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ABSTRACT

Under the influence of some different perturbations, we study the stability of collinear equilibrium
points of the Restricted Three Body Problem. More precisely, the perturbations due to the triaxiality
of the bigger primary and the oblateness of the smaller primary, in addition to the relativistic effects,
are considered. Moreover, the total potential and the mean motion of the problem are obtained. The
equations of motion are derived and linearized around the collinear points. For studying the stability
of these points, the characteristic equation and its partial derivatives are derived. Two real and two
imaginary roots of the characteristic equation are deduced from the plotted figures throughout the
manuscript. In addition, the instability of the collinear points is stressed. Finally, we compute some
selected roots corresponding to the eigenvalues which are based on some selected values of the
perturbing parameters in the Tables 1, 2.
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1. INTRODUCTION

The Lagrangian points are very important to the
space community as target locations for large

space missions, which can be used in many
space applications. This needs accurate
investigations of the stability of these points. The
aim of this paper is to study the linear stability of

*Corresponding author: E-mail: soabdelbar2006@gmail.com;



the collinear points under effects due to the
triaxiality and oblateness of the massive and less
massive primaries, respectively. The concerned
Restricted Three Body Problem (in brief RTBP)
dynamical system is linearized around the
equilibrium points. The RTBP studies the motion

of a test particle m; in the field of two massive

bodies m; and m,, which is assumed move in

circular orbits about their center of mass,
Szebehely [1]. Euler [2] and Lagrange [3] found
interesting solutions to the circular RTBP that
describe equilibrium positions of the infinitesimal
body when all net forces acting on it are zero.
Concerning the relativistic effects, the readers
can refer to, Brumberg [4,5]. Miandl and Dovrak
[6] calculated the advance of perihelion of
Mercury's orbit within the framework of the
(RTBP), which is the most relevant relativistic
effect in the motion of the planets around the
Sun. The following researchers Ragos et at. [7]
and Douskos and Perdios [8] showed that all
collinear points were unstable in agreement with
the non-relativistic collinear points. Many
authors, such as Ahmed et al., [9], Ishwar and
Kushvah [10], Vishnu Namboori et al. [11], Mittal
et al. [12], and Kumar and Ishwar [13], Abd EI-
Salam and Abd El-Bar [14], Abd El-Bar et al,
[15], studied the circular RTBP with(out) the
relativistic correction, triaxial and oblateness
perturbations, and/or radiating. Elshaboury et al,
[16], treated RTBP considering the primaries that
are triaxial rigid bodies. They concluded that the
three collinear equilibrium points are all unstable.
Also, they paid special attention to investigate
symmetric periodic orbits. Martinez and Simo6
[17] obtained the totality of relative equilibria as
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depending on the parameters k and the mass
ratio u .

The goal of this work is to study the linear
stability of collinear equilibrium points with the
effects of different combinations of perturbations
on stability of collinear points. The rest of this
paper is organized as follows: In sec.2, we
derived the equations of motion, then we
linearized them around the equilibrium points. In
sec.3, we discussed the stability of the
equilibrium points. While in sec. 4, we outlined
the stability of the collinear points. In the
subsections 4.1, 4.2, and 4.3 we derived
derivatives that are required to study the stability
of L, L, and L, respectively. In section 5, we
solved the characteristic equation. In sec.6, we
gave some stability visualization, and we studied
the stability domains in different perturbed cases.
Finally, the conclusion was stated in sec.7.

2. RTBP DYNAMICAL EQUATIONS

The motion of an infinitesimal body in the field of
our perturbed model of RTBP in dimensionless
barycentric-rotating coordinate system are
Bhatnagar and Hallan [18].

Where U is the Pseudo-Potential of the
problem, my,my (m >my) and m are the

masses of the massive, less massive primaries,
and the infinitesimal body, respectively. as
shown in the Fig 1.
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Fig. 1. Geometry for the RTBP
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Let y=my/m +m, is the small parameter of the triaxiality of the massive and oblateness of less
massive primaries, ¢ is the speed of light in

problem, o;(i=1,2)and 4y <<1 be on respective
vacuum.

the numerical values of the coefficients of

The Pseudo-Potential function U of the relativistic RTBP is given by
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where, c is the speed of light, &£, n are the test particle coordinates in synodic frame of reference.
The distance of the test particle from the two massive bodies and from the origin respectively are.

