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Neuronal and behavioral
affective perceptions of human
and naturalness-reduced
emotional prosodies
Mathilde Marie Duville*, Luz María Alonso-Valerdi† and
David I. Ibarra-Zarate†

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, NL, Mexico

Artificial voices are nowadays embedded into our daily lives with latest neural

voices approaching human voice consistency (naturalness). Nevertheless,

behavioral, and neuronal correlates of the perception of less naturalistic

emotional prosodies are still misunderstood. In this study, we explored the

acoustic tendencies that define naturalness from human to synthesized

voices. Then, we created naturalness-reduced emotional utterances by

acoustic editions of human voices. Finally, we used Event-Related Potentials

(ERP) to assess the time dynamics of emotional integration when listening to

both human and synthesized voices in a healthy adult sample. Additionally,

listeners rated their perceptions for valence, arousal, discrete emotions,

naturalness, and intelligibility. Synthesized voices were characterized by

less lexical stress (i.e., reduced difference between stressed and unstressed

syllables within words) as regards duration and median pitch modulations.

Besides, spectral content was attenuated toward lower F2 and F3 frequencies

and lower intensities for harmonics 1 and 4. Both psychometric and

neuronal correlates were sensitive to naturalness reduction. (1) Naturalness

and intelligibility ratings dropped with emotional utterances synthetization,

(2) Discrete emotion recognition was impaired as naturalness declined,

consistent with P200 and Late Positive Potentials (LPP) being less sensitive

to emotional differentiation at lower naturalness, and (3) Relative P200

and LPP amplitudes between prosodies were modulated by synthetization.

Nevertheless, (4) Valence and arousal perceptions were preserved at lower

naturalness, (5) Valence (arousal) ratings correlated negatively (positively)

with Higuchi’s fractal dimension extracted on neuronal data under all

naturalness perturbations, (6) Inter-Trial Phase Coherence (ITPC) and standard

deviation measurements revealed high inter-individual heterogeneity for

emotion perception that is still preserved as naturalness reduces. Notably,

partial between-participant synchrony (low ITPC), along with high amplitude

dispersion on ERPs at both early and late stages emphasized miscellaneous

emotional responses among subjects. In this study, we highlighted for the

first time both behavioral and neuronal basis of emotional perception under
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acoustic naturalness alterations. Partial dependencies between ecological

relevance and emotion understanding outlined the modulation but not the

annihilation of emotional integration by synthetization.

KEYWORDS

electroencephalography (EEG), single-trial event-related potential (ERP), affective
prosody, emotions, naturalness, valence, arousal, synthesized speech

Introduction

The last two decades have seen a steady growth in the
development of artificial voices with the integration of smart
speakers into entertainment, health care, education, marketing,
and social sectors. Conversely, healthy populations still perceive
synthesized voices as less trustworthy, less pleasant, less likeable
and more eerie than human voices (Baird et al., 2018; Kühne
et al., 2020). Besides, people tend to be more attentive, engaged,
and emotionally responsive, as well as better at retaining
information when they interact with human voices (Rodero and
Lucas, 2021).

Successful steps were made by roboticists for synthesized
speech to acquire clarity (intelligibility) and consistency
(naturalness). From concatenative methods such as Pitch
Synchronous Overlap-Add (PSOLA) with standard voices,
up to Statistical Parametric Speech Synthesis creating neural
voices (Ning et al., 2019), the latest synthesized voices (neural
voices) have acquired intelligibility close to human voices, but
progress still needs to be done to enhance naturalness. When
listening to natural speech, the auditory system must encode
acoustic information into a biological electric signaling to
reach sensorial and cognitive functions necessary for optimized
interactions. The efficient neural coding theoretical framework
specifies that mammalian perceptual systems evolved to encode
environmental stimuli in the most efficient way to promote
organisms survival (Zhou and Yu, 2018). It was defined as
the minimization of neuronal spikes to transmit information
with the highest fidelity at the lowest cost (Zhou and Yu,
2018; Gervain and Geffen, 2019). This way, the auditory system
is optimized to integrate spectro-temporal acoustic features
and amplitude modulations of naturalistic sounds (Gervain
and Geffen, 2019). Therefore, human beings process sounds
of ecological relevance, such as human speech, with particular
efficiency because of phylogenetic adaptations of sensorial
and cognitive systems (Gervain et al., 2016). In sum, the
neural specialization of the human brain to process speech is
underlined by acoustic properties that are perceived as voice
naturalness (i.e., speech intrinsic property to be recognized as
a social ecological sound).

Formants (F1, F2, . . ., Fn), harmonics, and lexical stress
patterns were defined to shape voice naturalness. Lexical

stress awareness, known as the ability to discern the relative
prominence of specific syllables within words, requires the
efficient recognition of time and intensity-related acoustic
cues that support word isolation, speech understanding
(Gutiérrez-Palma et al., 2016) and naturalistic perception
of language-specific speech (Schwab and Dellwo, 2017).
Speech shows statistical properties of both environmental
sounds (consonants) and harmonic vocalizations (vowels),
which triggers transient statistical variations of amplitude and
spectral structures (Gervain and Geffen, 2019). The neuronal
responsivity matches statistical patterns of natural stimuli (e.g.,
topographic mapping, frequency tuning) (Amin et al., 2013;
Zhao et al., 2019), therefore deviations of synthetic voices
away from naturalistic statistical models of speech may in
part explain the perception of naturalness reduction. Formant
frequencies contribute to speech naturalness perception and
are particularly useful cues for vowel discrimination, sound
subjective preferences and gender attribution (Vos et al., 2018;
Zhao et al., 2019; Hardy et al., 2020). Formants, speech
rate, and median pitch act together as acoustic cues that
help gender naturalistic discrimination in voice. A previous
work highlighted that maximum, minimum, and mean pitch
frequencies explained 71.2% of the variance for gender
recognition in voice, and average frequency over F1, F2, and
F3 was a significant predictor of both gender attribution, and
naturalness perception (Hardy et al., 2020). Those findings
emphasize the complex correlations between the acoustic
content and the perception of speech waveforms.

Emotional prosodies are embedded into social ecological
representations of speech and key acoustic patterns may serve
as predictors for emotional recognition (Aldeneh and Mower
Provost, 2021). For instance, Spanish men express joy with
higher pitch, speech rate, loudness, and lower harmonics-
to-noise ratio than sadness. Mexican children express fear
with higher speech rate, pitch, and higher loudness and
pitch fluctuations than happiness, while Mexican adult females
utter happiness with higher pitch and higher F3 frequency
than fear (Duville et al., 2021a). Female Chinese adults
tend to express boredom by higher pitch and loudness
fluctuations than exuberance (Huang et al., 2021). Although
recent advances highlighted the inclusion of emotional prosodic
patterns to last created synthesized voices (Xue et al., 2018;
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Schuller and Schuller, 2021), while most current text-to-speech
systems only offer basic prosodic adjustments such as pitch,
loudness, and speech rate (e.g., IBM R© Watson,1 Microsoft R©

Azure2). The oversimplification of prosodic acoustic patterns
may trigger slighter emotional responses and naturalistic
perceptions than human voices.

