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ABSTRACT

Recent advances have shown that some multivariate psychological data are deviating from usual
normal assumption either in the tails or kurtosis. Thereby, allowing the call for modelling of such
data using more robust elliptically contoured density which includes the normal distribution as
a special case. This allowed more flexibility at the kurtosis and tail regions, which is better in
handling non-normality in data analysis and also lower the cost of misclassification. The present
study employed a robust model for such cases in the context of discrimination and classification of
multivariate psychological disorder data using multivariate exponential distribution as an underlining
model. Parameters were estimated using the method of maximum likelihood estimation and the
discrimination and classification were based on the log likelihood ratio approach. The resulting
models relied solidly on the shape parameter, which regulate the tails and the kurtosis, thereby

*Corresponding author: E-mail: aolosunde@oauife.edu.ng;

http://www.sdiarticle4.com/review-history/67946
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allowed flexibility. This method enable us to lower the cost of misclassification. Some other areas
of applications were also considered in the paper.

Keywords: Psychological data; exponential power distribution; multivariate data; discrimination; classi-
fication; polynomial; shape parameter; kurtosis; tail region.

1 INTRODUCTION

The present study is sequel to Olosunde and
Soyinka [1], where we introduced multivariate
exponential power distribution as an underlining
distribution in discrimination and classification of
multivariate data via method of likelihood ratio.
The paper considered the case when the shape
parameter is unity. But in everyday analysis
we encountered several cases where the shape
parameter is greater than unity. Such cases
are well addressed in the present study, which
some how generalized the existing results in
the literature with some applications and lay
much emphasis on psychological data . Now
given a psychological multivariate data with
heavier or lighter tail than the usual normal
distribution, efforts are made to lower the cost
of misclassification, when assigning an unknown
subject to one of k classes on the basis of
multivariate observation x “ px1, ...,xpq

T, where
p is the number of features in each class. For
simplicity of notation k are defined to be integers
ranging from 1 to K. We assume that there
are nk observations in class k with each pth
multivariate class distributed as

x1,n1 , ..., xK,nK
i.i.d.
„ Nppµk,Σkq, k “ 1, ...,K

where µk and Σk are the corresponding
mean vector and covariance matrix of the
p´dimensional multivariate normal distribution
for each of the known k classes. The total
number of observations is n “ n1 ` ...` nK .

Let πk denote the prior probability of observing a
class k member with π1 ` ... ` πK “ 1. Under
the normal distribution assumption, we assign a
new subject x to class k, which minimizes the
following discriminant score

Dkpxq “ px´µkq
TΣ´1

k px´µkq` ln |Σk|´2 lnπk,
(1)

that is we assign x to pk “ argminkDkpxq. This
is the so-called quadratic discriminant analysis
pQDAq since the boundaries that separate the

disjoint regions belonging to each class are
quadratic (Aitchison and Silvey [2]; Cox [3]). The
first term on the right-hand side of equation p1q
is known as the squared Mahalanobis distance
between x and µk. When the covariance
matrices are all the same, i.e., Σk “ Σ for all
k, the discriminant score can be simplified as

dkpxq “ px´ µkq
TΣ´1

px´ µkq ´ 2 lnπk (2)

This is referred to as linear discriminant analysis
pLDAq. LDA assigns a new subject to pk “

argminkdkpxq which uses linear boundaries.
The mean vectors µk and covariance matrices Σk
when not known are estimated by their maximum-
likelihood estimates,
pµk “ 1

nk

řnk
i“1 xk,i, pΣk “ 1

nk

řnk
i“1pxk,i ´

pµkqpxk,i ´ pµkq
T , pΣ “ 1

n

řK
k“1 nk

pΣk. The prior
probabilities are usually estimated by the fraction
of each class in the pooled training sample, i.e.,
pπk “ nk{n. The sample version rule for QDA is
`pxq “ argmink pDkpxq, where

pDkpxq “ px´ µ̂kq
T Σ̂´1

k px´ µ̂kq` ln
ˇ

ˇ

ˇ
Σ̂k

ˇ

ˇ

ˇ
´2 lnπk,

Similarly, the sample version rule for LDA is

` “ argmink pdkpxq,

where

pdkpxq “ px´ µ̂kq
T Σ̂´1

px´ µ̂kq ´ 2lnπk.