L=\(&+ )+, 1 =\(E+pu=1)y+, r=|&+1° 3)

The perturbed mean motion 7 is given by
n2 =143 20 o)+ 4+ (u(-1)=3) @)
L0 T T L TS HU—H

The included dynamical variables are made dimensionless according to the following normalization
criteria: the sum of masses in the system is normalized as ny +m, =1, the time is normalized such

that unperturbed mean motion 1, =1. The length is normalized according to considering the distance
between the two primaries is unity.

2.1 The Stability of the Collinear Points L, ,a=1,2,3

To study the stability of the orbits near the collinear points, we linearized the equations of motion about the
perturbed locations of these points. Let (&, ,77,) be the unperturbed coordinates of L, =1,2,3. They satisfy
the equations

. . ouU . - oU
$o —2n1 Y , 7o +2n&y s (5)
§ §:§0 é n=Mmo

Substituting in equation (1) £=¢& +¢&,

&|<<& and p=n,+n, |n|<<n, yields the linearized version of Eq. (1)

as

5 =2nm = Ug )& +Ugpm +.
i +2né&=(U pe) + Uy m +
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Al U U U, il d Uy, U Retaining 1st order terms in Eq. (6) we
5 =~ > =—-—_., an =—— . Retamin .
652 én aézan ng 67]6§ nn 67]2 mning q

obtain linear differential equations with constant. The system (6) has a solution which can be
represented as

where Ug g =

& =4e", n =Be" (7)
where A and B are constants, and A are the eigenvalues.

The characteristic equation corresponding to eq. (6) is
2
/14—(U55’L +u,, —4)22+[U§§’L u,,. —(U% ) }: 0, a=123 8)

where Ugega, 1, and U77’7’La are evaluated at the concerned equilibrium point, A is the roots of the eigenvalue

equation (8).

In the collinear points 77 =0, hence U,, =0, and the characteristic equation of the system is given by

2 (U, +U,,, —4)F+U, U, =0, a=123
or

=N, AP4M, =0, =123 (9)
where,

N, =Ug, +U, -4 M, =U, U, (10)

So, the roots of equation (9) are

i\/—N L (N ) —am, i\/—NLa e (N, ) -4,
11,2 = \E > /13,4 = \/5 > (11)

From equation (11) there are three possible These roots can be expressed as 4, =+ib and
solutions for the 47, , the first one when 17, is

A4 =*c where b and Care real numbers. The
real and negative. In this case WO roquct ofall root’s equals to the  constant term in
purely imaginary roots = /152 exist, which  the characteristic equation (i.e., M, ), this implies
leads to oscillatory stable solutions, so we that the condition of  stability must be

will only investigate the case when real 4%, <0. M, =U,, U, >0 (12)
The other two cases when (i) 4, is ’ e

complex with non-vanishing imaginary Substituting 7 =0 into the second order
part, and (ii) when /11?2 is real and positive will  derivatives U§§,La and Ufmla yields,

lead to instability.
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2.2 For L,

Since the considered point is a collinear one, then 7 = 0. The solution of the classical RTBP satisfies

By +B,n, =1, 1 =B1(x+y), r2:—B2(/4+x—1) (15)
The L, point locates between the two massive primaries and geometry of L can be visualized as
given by Fig. 2.

