.
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