However, in situation of unclear boundary
of separation, minimizing the cost of
misclassification is very paramount. Hence,
according to Johnson and Wichern [4], define
cr.|ks to be the cost of mis-allocating a new
subject x to class k then cr.|ks “ 1´ Pr

´

D̂kpxq|µ̂k, Σ̂k
¯

(Anderson, 1972; Hands and Henley [5]). Also
for two populations, logistic discrimination was
suggested by Cox [3] and Day and Kerridge
[6] with the restriction that estimation of the
discriminator was based on samples from the
mixture of the populations. This method was
extended (Anderson, 1972) to more than two
populations and to the more usual plan of
sampling from each distribution separately,
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using Aitchison and Silvey’s [2] method of
constrained maximum likelihood estimation.
Logistic discriminators can be used in a simple
linear form and when the likelihood ratios of the
populations are linear in the observations, they
are optimal irrespective of the actual likelihoods.
They are thus optimal for a much wider class of
distributions than standard linear discriminators.
The method of logistic discrimination can be
extended to the case where the likelihood
ratios are quadratic in the observations. The
classification rules are known to be sensitive
to departures from basic model assumptions
on tail flexibility; which the normal and logistic
distributions do not accommodate due to their
fixed tail region.

Given multivariate data with heavier or lighter tails
than normal and logistic distribution, the resulting
probability of misclassification will be higher in
values and thus we obtain classification rule not
suitable or reliable for future classification of any
new entrant from the same population density.
Since it is well known that, multivariate normal

assumption are not realistic in many applications.
In fact, Azzalini [7,8] emphasized that multivariate
normal does not practically obtainable except
only on theoretical assumptions. In the case
of logistic regression procedure Effron [9] and
Press and Wilson [10] showed that logistics
regression must be less efficient than the
exponential families of distribution which normal
discrimination procedure under model (1) and
(2) belong to, at least asymptotically, as n
goes to infinity, since the families are based
on the full maximum likelihood estimator for
the population parameters. Hence, there is
need to study a generalized class of the family
of this elliptical density that will accommodate
for tail flexibility; and one which multivariate
normal is a special case. Section two gave
a brief introduction into the exponential power
distribution and the significance of it in the
study, section three presented the theoretical
development of linear and quadratic discriminant
model for classification. Finally, section four
present the application of the model in section
three to primary and secondary data.

2 MULTIVARIATE EXPONENTIAL POWER DISTRIBUTION (MEPD)

The family of elliptical density which also belong to exponential family under consideration is the
exponential power distribution with the pdf

fpy;µ, σ, βq “
1

σ 21`1{2βΓp1` 1
2β
q

exp

"

´
|y ´ µ|2β

2σ2β

*

(3)

where ´8 ă y ă 8, ´8 ă µ ă 8, β ą 0 and σ ą 0. p2.1q is called exponential power distribution
with shape parameter β which regulates the tail region. The multivariate extension is

fpy;µ,Σ, β, pq “
pΓp p

2
q

π
p
2
?
|Σ|Γ

´

1` p
2β

¯

2
1`

p
2β

exp
!

´ 1
2

“

py ´ µqTΣ´1
py ´ µq

‰β
)

(4)

where the mean and variance are EpY q “ µ, varpY q “
2

1
β Γ

´

p`2
2β

¯

pΓ
´

p
2β

¯ Σ and β determines the kurtosis

(Gomez et al. [11]). Thus, the correlation structure can be obtained directly from Σ in the usual
way. However, when β “ 1, we have a multivariate normal distribution; when β “ 1{2, it becomes
multivariate Laplace (double exponential) distribution; and when β Ñ 8, we have a multivariate
uniform distribution. Hence, when β ă 1, the distribution has heavier tails than the multivariate
normal distribution and this property can be useful in providing robustness against outliers (Lindsey
[12]). Parameters of the exponential power distribution were estimated using the method of maximum
likelihood see Saralees (2005). The resulting equations were not in close form, therefore, we developed
code in R environment to estimate the parameters of any given data. Similar code were developed
for univariate case by Ruggeri and Mineo [13] and Agro [14]. Some areas where normal distribution
assumptions had not been reliable, thus necessitated the replacement by exponential power distribution

