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ABSTRACT 
 

The HIV-1 reverse transcriptase (RT) is a major target for drug development. Inhibition of this 
enzyme has been one of the primary therapeutic strategies in suppressing the replication of HIV-1. 
A series of 2-amino-6-arylsulfonylbenzonitrile derivatives were subjected to quantitative structure-
activity relationship (QSAR) analysis. Very recently, we proposed the use of substituent electronic 
descriptors (SED) instead of the electronic descriptors of whole molecules as new and expedite 
source of electronic descriptors. In this study, we used SED parameters in QSAR modeling of anti 
HIV-1 activity of 6-arylsulfonylbenzonitrile derivatives. In SED methodology produces a vector of 
electronic descriptors for each substituent and thus a matrix of SED is generated for each 
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molecule. Consequently, a three-dimensional array is obtained by staking the data matrices of 
different molecules beside each other. As a novel multiway data analysis method, molecular maps 
of atom-level properties (MOLMAP) approach was also used to transfer a three-dimensional array 
of SED descriptors into new two-dimensional parameters using Kohonen network, following by 
genetic algorithm-based partial least square(GA-PLS) to connect a quantitative relationship 
between the Kohonen scores and biological activity.In unfolding data, HOMO1, HOMOB1, SOFB1 
and EPHA4 represent the most important indices on QSAR equation derived by PLS analysis. 
Accurate QSAR models were obtained by both approaches. The resulted GA-PLS model of 
MOLMAP approach possessed high statistical quality r

2
= 0.83 and q

2
=0.70. It could explain and 

predict about 70% of variances in the anti-HIV1 inhibitory activity of the studied molecules. 
However, the superiority of three-way analysis of SED parameters based on MOLMAP approach 
with respect to simple unfolding was obtained.  
 

 

Keywords: Substituent electronic descriptors; MOLMAP; QSAR; Kohonen neural network. 
 

1. INTRODUCTION 
 

An appropriate representation of the structural 
and physicochemical features of chemical agents 
is an essential key to the successful application 
of QSAR models [1-4]. Structural descriptors 
have been classified into different categories 
according to different approaches including 
physiochemical, constitutional, geometrical, 
topological, and quantum chemical descriptors. 
Currently, more than 1000 molecular descriptors 
can be easily calculated using available software 
such as Dragon [5-6]. In recent years, electronic 
descriptors obtained from quantum chemical 
calculations have been found major popularity, 
and progress in computational hardware and 
development of efficient algorithms have assisted 
the routine development of molecular quantum 
chemical calculations [7-9]. 
 

Lately, there is a challenge between calculation 
complexity and accuracy in the selection of 
quantum chemical calculation methods (e.g., 
semi-empirical and ab initio methods). In fact, in 
spite of highly accurate results obtained by the 
ab initio methods, the complexity and long 
computation times of these methods hinder their 
wide applicability to the calculation of electronic 
descriptors. Meanwhile, there is a great demand 
for the development of electronic descriptors that 
are calculated with high level of accuracy and 
low computation times, and can also be 
tabulated for future works. In this line, we have 
recently proposed the use of electronic features 
of substituents instead of those of the whole 
molecular skeleton [10-12]. These parameters, 
called as substituent electron descriptors (SED), 
can be used as an alternative to both substituent 
constants and molecular descriptors. All of the 
electronic descriptors that are calculated for the 
whole molecule can be calculated for 
substituents, considering the fact that compared 

with the parent molecules, they have very 
smaller sizes and consequently their calculation 
times will be significantly decreased [10]. 
 

In SED methodology, instead of a vector of 
descriptors employed in conventional QSAR 
studies, a matrix of descriptors is generated. In 
fact, if the molecules of data set have a similar 
structural backbone and have n common 
substituent positions, for each of these positions 
a set of m SED properties are calculated. 
Therefore, a SED data matrix of (n×m) 
dimension is generated for each molecule, and a 
three-dimensional array of (k×n×m) dimension is 
obtained for k molecules. 
 