Emotional text-to-speech synthesis still needs significant
progress for human listeners to be able to correctly categorize
emotions (Liu et al., 2021). For now, no text-to-speech service
provides discrete emotional categorizations of the synthesized
voices they offered. Therefore, we propose to explore the
acoustic tendencies of neutral utterances over human, neural,
and standard voices to highlight deviations of synthesized voices
from the statistical structure of natural speech. Then, we reduced
naturalness out of emotional utterances by acoustic edition
following tendencies previously highlighted, while conserving
emotional prosody. Finally, we assessed behavioral (by using
psychometric scales) and neurophysiological perceptions of
both human and naturalness-reduced utterances in a healthy
adult sample.

The brain’s electrical currents can be recorded over the
scalp by electroencephalography (EEG), which is particularly
suitable for the inspection of dynamic cortical processes with
high temporal resolution. Sensorial and cognitive encodings of
emotional prosody may be modeled in three stages through
which the listener integrates the acoustic characteristics and the
meaning of utterances (Schirmer and Kotz, 2006). Initially, a
basic sensory encoding of physical properties (e.g., pitch and
loudness) occurs around 100 ms after stimulus onset with a
negative peak. N100 modulation by emotionality is controversial
and rarely observed for emotional speech processing (Pell
et al., 2015; Paulmann and Uskul, 2017) for no modulation
observed, and (Pinheiro et al., 2015) for higher negativity
for happiness vs. anger. Sensorial analyses are followed by
salience appraisal in which emotional cues are integrated. P200,
peaking 150–250 ms after stimulus onset over frontal and
central electrodes reflects early emotional detection based on
relevant acoustic features. Its amplitude is potentiated with
salience and motivational significance. Early differentiation
of prosodies occurs and the speaker’s arousal (i.e., calm vs.
excited) starts to be noticed (Paulmann et al., 2013). Third stage
emotional prosody processing is characterized by higher-order
cognitive processes for evaluation, interpretation, contextual
relevance, mental and memory representations. It is linked to
the Late Positive Complex that covers long-lasting Late Positive
Potentials (LPP) between 400 and 1,000 ms after stimulus
onset over central and parietal cortices. Higher amplitudes

1 https://cloud.ibm.com/docs/text-to-speech?topic=text-to-
speech-gettingStarted

2 https://azure.microsoft.com/en-us/services/cognitive-services/
text-to-speech/#overview

refer to more persevering and sustained monitoring of affective
information (Pell and Kotz, 2021).

Emotional encoding of prosodies may be further
characterized by the geometric complexity of EEG signal
temporal sequences. Fractal dimension is a measure of self-
similarity that assumes neither linearity nor stationarity in
brain signals. The computation of Higuchi’s Fractal Dimension
(HFD) associated with emotional information perception allows
the differentiation of discrete emotions processing (Ruiz-Padial
and Ibáñez-Molina, 2018; Zheng et al., 2021).

An extensive work has been done to detangle the human
processing of emotional natural speech, but no research has
examined the emotional perception induced by less ecological
(i.e., synthesized) voices. Thus, the present investigation was
engineered to investigate the encoding of emotional information
triggered by human and naturalness-reduced utterances. This
study is a step further to the understanding of the cognitive
processing of non-human voices.

We schedule to highlight temporal and spectral acoustic
deviations from natural speech to synthesized utterances. By
further editing them from natural emotional speech, we expect
to approximate the reduced naturalness of synthesized voices
onto controlled affective stimuli that will be used to assess
neuronal and behavioral perceptions of emotions embedded
into synthesized speech. We anticipate lower naturalness ratings
for the newly created naturalness-reduced voices. Furthermore,
if the naturalistic quality of speech, that is, the ecological
perception, interferes with emotional apprehensions, then we
predict poorer emotional recognition as naturalness reduces. It
would be highlighted at a behavioral level by incorrect emotion
recognition, and at neuronal level by atypical P200 and LPP
amplitude differentiations between prosodies. This is the first
study to investigate the electroencephalographic time-course of
emotion perception conveyed by synthesized voices, therefore
no hypothesis about the direction of P200 an LPP modulation
by synthetization could be formulated beforehand.

Materials and methods

Figure 1 summarizes the overall methodological sequence
for acoustic definition of naturalness and creation of
naturalness-reduced emotional voices (Experiment 1), and
assessment of emotions and naturalness perceptions by EEG
and psychometric scales (Experiment 2).

Experiment 1: Naturalness reduction of
emotional prosodies

Figure 2 summarizes the methodological framework for
defining speech naturalness (A) and creating naturalness-
reduced emotional and neutral utterances (B).
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FIGURE 1

Methodological framework for experiments 1 and 2. We aimed to explore acoustic cues of voice naturalness and create naturalness-reduced
synthesized versions of emotional and neutral utterances. Finally, we assessed behavioral and EEG correlates of emotional perception conveyed
by both human and naturalness-reduced voices. MESD, Mexican Emotional Speech Database; ERPs, Event-Related Potentials; EEG,
Electroencephalography.

Acoustic definition of speech naturalness
Acquisition of human, neural and standard voices

The 24 adult female neutral utterances from the Mexican
Emotional Speech Database (MESD) corpus B (Duville et al.,
2021a,b) were used for human voices. Synthesized voices (least
natural) were acquired by entering the corresponding words
in the IBM R© Watson text-to-speech service using standard (es-
US_SofiaVoice) and neural (es-US_SofiaV3Voice) versions of
the female Spanish North American voice Sofia. The Audio
Toolbox3 from Matlab R2019b was used to interlink with the
cloud-based Application Programming Interface. Wav format
audio files were written as a sequence of 24-bit with a sample
rate of 48,000 Hz.

Acoustic features extraction

First, we were interested in exploring lexical stress
patterns. EasyAlign Toolkit from Praat (Goldman, 2011;
Boersma and Weenink, 2020) was used to perform phonetic
segmentation based on the Hidden Markov Model Praat

3 https://www.mathworks.com/products/audio.html

Toolkit. Individual TextGrid files were generated for each word
and contained phone, syllable, and word tiers resulting from
macro-segmentation, grapheme-to-phoneme conversions, and
phone segmentation. As EasyAlign is a semi-automatic system,
each step was monitored, and manual adjustments were made
when necessary. Syllabic units were then extracted and stored
in individual wav files as a sequence of 24-bit with a sample
rate of 48,000 Hz. Praat was used to extract median pitch,
duration, and intensity on stressed and unstressed syllables
for lexical patterns analysis. The unstressed syllables of each
word were concatenated for mean intensity (dB) and median
pitch (Hz) measurements, and mean duration (seconds) of
unstressed syllables was considered. Pitch detection was based
on the algorithm described by Boersma (1993) which relied
on periodicity detection in the autocorrelation domain. Median
pitch was measured in Hertz and defined as the 50% quantile.
Time step was set at 100 pitch values per second, pitch floor was
set at 100 Hz and pitch ceiling at 600 Hz.