25
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for such elliptically contoured data are found in poultry feeds data Olosunde [15], also several authors
have shown that financial data cannot be justified by normal distribution hypo-thesis, see Eberlein and
Keller (1995), In Bayesian network, Main and Navarro [16] proved that exponential power distribution
was preferred for some platikurtic conditional distributions where conditional regression functions are
constant. The results gave conditions to avoid compatibility problems when distributions with lighter
tails than the normal are used in the description of conditional densities to specify joint densities, like
in Bayesian networks. Hence, a generalized elliptical densities which includes the normal distribution
with better flexible tail, that can represent features of the data as adequately as possible and reduce
unrealistic assumptions. Furthermore, the kind of data and applications that follows multivariate
exponential power distribution can be seen in (Gomez et al. [11]), Lindsey [12] and Olosunde
[15] just to mention few. This present study was motivated by the behavioural pattern of some
Secondary school Teachers which has lead to unreported psychological disorder among them. The
effects were obvious in the quality of students they produce for higher education learning. The
sample collected using General Health Questionnaire (GHQ) informed the idea of separating those
with psychological disorder from those who are not. But the sample collected did not followed the
usual normal distribution hitherto commonly assumed in the analysis. Therefore, in a parametric
case where maximum likelihood estimation method is embraced for parameter’s estimation, there is
need to substitute the underlining normal distribution for a generalized one which will account for any
deviation from normal distribution both in the kurtosis and tails.

3 DISCRIMINATION AND CLASSIFICATION UNDER MULTIVARI-
ATE EXPONENTIAL POWER DISTRIBUTION

3.1 Discriminant Function

Proposition 1. The discriminant function between two Multivariate Exponential Power Distribution
classes i and j from among k “ 1, 2, ., i, .j, .,K classes can be derived as

´
1

2
ln

ˆ

|Σj |

|Σi|

˙

´
1

2

”

Lβpyjq ´M
β
pyiq

ı

(5)

where Lpyjq “
ˇ

ˇ

ˇ
y1jΣ

´1
j yj ´ 2µ

1

jΣ
´1
j yj ` µ

1

jΣ
´1
j µj

ˇ

ˇ

ˇ
and

Mpyiq “
ˇ

ˇ

ˇ
y1iΣ

´1
i yi ´ 2µ

1

iΣ
´1
i yi ` µ

1

iΣ
´1
i µi

ˇ

ˇ

ˇ

Proof. Suppose yi and yj are multivariate observations from classes i and j respectively with density
p2.2q, then the ratio fjpyjq

fipyiq
can be obtained as

|Σi|
1
2

|Σj |
1
2

exp

ˆ

´ 1
2

"

ˇ

ˇ

ˇ
y1jΣ

´1
j yj ´ 2µ

1

jΣ
´1
j yj ` µ

1

jΣ
´1
j µj

ˇ

ˇ

ˇ

β

´

ˇ

ˇ

ˇ
y1iΣ

´1
i yi ´ 2µ

1

iΣ
´1
i yi ` µ

1

iΣ
´1
i µi

ˇ

ˇ

ˇ

β
*˙

. (6)

Taking the natural logarithm of p6q ln
”

fjpyjq

fipyiq

ı

we have

´ 1
2

ln
´

|Σj |

|Σi|

¯

´ 1
2

„

ˇ

ˇ

ˇ
y1jΣ

´1
j yj ´ 2µ

1

jΣ
´1
j yj ` µ

1

jΣ
´1
j µj

ˇ

ˇ

ˇ

β

´

ˇ

ˇ

ˇ
y1iΣ

´1
i yi ´ 2µ

1

iΣ
´1
i yi ` µ

1

iΣ
´1
i µi

ˇ

ˇ

ˇ

β


. (7)