Recently, a multiway analytical method based on 
Kohonen network, originated from a method for 
calculation of molecular descriptors called 
MOLMAP, has been introduced [13-15]. 
Kohonen self-organizing maps (SOM) can be 
used for the reduction of multidimensional 
objects to 2D [16]. In QSAR modeling based on 
MOLMAP approach, the resulted Kohonen 
scores are used as descriptors for classification 
and regression purposes. In this paper; we 
illustrate the application of SED and MOLMAP 
descriptors for QSAR analysis of anti HIV-1 
activity of 6-arylsulfonylbenzonitrile derivatives. 
Models were developed for prediction of anti 
HIV-1 activity with GA-PLS method. 
 

2. METHODOLOGY 
 
The experiments here described required two 
major steps, the generation of descriptors and 
development of predictive models. Generation of 
descriptors, MOLMAP, was obtained by a 
Kohonen self-organizing map. A SOM must be 
trained beforehand with a different of 
substituents from different structures (each 
substituents described by the 25 SED properties 
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calculated by Gaussian 98). Then all the 
substituents of one molecule are submitted to the 
trained SOM, and the pattern of activated 
neurons is a map of the reactivity features of that 
molecule (MOLMAP)—a fingerprint of the 
substituents available in that structure. Such 
MOLMAP (molecular maps of atom-level 
properties) descriptors can be directly used in 
QSAR [15]. 

2.1 Data Set 
 

The biological data used in this study were                      
HIV-reverse transcriptase inhibitory activity,                   
(in terms of -log IC50), of a set of sixty                      
one 6-arylsulfonylbenzonitrile derivatives                        
[17]. The structural features and biological                
activity of these compounds are listed in                 
Table 1. 

 
Table 1. Chemical structures of 2-amino-6-arylsulfonylbenzonitriles derivatives used in this 

study 
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SO2
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CN
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1-19 20-32 33-61 

Compound R Experimental pIC50
a
 

1 H 1.836 
2 2-OCH3 2.367 
3 3-OCH3 2.222 

4 2-CH3 1.796 
5 3-CH3 2.215 
6 4-CH3 0.939 

7 2-Cl 2.387 
8 3-Cl 2.131 
9b 2-Br 1.523 

10 b 3-Br 2.292 
11 3-F 2.009 
12 3-CN 2.762 

13 4-CN 1.359 
14 3-CF3 1.893 
15 b 3-NH2 1.502 

16 3,5-(CH3)2 3.367 
17 b 3-Cl,5-CH3 2.754 
18 3-OCH3, 5-CH3 2.699 

19 3-OCH3, 5-CF3 2.292 
20 b 2-OCH3 2.319 
21 b 3-OCH3 1.796 

22 b 3-CH3 1.534 
23 b 4-CH3 1.310 
24 2-Br 1.407 

25 4-Br 1.694 
26 2-CN 2.409 
27 3-CN 1.848 
28 3-CF3 1.398 

29 3,5-(CH3)2 3.469 
30 2,5-Cl2 2.007 
31 b 3-Cl, 5-CH3 3.495 
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32b 3-OCH3, 5-CF3 2.684 
33 H 2.699 
34 b 2-OCH3 3.222 
35 3-OCH3 3.046 

36 4-OCH3 1.602 
37 2-CH3 2.638 
38 b 3-CH3 3.398 

39 4-CH3 2.022 
40 2-Cl 2.387 
41 3-Cl 3.229 
42 4-Cl 2.523 
43 2-Br 2.301 
44 3-Br 3.268 

45 4-Br 1.699 
46 2-F 2.523 
47 3-F 2.523 

48 2-CN 2.268 
49 3-CN 2.620 
50 4-CN 1.097 

51 3-CF3 2.456 
52 2,5-Cl2 3.523 
53 3,5-Cl2 4.155 

54 3,5-(CH3)2 5.000 
55 3-Br, 5-CH3 4.699 
56 3-Cl, 5-CH3 4.523 

57 b 3-OCH3, 5–CH3 4.301 
58 3-OCH3, 5-CF3 4.046 
59 3-OH, 5-CH3 3.367 

60 3-OCH2CH3, 5-CH3 4.222 
61 3-O(CH2) 2CH3, 5-CH3 4.222 

a pIC50 = -log (IC50), 
b Compounds used as prediction set 

 