Second, prosodic, voice quality, and spectral tendencies
were analyzed on entire utterances. Praat was used to extract
mean intensity, jitter local, jitter ppq5, shimmer local, shimmer
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FIGURE 2

Methodological framework for (A) acoustic definition of speech naturalness, and (B) creation of naturalness-reduced emotional and neutral
utterances. MESD, Mexican Emotional Speech Database; HNR, Mean harmonics-to-noise ratio. F1, F2, and F3: Formants 1, 2 and 3, H1∗ and H4∗:
Intensity of harmonics 1 and 2, corrected for formant bias.

ppq5, mean harmonics-to-noise ratio (HNR), and F1 to F3
frequencies. A description of those features is detailed in
Supplementary File 1 (Supplementary Table 1) (Liu et al., 2018;
Akçay and Oğuz, 2020; Singh et al., 2021). Before extracting
mean intensity, the amplitude of acoustic waveforms was
rescaled between−1 and 1, following Equation (1).

Xnormalized =
x

max [absj(X)]
(1)

where x is the value to be normalized, and max [absj(X)] is the
highest value of the absolute waveform.

Thereafter, Matlab R2019b was used to compute the
intensity of the 1st (fundamental frequency F0), 2nd, 3rd,
and 4th harmonics (H1, H2, H3, and H4) on normalized
acoustic waveforms. First, the Power Spectral Density (PSD)
was estimated by computing a modified periodogram with a
Hamming window. The number of discrete Fourier Transform
(DFT) points was determined by Equation (2).

Number of DFT points = 2n (2)

where n is the nearest decimal integer of
log2 (waveform number of samples).

Then, intensities expressed in dB were corrected for formant
bias, according to the formula correction proposed by Iseli
and Alwan (2004) and described in Supplementary File 1
(Supplementary Table 1). Specifically, H1, H2, H3, and H4

were corrected for the effect of formants 1 and 2. Corrected
harmonics are named H1∗, H2∗, H3∗, and H4∗.

Statistical analysis

Statistical analysis was performed with R software (R
Foundation for Statistical Computing, Vienna, Austria). Level
of significance was set at p < 0.05.

For lexical stress patterns analysis, differences between
stressed and unstressed syllables were computed (stressed
minus unstressed). A one-way repeated measures ANOVA with
type of voice as factor (human, standard, and neural) was
conducted on the difference variable for each acoustic feature
independently. Mauchly’s test of sphericity was used to evaluate
homogeneity of variances and co-variances. In case of violation
of sphericity, a Greenhouse-Geisser correction was conducted.
Normality of residuals was assessed with Shapiro-Wilk test. In
case of non-normal distribution, Friedman test was used. Post-
hoc comparisons were conducted to assess specific differences
(Tukey after ANOVA, Conover with p-value adjustment by
Holm method after Friedman).

Then, adult female emotional and neutral utterances (anger,
disgust, fear, happiness, neutral, and sadness) from the MESD
corpus B were used to explore tendencies from unstressed to
stressed syllables in the human emotional voice. The 24 available
utterances were used for every emotion. Paired t-tests were
conducted on each acoustic feature separately. Normality of
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differences was assessed with Shapiro-Wilk test. In case of non-
parametric distribution, paired Wilcoxon tests were applied.

Finally, to explore the effect of synthetization on entire
utterances, values from each acoustic feature were rescaled
between 0 and 1 to reduce inter-individual biases according to
the min-max normalization as described in Equation (3).

xnormalized =
x−mink

maxk−mink
(3)

where x is the value to be normalized, maxk is the highest value
of acoustic feature k and mink is the lowest value of k.

A one-way repeated measures ANOVA with type of voice
as factor was conducted on normalized values of each acoustic
feature separately. Mauchly’s test of sphericity was used to
evaluate homogeneity of variances and co-variances. In case
of violation of sphericity, a Greenhouse-Geisser correction was
conducted. Normality of residuals was assessed with Shapiro-
Wilk test. In case of non-normal distribution, Friedman test
was used. Post hoc comparisons were conducted to assess
specific differences (Tukey after ANOVA, Conover with p-value
adjustment by Holm method after Friedman).

Naturalness-reduced emotional voices
creation
Acoustic edition of human voice

Naturalness was progressively reduced from human voice to
level 2, creating three levels of naturalness under study (human,
level 1, and level 2). Acoustic features that were previously
highlighted to gradually increase or decrease from human to
neural to standard voices were edited from MESD utterances.
The 24 utterances per emotion originally present in MESD were
considered in every level. To avoid a perfect linear correlational
fit between levels and to guarantee the reliability of further
statistical analysis of variances (McDonald, 2014), the degree of
naturalness varied within single levels and reduction was non-
equidistant across levels, leading to 38% (SD = 15%) and 74%
(SD = 18%) reduction for levels 1 and 2, respectively, based on
the human voice.

Duration and median pitch were edited on stressed syllables
to reduce the difference between stressed and unstressed
syllables. The Vocal Toolkit from Praat software4 was used to
apply the time domain PSOLA method. Particularly, speech
fragments from stressed syllables were windowed by a Hanning

4 http://www.praatvocaltoolkit.com/

window centered at pitch periods with 50% overlapping. Pitch
and duration were either decreased or increased to reduce
the difference from unstressed syllables. Pitch decrease was
reached by reducing window overlap length, triggering longer
periods and lowering F0. The opposite (i.e., increasing overlap
length) was done to increase pitch. Duration decrease was
reached by cutting windowed segments out of the acoustic
waveform, whereas duration increase involved the duplication
of windowed segments (Moulines and Charpentier, 1990). This
technique did not alter other parameters than F0 and duration
as it simply copied or cut segments from the original signal, so
that vocal tract filter properties stayed intact.

Then, Matlab R2019b was used to concatenate the edited
stressed and the unstressed syllables to recompute individual
words. As abrupt variations of pitch and duration can cause
the psychoacoustic perception of an additional sound coming
from a new source (i.e., the superposition of an external sound
on the voice) (Moore, 2007), speech segments were cross-faded
over a 10 ms window. Namely, the cross-faced window included
the last 5 ms of the first syllable, and first 5 ms of the second
syllable. The fading curves were generated by a linearly spaced
vector from 0 to 1 (fade in) or 1 to 0 (fade out), for which the
spacing between the points followed the mathematical formula
described in Equation (4). This procedure ensured a smoothed
transition between edited and unedited syllables.

x2−x1

n−1
(4)

where x2 was set to 0 in case of fade in and 1 in case of fade out,
x1 was set to 1 in case of fade in, and 0 in case of fade out, and n
was equal to the number of samples of the segment to be faded.

At that point, the Vocal Toolkit from Praat was used to edit
F2 and F3 frequencies of concatenated speech utterances from
levels 1 and 2 as defined in Table 1. Specifically, the hierarchy
between resonance frequencies had to be preserved, so that
F1 was lower than F2, which was lower than F3. As a result,
level 1 was characterized by a 12% reduction with 7% standard
deviation, and level 2 by a 41% reduction with a standard
deviation of 7%.