From (3.3), let Lpyjq “
ˇ

ˇ

ˇ
y1jΣ

´1
j yj ´ 2µ

1

jΣ
´1
j yj ` µ

1

jΣ
´1
j µj

ˇ

ˇ

ˇ
and

Mpyiq “
ˇ

ˇ

ˇ
y1iΣ

´1
i yi ´ 2µ

1

iΣ
´1
i yi ` µ

1

iΣ
´1
i µi

ˇ

ˇ

ˇ
then the result (5) follows which is the MEPD discriminant

function between two classes.
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3.2 Classification Rule
However from (7), suppose yo is an arbitrary observation that could be classified into any of the
classes i and j then we define a classification rule aimed at minimizing the misclassification rate of
allocating yo wrongly as follows: Allocate yo to class j if

ln

ˆ

fjpyoq

fipyoq

˙

ě lnH “ ln

„ˆ

crj|is

cri|js

˙ˆ

πi
πj

˙

(8)

and allocate yo to class i if otherwise; where
´

crj|is
cri|js

¯

and
´

πi
πj

¯

are the cost and prior probability
ratio respectively, that can take different values depending on initial assumptions. Although the
most common assumption in literature is when both cost and prior probability ratio are unity; we
can evaluate the cost ratio as follows when such assumptions are not necessary.

Proposition 2. If yo have the pdf p4q then the distribution of the discriminant function in (5) is

Lβpyoq ´M
β
pyoq «

γp p
2β
, yojq

2Γp p
2β
q
´
γp p

2β
, yoiq

2Γp p
2β
q
.

Proof. From (4), if MEPD exponent for class j is zoj “
ˇ

ˇpyo ´ µq
1Σ´1

pyo ´ µq
ˇ

ˇ

β then

Prpz ă zojq “
ş

fpzojqdzoj “
ş

fpyoqdyo “
1
2
` 1

2Γp p
2β
q

şyoj
0

z
p
2β
´1

o expp´zoqdzo.

Similarly for class i, we have Prpz ă zoiq “
1
2
` 1

2Γp p
2β
q

şyoi
0

z
p
2β
´1

o expp´zoqdzo. Since the

discriminant function is a difference of two MEPD exponent of
“

Lβpyoq ´M
β
pyoq

‰

, then the probability
over the discriminant function is

Prpz ă zojq ´ Prpz ă zoiq “
γp p

2β
, yojq

2Γp p
2β
q
´
γp p

2β
, yoiq

2Γp p
2β
q
.

So we evaluate the probability functions cri|js “ 1´Pr pz ă zoj |µj ,Σjq as the probability of misclassifying
object yo in i instead of j and crj|is “ Pr pz ă zoi|µi,Σiq as the probability of misclassifying object
yo in j instead of i for the null hypothesis Ho : µi,Σi and alternative hypothesis Ha : µj ,Σj . Note
that since 0 ă yo ă zopi,jq ă 8, then its integral will be a regularised incomplete gamma. Hence in
summary from (7) and (8), the overall discriminant function for MEPD is

´
1

2

”

Lβpyjq ´M
β
pyiq

ı

(9)

while the classification rule is

lnH `
1

2
ln

ˆ

|Σj |

|Σi|

˙

. (10)

So, the allocation rule for all arbitrary observation yo to class j is

´
1

2

”

Lβpyoq ´M
β
pyoq

ı

ě lnH `
1

2
ln

ˆ

|Σj |

|Σi|

˙

(11)

and to class i is

´
1

2

”

Lβpyoq ´M
β
pyoq

ı

ă lnH `
1

2
ln

ˆ

|Σj |

|Σi|

˙

. (12)

Where Lpyjq “
ˇ

ˇ

ˇ
y1jΣ

´1
j yj ´ 2µ

1

jΣ
´1
j yj ` µ

1

jΣ
´1
j µj

ˇ

ˇ

ˇ
and Mpyiq “

ˇ

ˇ

ˇ
y1iΣ

´1
i yi ´ 2µ

1

iΣ
´1
i yi ` µ

1

iΣ
´1
i µi

ˇ

ˇ

ˇ
are

Mahalanobis distance for multivariate observations yj and yi for groups parameter pµj ,Σjq and
pµi,Σiq respectively for j and i classes, at the same shape parameter β. Next we obtain the
discriminant function for shape parameter from β “ 1 up to β “ 6.
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3.3 Some Polynomial Results of MEPD Discriminant Function
We established some results polynomial discriminant functions for β “ 1 to β “ 6 for multivariate
exponential power distribution.