2.2 Computational Procedure 
 
A Core i7 personal computer with windows X 
operating system was used. The SED 
parameters were calculated according to our 
previously published article in this subject  
[10,11]. Here, quantum chemical calculations 
were performed on radical substituents instead of 
whole molecular structures. The calculated 
electronic descriptors for each substituent are 
summarized in Table 2. The calculated 
descriptors can be classified into three different 
electronic categories including local charges, 
dipoles, and orbital energies. The quantum 
chemical indices of hardness (HD), softness 
(SOF), electronegativity (EN), and 
electrophylicity (EPH) were calculated according 
to the method proposed by Thanikaivelan et al. 
[18]. Since most of the substituents are open 
shell quantum species (due to being in doublet 
quantum state as a radical molecule), a 
difference in energy between two electronic 

energy populations, alpha (spin up) and beta 
(spin down) can be seen using Gaussian 98. It 
provides some additional descriptors HOMOA, 
HOMOB, LUMOA, LUMOB, HDA, HDB, SOFA, 
SOFB, ENA, ENB, EPHA, and EPHB stem from two 
different alpha and beta electronic population 
energies, where the subscripts A and B stand for 
alpha and beta population of electronic energy, 
respectively. Therefore, a total of 25 electronic 
descriptors were calculated for each substituent 
(Table 2). 
 

2.3 Variable Importance in the Projection 
(VIP) 

 
In order to investigate the relative importance of 
the variable appeared in the final model obtained 
by GA-PLS method, variable important in 
projection (VIP) was employed [19]. VIP values 
reflect the importance of terms in PLS model. 
VIP is sum over all model dimensions of the 
contributions VIN (variable influence) [20].  
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Table 2. List of the calculated SED parameters 
 
No Notation  Definition 
1 QRMS Root mean square error of charges 
2 SPQ Sum of positive charges 
3 SNQ Sum of negative charges  
4 DRMS Root mean square of dipole moments at any Cartesian coordinate 

direction 
5 DTOT Total dipole moment 
6 FRMS Root mean square force that any atom 
7 FMAX Maximum force on molecule 
8 HOMO (A&B) Highest occupied molecular orbital (A and B for alpha & beta population of 

electronic energy) 
9 LUMO (A&B) Lowest Unoccupied molecular orbital (A and B for alpha & beta population 

of electronic energy) 
10 SOF (A&B) Softness orbital (A and B for alpha & beta population of electronic energy) 
11 HD (A&B) Hardness orbital (A and B for alpha & beta population of electronic energy) 
12 EPH (A&B) Electrophilicity orbital (A and B for alpha & beta population of electronic 

energy) 
13 EN (A&B) Electronegativity orbital (A and B for alpha & beta population of electronic 

energy) 
  

2.4 Training of a Kohonen Self-
organizing Map with SED 

 
The Kohonen Self-Organizing Map defines an 
ordered mapping, a kind of projection from a set 
of given data items onto a regular, usually two-
dimensional grid. Kohonen Neural Network 
(KNN) is an unsupervised learning method, that 
revealing similarities between object. A Kohonen 
SOM consist of a grid of  so-called neurons, each 
containing as many elements (weight) as there 
are input variables. Fig. 1 shows the architecture 
of a Kohonen network: each column in this two-
dimensional arrangement represents a neuron; 
each box in such a column represents a weight 
of a neuron. Each neuron has as many (m) 
weights, wji, as there are input data, xi, for the 
object that is being mapped into the network. 
 