Then, the Audio Toolbox from Matlab R2019b was used
to perform multiband parametric equalization to reduce the
intensity of harmonics 1 and 4. Harmonics intensity and
center frequencies were calculated by computing the PSD.
The bandwidths that defined the equalizer were the harmonics
bandwidths. They were computed as the distance between the
points where the descending signal intercepted a horizontal

TABLE 1 Ratios between formants for human voice, level 1, and level 2.

F2/F1 human F3/F1 human F2/F1 level 1 F3/ F1 level 1 F2/F1 level 2 F3/F1 level 2

Mean 2.8 5.1 2.5 4.4 1.7 3.0

SD 0.7 0.8 0.7 0.8 0.5 0.6

Note that non-equidistant ratios between levels were defined to avoid a perfect linear correlational fit and guarantee the reliability of further statistical analysis of variances.
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reference line positioned beneath the peak at a vertical distance
equal to half the peak prominence.

Statistical analysis

At each edition step, paired t-tests were conducted to
compare adjusted acoustic parameters with those theoretically
expected. Normality of differences was assessed with Shapiro-
Wilk test. In case of non-parametric distribution, paired
Wilcoxon tests were applied.

After all editions were made, acoustic waveforms from
emotional and neutral utterances of human voice, level 1 and
2 were rescaled between −1 and 1 according to Equation (1),
and levels comparisons were conducted. A one-way repeated
measures ANOVA with naturalness as factor was applied
on each acoustic feature independently (F2, F3, H1∗, H4∗,
difference variable for median pitch and duration for lexical
stress). Mauchly’s test of sphericity was used to evaluate
homogeneity of variances and co-variances. In case of violation
of sphericity, a Greenhouse-Geisser correction was conducted.
Normality of residuals was assessed with Shapiro-Wilk test. In
case of non-normal distribution, Friedman test was used. Post-
hoc comparisons were conducted to assess specific differences
(Tukey after ANOVA, Conover with p-value adjustment by
Holm method after Friedman).

Experiment 2:
Electroencephalographic response to
human and naturalness-reduced
voices

Participants
37 healthy adults were recruited for this study [16 females,

mean age; SD; range = 25.81; 4.33; (19–35)]. Participants
had no history of language, cognitive, hearing, psychiatric, or
psychologic pathology. They all had normal or corrected-to-
normal vision. No participant was under medication affecting
central or peripheral nervous system at the time of the study.
All participants were Mexican, currently living in Mexico, with
Spanish as their mother-tongue, brought up in Mexican families
and with a Mexican academic education.

Experimental procedure
Auditory stimuli were the 432 single-word emotional

utterances, corresponding to 144 utterances per level of
naturalness (i.e., 24 utterances per emotion in each level
of naturalness previously created). Stimuli were displayed at
60 dB via the Shure SRH1840 audio headset that has a flat
frequency response to accurately reproduce the input audio
signal. Participants were seated comfortably in an armchair in
front of a computer screen while their EEG activity was recorded
as can be seen in Figure 3A.

Instructions were explained both verbally and in writing
on the computer screen, and participants were told to ask all
questions needed before starting the session. At the beginning
of the experiment, participants were asked to relax for 60 s, and
get prepared to focus on the task.

As illustrated in Figure 3B, stimuli were presented by
blocks of 24 words, corresponding to one level of naturalness
and one emotion. In each block, stimuli were presented
consecutively with a 3.11 s stimulus-onset asynchrony. The
stimulus sequence for each block and the order of blocks
were randomized. After each block, participants were asked
to evaluate naturalness, intelligibility, valence, arousal, and
qualitative emotion. The Mean Opinion Score was used to score
naturalness and intelligibility using a 5-point scale (respectively:
1 = unnatural/artificial, 5 = natural/human, and 1 = not much
easy to understand, 5 = easy to understand) (Viswanathan
and Viswanathan, 2005; Tamura et al., 2015; Ramu Reddy and
Sreenivasa Rao, 2016). Valence and arousal were scored using
the Self-Assessment Manikin Scales (Bradley and Lang, 1994;
Gatti et al., 2018). Qualitative emotions were evaluated by
choosing between anger, disgust, fear, happiness, neutral, and
sadness. Each scale was illustrated by icons to facilitate the
understanding and process. Icons for qualitative emotions were
the same as in Gao et al. (2014). The positions of scales on the
screen were randomly distributed and counterbalanced between
participants. Participants were given 20 s to rate all dimensions.
The graphical user interface provided to the participant and
the sequence of the task is illustrated in Figure 3B. PsychoPy3
(3.2.4) (Peirce et al., 2019, p. 2) was used to generate the
graphical user interface and gather the subjective ratings.
OpenVibe (1.3.0) (Renard et al., 2010) was used to design the
auditory paradigm and register EEG recordings.

Event-related potentials recording and
processing

Continuous EEG data was acquired from a 32-channel
EEG amplifier system (gUSBamp, gTec) with Ag/AgCl scalp
electrodes placed according to the international 10–20 system
on GAMMAcap3 headset and a 256 Hz sampling rate.
Electrodes included: Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8, FC5,
FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3,
Pz, P4, P8, PO7, PO3, PO4, PO8, Oz. During online recording,
AFz was used as ground, and data was referenced to the left
earlobe. Electrode impedance was kept below 5 k�. Figure 4
summarizes EEG data pre-processing, processing, and statistical
analysis.

EEGLab toolbox version 2021.0 from Matlab was used to
pre-process and process the data. High variance spontaneous
artifacts were removed by the Artifact Subspace Reconstruction
algorithm (Chang et al., 2020). Bad channels were depicted as
(1) having a flatline longer than 5 s, or (2) presenting more
line noise relative to its signal than 4 standard deviations based
on the total channel population, or (3) channels which joint
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FIGURE 3

Experimental set-up. Experimental conditions are presented in (A), and the task timeline in (B). “naturalidad (sp)” is naturalness (en),
“inteligibilidad” is intelligibility, “valencia” is valence, “alerta” is arousal, “enojo” is anger, “disgusto” is disgust, “felicidad” is happiness, “tristeza” is
sadness, “neutro” is neutral.

FIGURE 4

Methodological framework for single-trial Event-Related Potentials: (A) pre-processing, (B) processing and statistical analysis. ICA, Independent
Components Analysis; ERPs, Event-Related Potentials; LDA, Linear Discriminant Analysis; HFD, Higuchi’s fractal dimension; ITPC, Inter-Trial
Phase Coherence; SD, Standard Deviation.
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log probability fell more than 5 standard deviations from the
mean of the probability density function of the whole channel
population (Delorme et al., 2007); and were then interpolated
by the superfast spherical spline interpolation method (m = 4,
n = 7) (Perrin et al., 1989). In average, 1.8 out of 32 channels were
interpolated. The signal was then decomposed into Independent
Components (extended Infomax ICA), and constant fixed-
sourced artifacts were rejected using the Wavelet-ICA algorithm
(Yasoda et al., 2020). Finally, data were re-referenced using the
Reference Electrode Standardization Technique (Dong et al.,
2017).