Corollary 1: From (9), when β “ 1 we obtained the known discriminant model
„

y1
`

Σ´1
j µj ´ Σ´1

i µi
˘

´
y1pΣ´1

j ´Σ´1
i qy

1

2



and its classification rule

lnH ` 1
2

ln
´

|Σj |

|Σi|

¯

` 1
2

`

µjΣ
´1
j µj ´ µiΣ

´1
i µi

˘

for the multivariate normal distribution. So we have
allocate yo to group j if
„

y1o
`

Σ´1
j µj ´ Σ´1

i µi
˘

´
y1opΣ

´1
j ´Σ´1

i qyo
2



ě lnH ` 1
2

ln
´

|Σj |

|Σi|

¯

` 1
2

`

µjΣ
´1
j µj ´ µiΣ

´1
i µi

˘

, otherwise

allocate yo to group i. The obtained discriminant function is a difference of two Mahalanobis distance.
Noting that the discriminant model is quadratic in nature, it can be reduced to the linear discriminant
model if Σ´1

j “ Σ´1
i “ Σ´1, that is homogeneous covariances, resulting to the cancellation of the

quadratic term in the discriminant model. See text for further modification (Johnson and Wichern,
2006; Hands and Henley, 1997). Note that for β ą 1 the polynomial becomes tedious to evaluate;
however restricting the shape parameter to the highest integers β P Z` we can obtain the following
discriminant functions for EPD of shape parameter β “ 2 up to β “ 6 via its polynomial relations
defined for multivariate random variables yj “ x in group j and yi “ w in group i respectively.

Proposition 3. The MEPD discriminant function when β “ 2 can be derived as

´
DQpxwq

2
rLpxq `Mpwqs (13)

Proof. From (8), we have ´ 1
2

“

L2
pxq ´M2

pwq
‰

whose discriminant function is a difference of two
squares ´ 1

2
rLpxq ´Mpwqs rLpxq `Mpwqs where Lpxq “ px ´ µjq

1Σ´1
j px ´ µjq, Mpwq “ pw ´

µiq
1Σ´1
i pw ´ µiq and DQpxwq “ Lpxq ´Mpwq. When Σj “ Σi then (3.9) becomes

´
DLpxwq

2
rLpxq `Mpwqs.

Proposition 4. The MEPD discriminant function when β “ 3 can be derived as

´
DQpxwq

2

“

D2
Qpxwq ` 3ρ2

ij

‰

(14)

Proof. From (8) when β “ 3 we have ´ 1
2

“

L3
pxq ´M3

pwq
‰

which by polynomial expansion can be
written as

´ 1
2
rLpxq ´Mpwqs

“

pLpxq ´Mpwqq2 ` 3LpxqMpwq
‰

. Note that LpxqMpwq “ px ´ µjq
1Σ´1
j px ´

µjqpw ´ µiq
1Σ´1
i pw ´ µiq “

px´µjq
1px´µjqpw´µiq

1pw´µiq

ΣiΣj
which is our known correlation matrix

ρ2
ij “

rpx´µjqpw´µiqs
1
rpx´µjqpw´µiqs

ΣiΣj
. When Σj “ Σi then (3.9) becomes´DLpxwq

2

“

D2
Lpxwq ` 3ρ2

ij

‰

Proposition 5. The MEPD discriminant function when β “ 4 can be derived as

´
rLpxq `MpwqsDQpxwq

2

“

D2
Qpxwq ` 2ρ2

ij

‰

(15)

Proof. From (8) when β “ 4, we have ´ 1
2

“

L4
pxq ´M4

pwq
‰

which by polynomial expansion can be
written as ´ 1

2
rL2
pxqs2´rM2

pwqs2 which becomes a difference of two squares and can be expressed
fully as
´ 1

2
rLpxq `Mpwqs rLpxq ´Mpwqs

`

rLpxq ´Mpwqs2 ` 2LpxqMpwq
˘

. Having defined the difference
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and product of Lpxq and Mpwq as DQpxwq and ρ2
ij respectively, then replacing appropriately we have

(3.11). When Σj “ Σi then (14) becomes

´
rLpxq`MpwqsDLpxwq

2

“

D2
Lpxwq ` 2ρ2

ij

‰

.