Here, the input variables are the 25 SED 
descriptors. During the training, each individual 
substituent is mapped into the neuron, which has 
weights most similar to the descriptors of the 
input object. This is the central neuron, or 
winning neuron. Not only the winning neuron has 
its weights adjusted, but also the neurons in its 
neighborhood. The extent of adjustment 
depends, however, on the topological distance to 
the winning neuron—the closer a neuron is to the 
central neuron the larger is the adjustment of its 
weights. The objects of the training set are 
iteratively fed to the map, the weights corrected, 
and the training is stopped when a pre-defined 
number of cycles are attained. Then, the pattern 
of activated neurons can be considered as a 

fingerprint of the objects and constitute their 
MOLMAP scores. For numerical processing, 
each neuron got a value equal to the number of 
times it was activated by substituents of the 
molecule [21]. Finally; the map is transformed 
into a vector by concentration of columns 
resulting in a fixed length MOLMAP score where 
each scores of each object have a dimension of 
(v×v).  The best value of v was obtained by trial 
and error, and the best results were obtained for 
v =11. It should be noted that output layer 
dimensions (4×4) to (13×13) was also checked 
but the best results was achieved using 
11×11=121. The obtained MOLMAP descriptors 
were then subjected to PLS modeling with a GA 
for variable selection. 
 

2.5 Modeling Procedures 
 
Two different Kohonen maps were implemented 
to obtain QSAR models using SED parameters. 
The first one was the traditional unfolding 
methods, which we used in our previous paper 
on SED parameters. For a set of molecules with 
n common substitution position on the molecular 
basic skeleton, a row vector consist of (25×n) 
columns (each 25 column is related to SEDs of 
one substituent position) was provided for each 
molecules. The descriptor data matrix was then 
constructed by staking the SED row vectors of 
different molecules under each others. 
 
In the second approach, a three-dimensional 
array of SED parameters (molecules on the first 
mode, substituent positions on the second mode



 

Fig. 1. Architure of a Kohonen neural network; The input object X=(x
an n x n arrangement of neurons, j, each having a weight vector W

 

and SED properties of the substituents on the 
last mode), was provided, which was subjected 
to MOLMAP analysis to get a two dimensional  
array of kohonen scores. The MOLMAP scores 
were produced on the basis of Kohonen map 
training. 
 

In both approaches (i.e. unfolding and MOLMAP 
analysis), the Partial least squares (PLS) 
regression was employed to evaluated the 
structure-activity relationships and genetic 
algorithm (GA) was used variable selection. In 
the case of simple unfolding, the input of GA
was a set of (25×n) SED properties, whereas in 
MOLMAP approach the set of 121 Kohonen 
scores (i.e., 11×11 Nodes) were used as input. In 
order to investigate the prediction ability of the 
models, the data set (n = 61) was divided into 
two group: calibration set (n = 48) and prediction 
set (n = 13). Given 48 calibration samples; leave
one out cross-validation procedure was used to 
find the optimum number of latent variables for 
each PLS model. GA produces a population of 
acceptable models in each run. In this work, 
many different GA-PLS runs were conducted 
using different initial set of populations (50
and therefore a large number of acceptable 
models were created.  
 

The linear PLS model finds ‘new variables’ 
(latent variables or X scores) which are linear 
combination of the original variables. To avoid 
over-fitting, a strict test for the significance of 
each consecutive PLS component is necessary 
and then stopping when the components are 
non-significant. Cross validation is a pract
and reliable method of testing this significance
[22]. Application of PLS thus allows the 
construction of larger QSAR equations while still 
avoiding over-fitting and eliminating most 
variables [23,24]. 
 