EEG data were epoched over a 1.5 s time window (500 ms
baseline, 1 s post-stimulus), and epochs were baseline-corrected
(subtraction of base vector mean) using the (−500 to 200) time
range. The Linear Discriminant Analysis (LDA) Beamformer
method was used to extract single-trial ERPs (Treder et al.,
2016). Single-trial ERPs were extracted to be able to highlight
inter-individual differences as regards emotional processing.
Therefore, for each subject, LDA beamformers were divided into
P200, early and late LPPs. After visual inspection, the spatial
patterns were estimated as the average amplitude over trials
in time windows (150–250), (400–700), and (700–1,000 ms),
respectively. The covariance matrix was calculated on the full
dataset. The regularization parameter γ was set at 0.5.

Inter-Trial Phase Coherence (ITPC) was computed in the
2.2–30 Hz frequency range using Morlet wavelets expanding
from 1 cycle at 2.2 Hz to 2.8 cycles at 30 Hz. It was
computed for each subject over trials (inter-word variability),
and for each trial over subjects (inter-individual variability).
Data were divided into sampling bins of 200 time points
from −200 to 1,000 ms and 52 linear-spaced frequencies.
The frequency analysis was oversampled with a pad ratio of
4. The bootstrap level to identify significant phase coherence
relative to baseline (−500 to 200 ms) was set at p < 0.01. The
False Discovery Rate method was implemented to correct for
multiple comparisons.

Higuchi’s fractal dimension (HFD) was computed on single-
trial ERPs for P200, early LPP, late LPP, and (−200, 1,000 ms)
time windows separately (Selvam, 2022). HFD depends on
a unique free parameter (kmax) which is the maximum
precision or time scales to explore in the computation of fractal
dimensionality. kmax is defined between 1 and half the number
of samples of the data. HFD values increase with increasing
kmax until reaching a plateau, so that the parameter is selected
when HFD reaches its stationary value (Di Ieva, 2016).

Statistical analysis
We estimated a minimum sample size of 13 by an a priori

power analysis for a cluster-based permutation model with four
predictors: means and standard deviation for each condition
[(4, 2, 3, 4, 1, 3) and 3, respectively], a minimum correlation
between paired samples of 0.5, and a power of 0.9 to detect an
emotion effect on single-trial ERPs for a within-subject design.

The same methodology was followed for synthetization effect
[mean: (6, 4, 3), SD: 3]. We followed the method and Matlab
script used by Wang and Zhang (2021). Therefore, 24 utterances
per emotion provided by the MESD were enough for reliable
statistical analysis.

Cluster-based permutation tests were implemented to
explore emotion and synthetization effects on ERP amplitude
for each subject separately using Fieldtrip Toolbox (Oostenveld
et al., 2011). Neurophysiological effects have spatiotemporal
dimensionalities that can be used to maximize statistical
sensitivity and this non-parametric approach provides
information about both spatial and temporal extents of
the effect, while controlling the family-wise error rate.
Conditions were compared at every sample (channel × time)
by means of univariate repeated measures ANOVA on a (0,
1,000 ms) time window. Samples were clustered based on
spatial and temporal neighboring whose F-value was larger
than a critical threshold (p < 0.05). Clusters were formed
by two or more neighboring sensors. Then, cluster-level
statistics were computed by the sum of F-values within every
cluster. The maximum of cluster-level statistics was taken.
To evaluate cluster-based statistics, spatiotemporal clustering
was combined with non-parametric permutation analysis,
with 1,000 random shuffling across conditions under the null
hypothesis of data exchangeability. For each permutation,
cluster-based statistics were calculated, and a distribution was
built. The proportion of random partitions that resulted in
a larger test statistic than the observed one was the p-value
that was used to assess the effect. The Monte-Carlo estimate
was used. When comparisons from ANOVA were significant,
post-hoc analysis were performed by means of non-parametric
cluster-based permutation dependent samples t-tests between
each emotion. P-values for significance were adjusted for
two-sided tests (p < 0.025).

Inter-individual and inter-trial dispersion of ERPs
amplitude were measured by standard deviations for each
subject over trials, and for each trial over subjects after rescaling
the data between 0 and 1 using min-max normalization as
described in Equation (3). Data rescaling was used to reduce
inter-individual and inter-trial scale biases.

Then, linear effects of valence or arousal ratings on
HFD extracted on P200, early LPP, late LPP, and the
whole (−200, 1,000 ms) window were assessed by simple
linear regression analysis. Nevertheless, residuals distribution
of linear regression models outlined linearity default. Thus,
non-parametric statistics were used to investigate monotonic
dependencies. Correlations between HFD and behavioral
responses were assessed by Spearman’s method and ρ and
p-values were computed. Smoothing splines analysis were
implemented to fit a regression model between the two
variables. The smoothing parameter was optimized by means
of leave-one-out cross-validation to minimize the Root-Mean-
Squared Error (RMSE).
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From behavioral responses, confusion matrices were
computed to evaluate the qualitative emotion recognition
performance for each level of voice naturalness separately.
One-way repeated measures ANOVAs were performed to
assess the emotion effect on valence and arousal ratings
and the naturalness reduction effect on naturalness and
intelligibility perceptions. Shapiro-Wilk and Mauchly’s tests
were used to test for normality of residuals and sphericity,
respectively. Post hoc comparisons were evaluated by the Tukey
procedure. No violation of sphericity was highlighted. In case
of non-parametricity, Friedman test was used and post hoc
comparisons were assessed by Conover test with p-values
adjustment by Holm method.

Results

Experiment 1

Acoustic signature of voice naturalness
Significant trends from human to neural to standard voices

are detailed in Figure 5. Note that the less natural, the least
emphasized the lexical stress was as regards median pitch and
duration (A, B). Besides, F2 and F3 frequencies were severely
reduced (C, D), thus moving toward F1. Finally, harmonics 1
and 4 were soften by synthetization, and lower intensities were
emphasized (E, F).

Besides, lexical stress tendencies were highlighted for every
prosody (stressed vs. unstressed syllables of human voices
utterances). Stress was significant for both duration [anger∗∗∗:
t(23) = 6.72, disgust∗∗∗: t(23) = 4.67, fear∗∗∗: t(23) = 5.21,
happiness∗∗: t(23) = 3.29, neutral∗∗∗: V = 293, and sadness∗∗∗:
t(23) = 5.82], and median pitch [anger∗∗∗: V = 275, disgust∗∗:
V = 43, happiness∗∗ : t(23) = 3.12, and neutral∗∗: V = 251],
where “∗∗” p < 0.01, “∗∗∗” p < 0.001, V is the test statistic when
Wilcoxon test was used.

Particularly, stressed syllables were longer and higher-
pitched than unstressed syllables, except for unstressed syllables
for disgust prosody which were higher-pitched than stressed
syllables. Note that stressed and unstressed syllables of fear and
sadness utterances did not differ as regards median pitch which
therefore was not further edited.