Proposition 6. The MEPD discriminant function when β “ 5 can be derived as

´ 1
2

`

rLpxq `Mpwqs2DQpxwqrD
2
Qpxwq ` 2ρ2

ijs ´DQpxwqρ
2
ijrD

2
Qpxwq ` 3ρ2

ijs
˘

(16)

Proof. From (8) when β “ 5 we have ´ 1
2

“

L5
pxq ´M5

pwq
‰

which by substituting earlier results
obtained when β “ 3 and β “ 4 to the expansion
´ 1

2

`“

L4
pxq ´M4

pwq
‰

rLpxq `Mpwqs
˘

´
`

LpxqMpwq
“

L3
pxq ´M3

pwq
‰˘

gives (3.12). When Σj “ Σi
then (15) becomes
´ 1

2

`“

rLpxq `Mpwqs2 DLpxwq
`

D2
Lpxwq ` 2ρ2

ij

˘‰

´
“

DLpxwqρ
2
ij

`

D2
Lpxwq ` 3ρ2

ij

˘‰˘

.
Proposition 7. When β “ 6, the MEPD discriminant function is

´
1

2
rLpxq `MpwqsDQpxwq

`

D2
Qpxwq ` 3ρ2

ij

˘ `

D2
Qpxwq ` ρ

2
ij

˘

(17)

Proof. From (8) when β “ 6 we have ´ 1
2

“

L6
pxq ´M6

pwq
‰

“ rLpxq `Mpwqs rLpxq ´Mpwqs
`

rLpxq ´Mpwqs2 ` LpxqMpwq
˘ `

rLpxq ´Mpwqs2 ` 3LpxqMpwq
˘

.
Substituting the earlier defined expression, we have (3.13). Note that when Σj “ Σi, (16) becomes
´ 1

2
rLpxq `MpwqsDLpxwq

`

D2
Lpxwq ` 3ρ2

ij

˘ `

D2
Lpxwq ` ρ

2
ij

˘

.

Remarks: Similar result can be obtained for β values beyond β “ 6 as the highest positive integer
value of β increases. For instance

“

L7
pxq ´M7

pwq
‰

“
`“

L6
pxq ´M6

pwq
‰

rLpxq `Mpwqs
˘

´
`

pLpxqMpwq
“

L5
pxq ´M5

pwq
‰˘

.
Likewise

“

L8
pxq ´M8

pwq
‰

“
“

L4
pxq ´M4

pwq
‰ “`“

L3
pxq ´M3

pwq
‰

rLpxq ´Mpwqs
˘

`
`“

L2
pxq ´M2

pwq
‰

rLpxqMpwqs
˘‰

.

Note that using similar approach, we can obtain the discriminant model for β P Z` as β increases
beyond β “ 8. Next we obtain the solution to the discrimination of some practical data with the aim
of obtaining the separation boundary (behavioural pattern) with the least misclassification error.

4 APPLICATIONS

In this section we apply the obtained discriminant
function and the classification rule from (7)-
(11), we proceed to test the performance of
our obtained results on some data some are
primary data and secondary data already in the
literature. The purpose of various applications
were to demonstrate that replacement of normal
distribution with more flexible generalized form
which is exponential power distribution is
appropriate in data analysis. It is noteworthy
that the exponential power distribution recourse
to normal when the shape parameter β “ 1.
Therefore, normal is embedded in exponential
distribution and also they belong to the same
exponential families of distributions. In the
Tables, x and σ are the estimated sample mean

and standard deviations respectively. Also, S and
U are the skewness and kurtosis respectively for
each variables considered in the analysis.