For Kohonen mapping, the MOLMAP toolbox, 
developed by Milano Chemometrics and QSAR 
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of kohonen scores. The MOLMAP scores 
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In both approaches (i.e. unfolding and MOLMAP 
analysis), the Partial least squares (PLS) 
regression was employed to evaluated the 

and genetic 
algorithm (GA) was used variable selection. In 
the case of simple unfolding, the input of GA-PLS 

) SED properties, whereas in 
MOLMAP approach the set of 121 Kohonen 
scores (i.e., 11×11 Nodes) were used as input. In 

vestigate the prediction ability of the 
models, the data set (n = 61) was divided into 
two group: calibration set (n = 48) and prediction 
set (n = 13). Given 48 calibration samples; leave-

validation procedure was used to 
er of latent variables for 

each PLS model. GA produces a population of 
acceptable models in each run. In this work, 

PLS runs were conducted 
using different initial set of populations (50-250) 
and therefore a large number of acceptable 

The linear PLS model finds ‘new variables’ 
scores) which are linear 

combination of the original variables. To avoid 
fitting, a strict test for the significance of 

each consecutive PLS component is necessary 
and then stopping when the components are 

significant. Cross validation is a practical 
and reliable method of testing this significance  

Application of PLS thus allows the 
construction of larger QSAR equations while still 

fitting and eliminating most 

For Kohonen mapping, the MOLMAP toolbox, 
ped by Milano Chemometrics and QSAR 

research Group, was used [13
regression method used was the NIPALS
algorithm existed in the chemometrics toolbox of 
MATLAB software (version 7.1 Math work Inc.). 
Leave-one-out cross-validation procedure w
used to obtain the optimum number of factors
based on the Haaland and Thomas F
criterion [25]. 
 

3. RESULTS AND DISCUSSION
 

3.1 Simple Unfolding of SED 
 

Then attempts were made to obtain a unified 
QSAR model for a whole set of molecules.
 

A SED data matrix of (5×25) dimension is 
generated for each molecule, and a three
dimensional array of (5×25×61) dimension is 
obtained for 61 molecules. As it is shown in 
Table 1, all the chemical compounds used in this 
study share a similar structural backbone
they are different in the oxidation state of sulfur 
atom. It has oxidation numbers of +2, +4 and +6 
for compounds 1-19, 20-32 and 33
respectively. We added oxidation number as 
126

th
 descriptor. Thus in simple unfolding of SED 

parameters a data matrix has (126×61) 
dimension for 61 molecules.  In PLS analysis, 
descriptors data matrix is decomposed to 
orthogonal matrices with an inner relationship 
between the dependent and independent 
variables. Since redundant variables degrade the 
performance of PLS analysis, similar to other 
regression methods, a variable selection method 
must be employed to find the more convenient 
set of descriptors. Here, GA was used as 
variable selection method.  
 

The most useful GA-PLS model that resulted in 
the best fitness contained 13 descriptors 
including, the PLS estimate of the regression 
coefficients of simple unfolding of SED 
parameters (13 descriptors) are shown in Fig
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Since these constants were calculated based on 
the normalized descriptor values, they can be 
used as a measure of the importance of the 
corresponding descriptor. As it is observed, the 
SED (SNQ2, SOF2, QRMS3, HOMOA3, EN3, 
ENB3, SOFB3, LUMOB4, ENB4, HOMOA5, EN5, 
ENA5 and Oxidation number) parameters 
represent the most significant contribution in the 
obtained QSAR model and all of descriptors are 
molecular orbital energies. 
 
The PLS estimate of the regression coefficients 
are shown in Fig. 2. As it is seen, Oxidation 
number, EN5, ENA5 and HOMOA5 represent the 
most significant contribution in the resulted 
QSAR model followed by the LUMOB4, ENB4 and 
QRMS3. The statistical parameters of the 
resulted PLS-based QSAR model are given in 
Table 3. The resulted GA-PLS model possessed 
high statistical quality r2= 0.81 and q2=0.66. It 
could explain and predict about 66% of variances 
in the anti-HIV1 inhibitory activity of the studied 
molecules. The predictive ability of the model 
was measured by application to 13 external test 
set molecules. The correlation coefficient of 
prediction set is 0.75, which means that the 
resulted QSAR model could predict 75% of 
variances in the inhibitory activity data. To 
measure the significance of the 13 selected PLS 
descriptors in the HIV-1 reverse transcriptase 
activity; variable importance in projection (VIP) 
was calculated for each descriptor.  According to 
Erikson et al., X-variables (predictor variables) 
could be classified according to their relevance in 
explaining y (predicted variable) so that VIP > 1.0 
and VIP < 0.8 mean highly or less influential, 
respectively, and 0.8 < VIP < 1.0 means 
moderately influential [19-20]. The calculated VIP 
values of the selected SED parameters (shown 
in Fig. 2) represent the relative significance of the 
variables in the biological activity. As seen VIP 
shows that HOMO1, HOMOB1, SOFB1 and 
EPHA4 represent the most important indices on 
QSAR equation derived by PLS analysis. In 
addition, ENA1 and HOMOA5 parameter that has 
been found as a highly influential parameter. 