Naturalness-reduced voices: Acoustic insight
from emotional utterances

Human voice, and newly created levels 1 and 2
differed as regards lexical stress (duration and median
pitch) and spectral features (F2, F3, H1∗, and H4∗). No
significant difference between expected and observed
values was highlighted for any of the edited acoustic
parameters of both levels 1 and 2. See Supplementary
File 1 (Supplementary Figures 1–6) for detailed general
and post hoc statistical effects of naturalness reduction on

emotional prosodies, and details about mean and standard
deviations for each feature across levels. Particularly,
the effect of naturalness was significant for all features
measured on utterances from the six prosodies with a
progressive reduction from human voice to level 1 to level 2
(p < 0.001; except for median pitch on happiness and neutral
utterances: p < 0.01).

Experiment 2

Event-related potentials: Emotional
recognition

A significant emotion effect was observed on 21 subjects for
the human voice, 17 for level 1, and 21 for level 2 (p < 0.05).
Besides, a significant synthetization effect was highlighted on 13
subjects for anger, 14 for disgust, 12 for fear, 10 for happiness, 14
for neutral, and 13 for sadness (p < 0.05). Supplementary File 2
provides topography, time, sum(F), and p-values of significant
clusters after non-parametric ANOVA for every subject for both
emotion and synthetization effects.

Emotion and synthetization effects were observed with the
same topography for all time windows (P200, early and late
LPPs) over frontal (F3, Fz, F4), fronto-central (FC5, FC1, FC2,
FC6), central (C3, Cz, C4), centro-parietal (CP5, CP1, CP2,
CP6), temporal (T7, T8), and parietal (P3, Pz, P4) cortices. No
inter-hemispheric lateralization was observed for any type of
voice or emotion.

ERPs at each sensor where emotion effect was observed,
and inter-individual variability outlined by standard deviations
across participants are presented in Figure 6. Post hoc
comparisons for the whole sample of participants are detailed
in Figure 7. Only significant clusters are specified (p < 0.025).
Note that at all levels of naturalness reduction, P200 and LPP
amplitudes could highlight emotion recognition (most of 2-
by2 comparisons were significant). Nevertheless, the direction
of the comparison may vary with naturalness reduction,
highlighting differential perceptions of discrete emotions
induced by synthetization. For instance, anger had higher
P200 amplitude than sadness for human voice and level 1,
but the opposite was observed for level 2. Particularly, the
modulation of ERP responses by synthetization is presented
in Figure 8. Post-hoc comparisons are detailed for every time
window and highlight a tendency for higher amplitude at
higher naturalness.

Event-related potentials: Inter-trial phase
coherence and standard deviation

ITPC was computed to assess inter-individual heterogeneity
in the perception of emotions. Particularly, for every word, ITPC
was assessed across participants and is presented in Figure 9A.
Accordingly, ITPC across words was computed to assess inter-
stimulus variability for every participant and is presented in
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FIGURE 5

Acoustic tendencies for naturalness reduction from human to neural to standard voices as regards lexical stress: (A) duration, (B) median pitch.
Graphs (C–F) detail spectral trends on whole utterances, respectively, for F1, F2 frequencies, H1∗ and H4∗ intensities. “∗” p < 0.05, “∗∗” p < 0.01,
and “∗∗∗” p < 0.001, ns., non-significant. η2 is the generalized eta-squared for ANOVA, χ2 is the test statistic when Friedman was applied, and W
is Kendall’s effect size.

Figure 9B. Note that ITPC across participants was particularly
low (∼0.25). On the contrary, across-word ITPC showed high
consistency between words (∼0.6).

To confirm results from ITPC, standard deviation was
computed on ERPs for every emotion across participants
and across words. Similar observations were outlined: higher

variability among participants (higher SD) than among words
(lower SD) was observed. Results for SD are presented in
Supplementary File 1 (Supplementary Figures 7, 8). Of
important note, low ITPC and high SD between participants
outline an individual heterogeneity that is preserved as
naturalness reduces.
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FIGURE 6

ERPs correlates of emotional processing for human and naturalness-reduced voices: (A) human voice, (B) level 1, (C) level 2. Colored lines are
ERPs averaged over words and participants. Each color corresponds to a sensor as detailed by the topoplot in legend. Dark lines are upper limits
established by standard deviations (SD) across participants. Note that frontal, fronto-central, central, centro-parietal, temporal, and parietal
cortices were where emotion processing occurred during P200, early and late LPPs, and ERPs over those cortices followed similar patterns.
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FIGURE 7

Post hoc comparisons for P200, early LPP, and late LPP amplitudes on (A) human voice, (B) level 1, and (C) level 2. Nodes represent emotions
(anger: red, disgust: green, fear: dark blue, happiness: light blue, neutral: pink, sadness: orange). The direction of the arrow indicates the
comparison (e.g., red toward green corresponds to anger vs. disgust). Edges labels are significant clusters sign and inform about the direction of
the comparison. If the opposite sign was highlighted for a minority of subjects, it is stated between parentheses. NS, non-significant. All
significant effects were located over frontal, fronto-central, central, centro-parietal, temporal, and parietal cortices.

Behavioral perception of emotional prosodies
Performance for discrete emotions recognition as

naturalness reduced is presented in Figure 10. Figure 11
shows valence and arousal ratings with results from statistical
analysis for emotion effect. Results highlight lower discrete
emotion recognition as naturalness reduces, however, preserved
valence-arousal apprehensions.

A progressive reduction of naturalness perception was
observed from human voice, to level 1 to level 2 [anger∗∗∗:

F(2, 72) = 233.59, η2 = 0.77, disgust∗∗∗: F(2, 72) = 141.02,
η2 = 0.68, fear∗∗∗: F(2, 72) = 121.27, η2 = 0.60, happiness∗∗∗:
F(2, 72) = 202.45, η2 = 0.75, neutral∗∗∗: χ2(2) = 69.18, W = 0.93,
sadness∗∗∗: χ2(2) = 51.66, W = 0.70], where “∗∗∗” p < 0.001,
χ2 is the test statistic when Friedman test was used, and W is
Kendall’s effect size. Post-hoc comparisons were all significant.

The same tendency was observed for intelligibility
[anger∗∗∗; χ2(2) = 59.86, W = 0.81; disgust∗∗∗: χ2(2) = 63.57,
W = 0.86; fear∗∗∗: F(2, 72) = 104.11,η2 = 0.59; happiness∗∗∗:
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FIGURE 8

Effect of naturalness reduction on P200, early and late LPPs for (A) anger, (B) disgust, (C) fear, (D) happiness, (E) neutral, and (F) sadness
processing. Colored lines are grand-average ERPs. Nodes represent levels of naturalness (human voice: red, level 1: blue, and level 2: black). The
direction of the arrow indicates the comparison. Edges labels are the sign of significant clusters and inform about the direction of the
comparison. If the opposite sign was highlighted for a minority of subjects, it is stated between parentheses. All clusters were located over
frontal, fronto-central, central, centro-parietal, temporal, and parietal cortices.
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FIGURE 9

Inter-trial phase coherence (ITPC) across participants (A) and words (B). Error bars represent SD across words (A) and participants (B).

χ2(2) = 53.97, W = 0.73; neutral∗∗∗: F(2, 72) = 215.15,η2 = 0.73;
sadness∗∗∗: χ2(2) = 57.74, W = 0.78], where “∗∗∗” p < 0.001,
χ2 is the test statistic when Friedman test was used, and W is
Kendall’s effect size. Post-hoc comparisons were all significant.