4.1 Psychological Disorder
Data, (Courtesy of Federal
Neuropsychiatric Hospital,
Abeokuta Medical Records)

The main data that motivated this study
were actually samples collected for Federal
Neuropsychiatric Hospital, Abeokuta, Ogun
State, Nigeria. The data which has to do with
the behavioural pattern of some high school
teachers, which in turn is having an effect on
their productivity. Therefore, the data used in
this study was a survey of secondary school
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teachers in Ogun state, Nigeria. The survey
was to detect cases of unreported psychological
disorder tendencies among 393 teachers across
secondary schools in Ogun state. All the 393
teachers were screened to find out their general
health status using General Health Questionnaire
(GHQ). The study proceeded with teachers
with GHQ positive while those with negative
GHQ status were dropped. For each of the
teacher some socio-demographic variables were
obtained which includes: Age of teachers, No
of children, Length of service, income and Job
satisfaction. In respect of the study at hand, out
of the 393 teachers captured in the survey, 317
were GHQ negative while the remaining have
positive GHQ status. A training set of about 297
teachers from the GHQ negative group and 49
teachers from the GHQ positive group was used
to develop the discriminant function meant for
onward classification. The remaining teachers
with sizes 20 and 27 for GHQ negative and
GHQ positive status were used as validating set
to determine the accuracy of the discriminant
function. The summary of the data is given in
Table 1 below. Also a Q-Q probability plots for the
sample data to show the deviation from normal
distribution are shown in Fig. 1 below, in the
figure some data exhibited tails either shorter
or longer than the normal distribution, this has
necessitated for the intervention and substitution
of a generalized case of normal distribution
called exponential power which also belong to
family of elliptical density. This distribution will
give a good account of the deviations in the
kurtosis and tails of the distribution. We used
the procedure of discrimination described in
section 3.0, which depends on the estimation
on the shape parameter β could discriminate
between teachers with GHQ negative and GHQ
positive status based on Age of teachers, No
of children, Length of service, income and Job
satisfaction. The discriminant function with the
least error of misclassification is the main focus
of the study. The obtained discriminant model
have an apparent error rate of of 51.06% when
β “ 1, 48.94% apparent error rate when β “ 5
and when β “ 8 it recorded an apparent error of
36.17%.

4.2 Bumpus Data, (Hands [17])
The Bumpus data of 1898, published by Hands
[17] was the another example to be classified.
The data is divided into two groups of female
sparrows, the first group were those female
sparrows that survived severe weather condition,
while the second group were those that died as a
result of the weather condition. Some features
about each sparrow was measured namely:
total length of the sparrow; alar, beak, humerus
and sternum length were also measured. The
summary and the results are given in Table 2,
now for each of the two groups, five different
variables were measured from each bird. The
discriminant model on the training data set was
able to correctly classify 69.39% of the data set;
given an apparent error rate of 30.61%. In this
case the shape parameter β “ 1 gave the best
classification for the data. Therefore, exponential
power recourse to normal in this sense within the
exponential families.

4.3 Margolese Data, (Hands [17])
Also applying our result to the data that have
been used in several studies which is the
data on discrimination of urinary androsterone
and etiocholanolone in healthy heterosexual
and homosexual males in mg/24 hours from
Margolese, 1970; The discriminant model
revealed the same apparent error rate between
the normal and the exponential distribution
regardless of the shape parameter value used.
This suggested that the data obtained by
Margolese in 1970 actually followed a normal
distribution.

4.4 Job Satisfaction and Income
Data, (Soyinka et al. [18])

Next, we investigate the discriminant model
between secondary school teachers who are
married and those that are yet to marry, in terms
of their Job satisfaction and Income (Soyinka et
al., 2017). The EPD model predicted accurately
75% of the data with an apparent error rate of
25%; compared to normal distribution with an
apparent error rate of 45%. In this case, the EPD
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with shape parameter β “ 8 performed better
than the normal β “ 1.

4.5 Artisan Data, (Courtesy of
Ministry of Youth, Sport and
Development, Ogun State)

For further illustration, we then considered
developing a discriminant model for the
discrimination of artisans data, who are working
with government from those who are self
employed. The secondary data was obtained
from the records of artisans who visited the
Ministry of Youth and Sport Development, Ogun
state, Nigeria to obtain government approval to
practice as artisan within the state. However, due

to the fee charged for the test, majority of the
artisans usually come for the test, after they have
been practising but cannot obtain contract from
government or for the purpose of promotion to a
higher cadre for those working with government.
The trade test of each of the artisans (those
working with government and those that are self
employed) were used along with their individual
monthly saving. The obtained discriminant model
depending on the the estimated values for β, the
shape parameter, we have an apparent error rate
of 6.67% when β “ 1, 5% apparent error rate
when β “ 6 and when β “ 8 it recorded an
apparent error of 8.33%. The exponential power
discrimination when β “ 6 produced the least
misclassification error.