3.2 Analysis of SED Parameters by 
MOLMAP Approach 

 
As noted before, in the case of MOLMAP 
analysis, the SED parameters should be 
arranged in a three-way array in the direction of 
molecules, substitution positions and SED 
parameters. Then, finally, introduce as input of 
Kohonen network to obtain the related scores. 
Here, we investigated different dimensions in the 
range of (4×4) to (13×13) and, in each case, the 
resulting scores were used as input of GA-PLS 
model. Best results were obtained by a (11×11) 
dimension for all data sets. The statistical 
parameters of the resulted PLS-based QSAR 
model are given in Table 3. The PLS estimate of 
the regression coefficients is shown in Fig. 3. 
The distribution of substituents in the resulted 
Kohonen map (11×11) is represented in Fig. 4. In 
the map the numbers denotes the substituent 
numbering shown in Table 1. It should be noted 
that the map contain 121 nodes, which can be 
numbered sequentially from 1 to 121 so that the 
nodes of the first row are numbered as N1-N11, 
those of second row as N12-N21 and so on. The 
map shows a relatively random distribution of 
substituents. The scores of this map (121 
variables) were used as input of PLS regression. 
The relative importance of selected neurons for 
GA-PLS model is shown in Fig. 4. The resulted 
GA-PLS model possessed high statistical quality 
r
2
= 0.83 and q

2
=0.70. It could explain and predict 

about 70% of variances in the anti-HIV1 
inhibitory activity of the studied molecules. The 
predictive ability of the model was measured by 
application to 13 external test set molecules. The 
correlation coefficient of prediction set is 0.80, 
which means that the resulted QSAR model 
could predict 80% of variances in the inhibitory 
activity data and standard error of prediction was 
0.57. It is clearly observed that the calibration 
correlation coefficients, correlation coefficients of 
cross validation and prediction obtained from 
Kohonen mapping are already higher than those 
obtained from simple unfolding of SED 
parameters. 
 

 

Table 3. GA-PLS based QSAR models obtained by simple unfolding of SED parameters and by 
MOLMAP approach 

 
Model r2

ca q2b RMSECV
c r2

P
d 

Simple unfolding  0.81 0.66 0.57 0.75 
MOLMAP approach 0.83 0.70 0.57 0.80 

a r
2

c = Regression coefficient for calibration set, b q
2
  = Cross- validation correlation coefficient 

c RMSEP = Root mean square error for calibration set,  
d r

2
p = Regression coefficient for prediction set 
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Fig. 2. PLS regression coefficients and the VIP values for the selected simple unfolding of SED 
parameters used in GA-PLS model 
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Fig. 3. PLS regression coefficients and the VIP values for the selected Kohonen scores of the 
above map by GA-PLS used in GA-PLS model  

 

 
 

Fig. 4. Kohonen map where input is arranged in the direction of substituents 
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shows that HOMO1, HOMOB1, SOFB1 and 
EPHA4 represent the most important indices on 
QSAR equation derived by PLS analysis. 
 
The resulted GA-PLS model of MOLMAP 
approach possessed high statistical quality r2= 
0.83 and q2=0.70. It could explain and predict 
about 70% of variances in the anti-HIV1 
inhibitory activity of the studied molecules. Thus 
MOLMAP analysis of SED parameters shows 
more accurate results than those obtain from 
simple unfolding SED parameters.   
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