At the point L, B, = B, =1equation (15) becomes

on __0n _

o aE (18)

I"1+I"2:1, 1"1254'/1, 1’2:1—/1—57
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Fig. 2. The location of L, and its corresponding parameters
(17)

We can assume the position of the L, is given by

7 —a1+5lq, r =b1—5L1, a,+b =1
(18)

From which we have

L,
no=(1=b)| 1+—=|,
i =( bl)[ - bJ
where oy is very small @ and b, are the classical positions of # and 7, , respectively, and b, is given by
(19)

_[u

3(1-;1)]1/3

L3 —20{4 +0(a5),

2
=a-—a’——a
h 3 9 81

After some lengthy algebraic manipulation, the location of L, is
2 Ul Lus 5 us 4 2425 ut 1729 4l
N FO_ L) A3 2y F Ny 2R By 15T S
o ,Zg + 213G )T 3 e B g (3
7 8 (20)
6395 398335 u. 7 422957 u > 8374501
(5 + £)3 + e CO
2187 '3 336366 3 59049 "3 354294 "3

where non-vanishing coefficients F_(llc) are given Appendix A

Substituting from equations (18) into equations (13) and (14), yields

Ug g, =n+2[ (1= )1 =3D81 )T + Sy 1+ 35,57, |
3(1-by — p)*
2

+6[yG1A2 (1+5E,5,,) +(1- u)(20, ~0,)(1-5D5, )Q1]+i2{
C
x[1+2(5 (= o)+ Sypt) |+ (= p* =3+ 6(1= by — ) [ Frue = Hy (1= )|+ 3[ Ey e+ Dy (1 - )]

[ =20t + FO= 0= 0 |=2[S 18- 0 - ][ Eya+ D0 - )]

AU o 4 2(-64 4+ Th (S, ~T}) +14(F, +H1)]}

and
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Uppyy =n- [(1 —)(1=3Dy 6, )T} + S u(1+3E,6), )J
—%[ﬂGlAz (1+5E6;,)+ (1= )(201 = 02)1=5D,67, )0y J =3(1=p)o1 —02)(1-5D167,)O

I
+%{%[1—3(E(l—u)+51u)]+(u—u2—3)
C

H3[Ej =Dy (1= )|+ [ Syt =T, = )| [ Ey e+ Dy (1= 1)

D44 O, 1)+ 2(510- 0+ )| (22)

Where Dy, E, F,G,H;,J1,0,,81, T} and W] are all functions of u

23For L,

The L, point lie on x-axis on far side of each primary with respect to the barycenter. The geometry of
L, can be visualized as given by Fig. 3.

— 7 _—
]'l

m, e L

L_iﬂ i 8 1

U

T

Fig. 3. The location of L, and its corresponding parameters

Follow the same procedure as done in L, with the corresponding values of B, =1, B, =—1 into (15) we get

o _on

=1
o = o (23)

h=n=lL  K=c+u,  n=c+u-l,
The perturbed position of L, could be written as a little deviation o, from the classical position as

r1=a2+512, r2=b2—512, a,+b, =1 (24)

From which we have

) oL
=(1+b))| 1+—2- |, =b| 1+—2|, 25
n=( 2)[ 1+sz ) 2[ b J (25)

2

where a, and b, are unperturbed positions of # and 7,, respectively, and b, is given by

62



El-Bar; CJAST, 40(3): 56-73, 2021; Article no.CJAST.66192

1 1 31 7] a
= iV B . B 5 =
b2 a+3a 9a 81a +O(a ), (04 (3(1 )] . (26)

After some lengthy algebraic manipulation, the location of L, is

2 V) 1 us 5 ou 1084 4.3 886
=3 GP - (5) -2 3 B
So.ts T 33 9(3) ( * 456 3 243(3)

8843 pp 12796 ); 2872 4 )Z 1915435 ps
217837 19683 3" 590493 354294 3

(27)
Where non-vanishing coefficients Gﬁ) are given appendix B
Substituting eq. (25) into eq. (13) and (14), yields
Us g, =n+2[ (1= @)(1=3D,8,,)T, + S(1-3E,8,) |
+6[ 4Gy Ay (1= 5E,5,)) + (1= 1)(20, = 05)(1 = 5D,5,,)0, |
*%{W[l +2(Ty (1~ )+ Syaa) |+ (= 42 =3)
—6(1-b, - ﬂ)[Fzﬂ —-H,(1 —#)] +3[E2ﬂ +D,(1- ﬂ)]
[ o + 20ty + By (1= )+ Wy (1= ) |~ 2[ Sy T (1= )] By + Dy (1= )]
_@[2@ +2(=6+4u+7by)(S, —1,)+14(F, + Hz)]}
(28)