Table 1. Summary statistics

Variables Group 1 Group 2
GHQ Negative pn “ 297q GHQ Positivepn “ 49q

Age x “ 40.98,σx “ 40.53,S “ ´0.2541, U “ ´0.5250 x “ 38.04,σx “ 13.46,S “ ´0.036, U “ ´1.34

No of children x “ 2.687,σx “ 1.2028,Sk “ 0.2649, U “ ´0.1518 x “ 2.68,σx “ 0.6433,S “ 0.1273, U “ ´0.8397

Length of Service x “ 12.87,σx “ 54.73,S “ 0.4044, U “ ´0.9087 x “ 7.6,σx “ 28.17,S “ 0.6788, U “ ´1.0157

Salary x “ 54.57,σx “ 650.66,S “ 1.014, U “ 0.6776 x “ 40.74,σx “ 266.75,S “ 1.1326, U “ 0.8453

Job Satis x “ 68.24,σx “ 125.15,S “ ´0.5601, U “ 0.2359 x “ 65.52,σx “ 168.01,S “ ´0.325, U “ ´0.4239

Table 2. Summary statistics

Variables Group 1 Group 2
Survived pn “ 8q Deadpn “ 8q

Total length x “ 155.5,σx “ 1.6903,S “ 0.0776, U “ ´1.5682 x “ 160.625,σx “ 3.021,S “ ´0.2027, U “ ´1.445

Alar length x “ 238.81,σx “ 2.532,S “ ´0.0628, U “ ´1.2094 x “ 245.75,σx “ 4.2003,S “ 0.1531, U “ ´1.6698

Beak length x “ 31.21,σx “ 0.7864,S “ 0.6973, U “ ´0.5466 x “ 32.26,σx “ 0.715,S “ 0.3891, U “ ´1.6479

Humerus length x “ 18.388,σx “ 0.2588,S “ ´0.7892, U “ ´1.0601 x “ 19.062,σx “ 0.518,S “ ´0.1144, U “ ´1.3745

Sternum length x “ 20.475,σx “ 0.787,S “ 0.737, U “ ´0.8797 x “ 21.9,σx “ 0.7783,S “ ´0.2816, U “ ´1.5509

Table 3. Summary statistics from various real-life illustrations

Variables Group 1 Group 2
androsterone pn “ 11q etiocholanolone pn “ 15q

heterosexual x “ 3.518,σx “ 0.7209,S “ ´0.1717, U “ ´1.4233 x “ 2.5,σx “ 0.9227,S “ 0.4949, U “ ´1.1483

homosexual x “ 2.1,σx “ 0.6899,Sk “ 0.578, K “ ´1.1118 x “ 3.24,σx “ 1.244,S “ 0.0077, U “ ´1.1614

Table 4. Summary statistics

Variables Group 1 Group 2
Never married pn “ 10q Married pn “ 10q

Job satisfaction x “ 46.22,σx “ 29.87,S “ 1.133, U “ ´0.545 x “ 54.61,σx “ 12.7,S “ 0.795, U “ ´0.0925

Income x “ 67.59,σx “ 3.36,S “ ´0.1581, U “ ´1.5497 x “ 67.84,σx “ 2.398,S “ ´0.8197, U “ ´0.3529

Table 5. Summary statistics

Variables Group 1 Group 2
Govt. Artisans pn “ 15q Self-employed Artisans pn “ 15q

Test score x “ 46.31,σx “ 1.2997,S “ ´0.3637, U “ ´1.7564 x “ 54.97,σx “ 1.1742,S “ ´0.4323, U “ ´0.8975

Saving x “ 67.53,σx “ 0.8962,Sk “ 0.3983, K “ ´1.0991 x “ 67.98,σx “ 0.7828,S “ 0.3573, U “ ´0.8545
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Fig. 1. Q-Q plots for the psychological disorder data, left is the Q-Q fit with normal
distribution while right is the fit with exponential power with different β estimated from each

data
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5 CONCLUSION

The discrimation model of multivariate
exponential power distribution generalizes for
the discrimation model of normal and double
exponential distribution. The study also
established a relationship to the known fisher
discriminant function. The various examples
used in the study revealed that the more the
deviation of the data from normal distribution
(β ą 1), the more effective the discriminant
model of the EPD. This was however confirmed
for small samples ą 30. However for sample
size above thirty, the exponential and the normal
were both effective. The r environment code
for multivariate exponential power discrimination
model to investigate future data using the model
obtained in this study is available. The code can
be extended to nth variables.
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