Correlation between behavioral and
neurophysiological data

Significant regression models and correlations were outlined
as detailed in Table 2. Valence (arousal) ratings correlated
negatively (positively) with HFD. Note that although ERPs
time windows showed occasional correlations with valence and

arousal ratings, EEG data upon the whole (−200 to 1,000 ms)
window was significantly correlated with valence and arousal
ratings for human, level 1, and level 2 utterances.

Discussion

The role of naturalness reduction in emotional prosody
processing has been underexplored despite the increasing use
of synthesized voices in daily life areas. For the first time, we
created naturalness-reduced emotional utterances and explored
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FIGURE 10

Emotion recognition performance (confusion matrices) for (A) human voice, (B) level 1, and (C) level 2. Rows present the predicted emotion,
and columns the targeted emotion. Diagonal cells in green indicate correct recognition. Red cells correspond to emotions incorrectly
recognized. Each cell includes both the number of participants that correctly/incorrectly recognized the emotion and the percentage of the
total number of participants. The column on the far right states the precision (in green), and the false discovery rate (in red), both expressed in
percentage. The row at the bottom of the plot details the recall (in green) and the false negative rate (in red), both expressed in percentage. The
information at the bottom far right of the matrix states the overall accuracy.

EEG and behavioral patterns of emotion, clarity, and naturalness
understandings. The goal of this study was to clarify the human
cognitive ability to decipher emotional states conveyed by
synthesized voices.

Preserved valence and arousal, but
impaired discrete emotions
recognition as naturalness reduces

Our behavioral data show that naturalness-reduced voices
are rated similarly in the valence-arousal model as human

voices. Previous studies brought to light the significance
of pitch, spectral sequences, and intensity as emotional
acoustic markers for valence-arousal characterization of non-
human voices (Xue et al., 2018; Striepe et al., 2021). By
reducing the naturalistic quality of speech, the distinctive
acoustic patterns of emotional prosodies were preserved
enough to guarantee correct valence and arousal apprehensions.
Nevertheless, a steep reduction of discrete emotion recognition
was observed from the human voice (average accuracy:
85.1%) to level 1 (74.8%) to level 2 (68%). Contrary to
valence-arousal dimensionality, discrete emotion categorization
involves specificity and unambiguity (Zhao et al., 2018;
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FIGURE 11

Valence and arousal ratings for (A) Human voice (B), Level 1, and (C) Level 2. “∗” p < 0.05, “∗∗” p < 0.01, and “∗∗∗” p < 0.001, ns., non-significant.
η2 is the generalized eta-squared for ANOVA, χ2 is the test statistic when Friedman was applied, and W is Kendall’s effect size. Of important
note, similar tendencies between emotions were observed across levels of naturalness for both valence and arousal ratings.
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TABLE 2 Spearman correlation and regression analysis outputs between Higuchi’s fractal dimension (HFD) and valence/arousal ratings.

P200 Early LPP Late LPP [−200 1000 ms]

Human ρ*; p†
−0.37; *** 0.01; 0.89 −0.21; *** −0.38; **

Valence
RMSE+ ; R2 5.97e-3; 0.55 4.83e-3; 0.80 5.38e-3; 0.45 3.76e-3; 0.75

Level 1 ρ; p 0.04; 0.57 −0.12; 0.09 −0.48; *** −0.59; **

RMSE; R2 5.92e-3; 0.90 4.55e-3; 0.91 4.67e-3; 0.89 3.75e-3; 0.91

Level 2 ρ; p −0.08; 0.27 −0.38; *** −0.081; 0.27 −0.23; ***

RMSE; R2 5.91e-3; 0.60 4.91e-3; 0.70 4.73e-3; 0.86 4.31e-3; 0.67

Human ρ; p −0.11; 0.14 0.11; 0.12 0.03; 0.72 0.18; ** Arousal

RMSE; R2 5.98.e-3; 0.55 4.83e-3; 0.80 5.39e-3; 0.45 3.77e-3; 0.75

Level 1 ρ; p 0.39; *** 0.27; *** −0.07; 0.31 0.18; **

RMSE; R2 5.92e-3; 0.90 4.55e-3; 0.91 4.67e-3; 0.89 3.75e-3; 0.91

Level 2 ρ; p 0.23; *** −0.12; 0.09 0.10; 0.15 0.35; ***

RMSE; R2 5.92e-3; 0.60 4.91e-3; 0.70 4.73e-3; 0.86 4.31e-3; 0.67

Significant correlations are highlighted in bold.
*ρ, Spearman’s rho; †p, Spearman’s p; +RMSE, Root Mean Squared Error.
**p < 0.01 and ***p < 0.001.

Kranzbühler et al., 2020). Accordingly, two emotions may share
valence and/or arousal perceptions. For instance, our data
highlighted disgust and fear to be both rated as “negative
valence” and “low arousal.” Besides, anger and happiness shared
high arousal ratings with inverse valence (respectively, negative
and positive). Decreasing naturalistic cues preserved valence
and arousal perceptions while making difficult the specific
differentiation between emotions. The voice is indeed a rich
communicative channel that helps human to express themselves
through acoustic signals where speaker, lexical, and emotional
acoustic dependencies may exist. For instance, data from the
IEMOCAP database highlighted that emotional modulations
across spectral and prosodic features account for 9.1% of the
total variability while lexical and speaker modulations portray
76 and 14.9%, respectively (Mariooryad and Busso, 2014).
Our study underscores the human perception of such acoustic
dependencies by highlighting the concomitant reductions of
discrete emotions recognition and naturalness perception.
Further studies should be pursued to explore the bidirectionality
of emotionality and speaker-embedded naturalness acoustic
relationships. In other words, it would be relevant to ask to
what extent acoustic variations that trigger emotional speech
encode the perception of ecological relevance, or speaker
representations capture emotional prosodies.

Electroencephalographic time course
differentially encodes discrete
emotions as naturalness reduces and
correlates with valence and arousal
ratings

Our ERP results could be used as a starting point for
addressing this issue. We report separate early differentiations

of the six basic emotions captured by the P200 over human and
naturalness-reduced voices. For instance, anger elicited stronger
P200 than disgust when uttered by human and level 1 voices,
but the inverse pattern was observed for level 2 utterances.
The same observation applied for anger vs. sadness. Happy
utterances from both naturalness-reduced voices triggered
higher amplitude than anger, but the opposite was observed
for the human voice. The same observation applied for fear
vs. anger. Acoustic variabilities of naturalistic cues induced
onto voice synthetization toward less ecological statistical
models did not totally jeopardize emotional discriminations
but triggered differential emotional salience primarily based on
the integration of acoustic features. Thus, acoustic variations
that encode ecological relevance directly acted on the relative
emotional significance of discrete emotions. Besides, later LPP
patterns followed similar trends: anger utterances induced
lower early LPP and stronger late LPP than disgust when
uttered with human and level 1 voices, but the opposite
was observed for level 2. Fear triggered stronger late LPP
than anger when uttered by level 2 but lower when uttered
by human and level 1 voices. Previous research emphasized
a correlational behavior between P200 and subsequent LPP
amplitudes (Schirmer et al., 2013; Steber et al., 2020), which
highlights the significance of early salience detection for further
in-depth evaluation. Although the direct influence of P200
on LPP was not measured here, it seems that variations of
acoustic cues that capture the naturalistic voice perception
affected both emotional salience detection and strengthened
analysis.