and

Upy =1 =] (1= 1)(1=3D1, 8, )T, + S,u(1-3E,5,,) |
3

—E[ﬂGzAz (1=5E56;,) = (1= )20y —0,)(1-5D,6), )Qz}

+3(1- )0y — 0,)(1-5D,8,,)0,

1| (1=by—p)?
+C—2{%D—3(T2(1—u>+szﬂ)]—(u—u2 -3)
+3[Eypt+ Dy (1= )| +[ Sy + T (1= ) | By pa + Dy (1= p0)]
1-—

+“(T“)[T2 +(6— 41+ 7b,)(S, —7’2)—2(52(1—y)+T2y)]} (29)

where D, E5,F5,Gy,Hy,J5,05,8,, Tand W, are all functions of y .

2.4 For I,
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The I; point lie on the negative x—axis, the geometry of Z; can be visualized as given by Fig. 4.

e

Fig. 4. The location of Ls andits corresponding parameters

Follow the same procedure as done in L;, with the corresponding values of B, =-1, B, =1 into (15)
we get

I S R o 30)

Proceeding similarly as before following the same steps
r1=a3+5lg, r2=b3—5L3, a,+b, =1 (31)

From which we have

dy, Jy,
=—(1-by)| 1-——|, r=by| 1+— |, 32
3=—(1-D; )( b, J 5 =0s [ A J (32)
where a; and b, are unperturbed positions of 7; and 7, respectively, and b, is given by
7 23 25921 4
by=2——pu|l+—pu+—-— 33
3 12”( 144" " 2085984 * J (39)

After some lengthy algebraic manipulation, the location of Ly s

9
(3 7, 3227 51037
Sy _ Lty 2, e 34 S 34
Sty k;3 - cz{ 4416 Tt T a97664" oy

Where non-vanishing coefficients J Sc) are given appendix C

Substituting eq. (32) into eq. (13) and (14), yield
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Usgpy =n+2[ (1= )1 =3Ds8, )Ty + S3(1- 3535, |

+6] 4Gy Ay (1= 5E56,,) + (1- 1)201 = 03)(1 - 5D36,,)0; |

1
+—

2
C

2
{WD+z<rz<l—m+szﬂﬂ+<~—f—3>

+6(1—-05 _#)[F3ﬂ+Hs(l—ﬂ)]+3[E3ﬂ+D3(1—#)]
s+ 2uHy + Fy(1= 1)+ Wy = 1) | = 2[ Sy + Ty (1= )| Expe+ Dy (1= )]

_,U(lz_:u) [2]‘3 +2(=6+4u+7b)(S; —Ty) +14(F, +H3)]}

and

(35)

Uy =n=[ (1= i)(1=3D, 8, )T + Syu(1=3E55,,) |

—%[ﬂGaAz(l—5E36L3)+<1—u)(201 = 03)(1=5D38,,)0s | =3(1- )0 = 03)(1 = 5D36,)0s

(1-b;s —p)’
2

1
+_

c2

|

[1=3(T(1= )+ S3yu) | = (= * =3)

3Byt Dy = )|+ [ Sype + T (1= )] [ Eypa+ D3 (1= )]

+_ﬂ<12— BT, 4+ (<64 4p+Thy)(Sy ~T3) +2(S5(1— o) + Tsﬂﬂ}

where Dj, B3, F5,Gs,H5,J5,05,85, 3 and W3 are

all functions of u

2.5 Solution of the Characteristic eq. (9)
Recalling eq. (9)
AP=N, A’+M, =0, a=123

where N L, and M ,, are given by eq. (14a). Among

several methods, we carry out the stability analysis

based on the linearized equations by considering roots
of the characteristic equation. For L,,a=1,2,3, we

computed the numerical values of M, , in the

interval ©#€(0.0.5) . In all cases we obtained

M, =U <0 which leads to two real and

L!X

U

Sty ML,

two imaginary roots of the characteristic equation.

65

(36)

Therefore, under considered perturbations, the
collinear points are unstable as in the classical RTBP.
The following tables (1 — 2) show the obtained

solutions. Each solution corresponds to one of the

collinear points. For several values 07, 0 and 4,

we also sketched the variations in U, U, versus
the mass ratio £/ in each case.
2.6 Numerical Representations and

Analyses for Stability of L ,a=1,2,3

A program is constructed using Mathematica 9
software package so as to draw the variations in

U..U,, of L,,a=12,3versus the whole range of
the mass ratio x taking into account the oblateness
effects A4, , the triaxial effect 01, 0, and the
relativistic corrections.

Analysis of the Fig. 5 and Fig. 6

oy < 0 for

The curve in Fig.5 shows that the U,.U

whole domain of the mass ratio, i.e., L1 is still
unstable as is known in RTBP. Its magnitude is



El-Bar; CJAST, 40(3): 56-73, 2021; Article no.CJAST.66192

increasing with respect to the increase in the mass  Analysis of the Fig. 7 and Fig. 8
ratio. While in Fig. 6, the curve shows that the

U..U,, <0 for whole domain of the mass ratio, i.e.,
nn

L, is still unstable as is known in RTBP. Its o ) )
. . . . . . but it still negative U, .U_ <0 for whole domain of
magnitude is decreasing with respect to the increase in s

the mass ratio. the mass ratio,

In Fig. 7, the bigger the gravitational harmonics
0y, 0, A, the bigger the perturbations on U, .U

Table 1. The roots of the characteristic equations for points L ,c =1,2,3 for different values of oy, 0y,
A =0.00land =035

Triaxiality Coefficients A Roots [, Roots L, Roots L,
o, =0.04 113 -4.1710 -1.4950 -0.9917
4.1710 1.4950 0.9917
=0.04 4
o 4 -3.0283i -1.4489i -0.9832i
A, 3.0283i 1.4489i 0.9832i
o, =0.04 A -4.2665 -1.5242 -1.1761
o = 0.03 4, 42665 1.5242 1.1761
2 =5 4 23,1153 -1.4551i -1.2237i
A, 3.1153i 1.4551i 12237
o, =0.03 A, 41252 ~1.4809 -1.1070
o = 0.005 A4 4.1252 1.4809 1.1070
2 = 4 -3.0307i -1.4471i -1.2156i
4, 3.0307i 1.4471i 1.2156i
o, =0.02 % -4.0277 -1.4523 -1.0697
4.0277 1.4523 1.0697
=0.015 4
o 4 -2.9898i -1.4427i -1.2286i
4, 2.9898i 1.4427 1.2286i
o, =0.01 113 -3.8982 -1.4167 -1.0143
3.8982 1.4167 1.0143
=0.0075 4
o 4 -2.9258i -1.4375i -1.2332i
4, 2.9258i 1.4375i 1.2332i

Table 2. The roots of the characteristic equations for points L,,a =1,2,3 for versus
1 €(0.04,0.48), 4, =0.001, 07 =0.03and o =0.025

H A Roots L, Roots L, Roots L, H Roots L,  Roots L,  Roots L,
004 4, -3.5786 -2.1364 -0.4477 0.24 -4.0377 -1.6484 -0.9094
A, 35786 2.1364 0.4477 4.0377 1.6484 0.9094
4 -2.6781i -1.80009i -0.9505i -2.9809i -1.5365i -1.1274i
A, 2.6781i 1.8009i 0.9505i 2.98009i 1.5365i 1.1274i
0.08 4, -3.7330 -1.9879 -0.5743 0.32 -4.1075 -1.5240 -1.0487
A, 3.7330 1.9879 0.5743 41075 1.5240 1.0487
4 -2.7852i -1.7218i -0.9929i -3.0214i -1.4699i -1.1890i
A, 27852 1.7218i 0.9929i 3.0214i 1.4699i 1.1890i
012 4, -3.8416 -1.8817 -0.6742 0.36 -4.1302 -14669 -1.1290
A, 3.8416 1.8817 0.6742 4.1302 1.4669 1.1290
4 -2.8570i -1.6638i -1.0303i -3.0331i -1.4398i -1.2257i
A,  2.8570i 1.6638i 1.0303i 3.0331i 1.4398i 1.2257i
016 4, -3.9236 -1.7943 -0.7601 0.4 -4.1461 -1.4122 -1.2476
A, 3.9236 1.7943 0.7601 4.1461 1.4122 1.2476
A -2.9098i -1.6159i -1.0646i -3.0401i -1.4112i -1.2816i
A, 2.9098i 1.6159i 1.0646i 3.0401i 1.4112i 1.2816i
0.2 A, -3.9874 -1.7177 -0.8375 0.48 -4.1609 -1.3088 -2.2503
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A, 3.9874 1.7177 0.8375 4.1609 1.3088 2.2503
-2.9501i -1.5741i -1.0967i -3.0417i -1.3580i -1.8062i
A, 2.9501i 1.5741i 1.0967i 3.0417i 1.3580i 1.8062i