In line with behavioral recognition of discrete emotions,
deviations of naturalness-reduced voices away from acoustic
naturalistic statistical models weakened emotional judgments,
specifically while listening to least ecological voices. Particularly
for level 2 utterances, P200 amplitudes were not modulated
by fear vs. disgust nor neutral. Furthermore, late LPP was
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not sensitive to anger vs. sadness acoustic variations. These
observations match behavioral confusions between fear and
disgust or neutral, anger and sadness for level 2 voices.
Additionally, the synthetization effect highlighted on the
processing of every affective prosody confirmed the fading
of ERP responses with naturalness reduction. Nevertheless,
although emotional integration dropped concomitantly with
ecological relevance, the neuronal emotional response was never
totally vanished, discrete emotional recognition was competitive
at both naturalness reduction levels (74.8% overall accuracy for
level 1 and 68% for level 2), and valence/arousal perceptions
were preserved. Therefore, our study outlines that the potential
for human-robot interactions to convey emotions by prosody
(James et al., 2018) may be extended to synthesized voices.

Besides, significant correlations between valence/arousal
perceptions and neurophysiological data were observed upon
the whole (−200 to 1,000 ms) temporal window for both human
and synthesized voices. Early and late ERPs time windows
showed occasional significant correlations for either human
or naturalness-reduced voices processing. Indeed, emotional
speech comprehension involves linguistic and contextual
apprehensions that interplay with emotional understandings.
For instance, analysis of time dynamic properties of speech
processing revealed that incongruencies between emotional
prosody and semantics may modulate ERP responses from
100 ms after violation detection (Paulmann and Kotz, 2008)
to 1,000 ms [see (Mauchand et al., 2021) for P200, N400
and (Kotz and Paulmann, 2007; Mauchand et al., 2021) for
late positivity modulations]. Besides, contextual expectancies
may alter word emotional understanding with stronger P200
and LPP responses when words are embedded into congruent
emotional contexts (Chou et al., 2020). What is more, self-
referencing contexts may enhance emotional perception [see
(Herbert et al., 2011) for effect on LPP amplitude], without
which negative common words may hinder source memory
performance, underscored by the absence of old/new item effect
on ERP amplitude between 500 and 800 ms (Pereira et al., 2021).
In sum, by highlighting the relevance of the whole epoch to
link neuronal processing to behavioral emotional perception,
our correlational analysis may have emphasized the interactive
interplay between several representational levels during online
emotional speech comprehension.

High inter-individual heterogeneity for
emotion perception is preserved as
naturalness reduces

Finally, we analyzed ITPC across words for each participant,
and across participants for each word. ITPC is a measure
of consistency of EEG spectral phase. ERPs are phase-locked
responses time-locked to the stimulus. Therefore, when trial-
to-trial responses follow a similar phase pattern, the ITPC

should increase relative to the presentation of the stimulus
(Luck and Kappenman, 2012). ITPC in combination with ERP
was shown to be sensitive to speech integration in delta, theta,
alpha, and beta bands between 100 and 600 ms after stimulus
onset (Nash-Kille and Sharma, 2014; Sorati and Behne, 2019;
Elmer et al., 2021). Our results highlight significant ITPC
between words with stereotyped time-locked responses (∼0.6),
and significant between-participant ITPC with partial phase
synchrony (∼0.25). Low ITPC along with high ERP amplitude
dispersion (SD) emphasizes miscellaneous emotional responses
among subjects. Personality traits and gender may have
modulated emotional responsiveness. For instance, neuroticism
has been correlated with enhanced hemodynamic activity within
the medial frontal cortex (Brück et al., 2011) and lower N400
when processing happy as compared with angry utterances
(Ku et al., 2020). Similarly, extraversion was associated with
reduced N400 while processing happy prosodies relative to
anger, and both neuroticism and introversion were linked to
stronger LPP responses to negative than neutral utterances
(Ku et al., 2020). Elsewhere, female listeners showed larger
responsivity to sadness as compared to neutral prosodies
than males, reflected by stronger P200 effect (Schirmer et al.,
2013). Our results reveal that reducing naturalness does
not shadow subject-dependent neurophysiological responses
to emotional prosodies. Nevertheless, further studies are
needed to explore behavioral and neuronal relationships
between personality, gender, and emotional responsiveness
toward synthesized voices.

A pioneering insight into the emotion
perception of future synthesized voices

Voice naturalness was defined by its acoustic properties
in Experiment 1. Then, acoustic features of human voices
have been edited accordingly to create naturalness-reduced
voices that match the acoustic profile of currently available
synthesized voices generated by text-to-speech systems. These
voices were used in Experiment 2 to assess their perception by
healthy adults. As a result, behavioral scores for naturalness
obtained in Experiment 2 may be generalized to the perception
of synthesized voices generated by text-to-speech systems.
Nevertheless, our work’s novelty relies on the emotional
information still present in naturalness-reduced voices
created in the present study (and lacking in text-to-speech
synthesized voices). Therefore, emotional assessments indexed
by psychometric scales and by neurophysiological data are
specific to the perception of the newly created synthesized
voices. On the other hand, the emotional perception highlighted
in Experiment 2 may be a pioneering insight into the human
perception of emotions conveyed by future synthesized voices
that will be created by text-to-speech systems when progress will
have been done to reach adequate discrete emotions induction.
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Limitations

The present study has a few limitations that should be taken
into consideration. First, only the voice available in the MESD
was used, and two versions of naturalness-reduced affective
prosodies were created. Second, we narrowed the study to
female utterances. Further research is needed to ascertain the
generalization of the findings to other female voices, to male and
child utterances, and to other degrees of naturalness reduction.

Conclusion

The present study was designed to (1) explore acoustic cues
of voice naturalness, (2) create naturalness-reduced synthesized
versions of emotional and neutral utterances, and (3) assess
behavioral and neurophysiological correlates of emotional
perception conveyed by both human and synthesized voices.
The results outlined acoustic dependencies between ecological
relevance perception and discrete emotions recognition while
valence-arousal dimensionalities proved to be unaffected by
naturalistic cues variability. P200 and LPP patterns highlighted
disparate time dynamics for relative emotions recognition whilst
ecological relevance dropped, which was related with behavioral
perceptions of both valence-arousal and discrete emotionality.
Finally, ITPC and SD measurements emphasized subject-
dependent time courses for processing emotional prosodies still
preserved when listening to less natural voices.

Synthesized voices are nowadays embedded into our daily
lives, but the neuronal integration of less naturalistic social and
emotional information is still misunderstood. Further research
is needed to tackle functional neuronal networks and brain
dynamics associated with the emotional perception of acoustic
modulations away from naturalistic models.
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