2

ie., L1 is still unstable as is known in RTBP. The

magnitude of U, .U, is decreasing for a very short

nn
interval of mass ratio, then increasing with respect to
the increase in the mass ratio. While in Fig. 8, the
curve shows that the U,.U, <0 for whole domain

of the mass ratio, i.e., L2 is still unstable as is known

in RTBP. Its magnitude is decreasing with respect to
the increase in the mass ratio.

Analysis of the Fig. 9 and Fig. 10

In Fig. 9, Considering the oblateness effect only and
ignoring the triaxiality effects we get the smallest

effects in magnitude onU, .U, , while ignoring the

oblateness and considering only the triaxiality
perturbations we get the largest effects

200 i
100 Stableregion 100
W
0.1 0.2 0.3 04 05
unstable region .

200

-200
A; =0.0024, oy = 0.0004, g, = 0.0003 and the relativistic correction

Fig. 5. The variations in UéfU of L1 point

nn
versus the mass ratio 1/ at 4, =0.0024,
o1 =0.0004, o, =0.0003 and relativistic

corrections
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in magnitude on U, .U, , but it still negatives i.e.

U§§U”” < 0 for whole domain of the mass ratio, i.e.,

L, is still unstable as is known in RTBP. The general

trend of all curves are as follows: the bigger the
gravitational harmonics o7, 0,, 4, the bigger the

perturbations on U, .U, The magnitude of U, .U,

nn nn
is decreasing for a very short interval of mass ratio,
then increasing with respect to the increase in the
mass ratio. While in Fig. 10, the dynamics of

U..U,, seems inverse of Fig. 7, but the dynamical

nn

behavior of L, does not change from.

40

Stable region

/m/_m———frs——ur—ns

unstable region

20

|
-20

-40

A; =0.0024, o, = 0.0004, o, = 0.0003 and the relativistic correction

Fig. 6. The variations in U,.U,  of L, point
versus the mass ratio 1/ at 4, =0.0024,
o071 =0.0004, o, =0.0003 and relativistic

corrections
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and relativistic corrections 0y, 05, A, and relativistic corrections
40 ¢ — H
0.1 02 0.5

Stableregion

-10

88
0.1 0.2 0.3 ; 0.5 -20
I —— A,;=0.003, 0,=0.04, 0,=0.03 and relativistic correction
30

A;=0.002, 0,=0.03, 0,=0.025 and relativistic correction

-20

unstableregion i -30
-40

—40 |

A, =0.0024, o, = 0.0004, o, = 0.0003 and the relativistic correction

-40

Fig. 11. The variations in U, .U, of L, point Fig. 12. The variations in U, .U, =~ of L, point

versus the mass ratio 1 at 4, =0.0024, versus the mass ratio // at different values
0, =0.0004, o, =0.0003 and relativistic 0, 0,5, A, and relativistic corrections
corrections

68



El-Bar; CJAST, 40(3): 56-73, 2021; Article no.CJAST.66192

L

0.1 0.2

-10

-20

-30

-40

A5=0.003, oy =0.01, o= 0.0075 and relativistic correction
— A,=0.002, g, =0.03, o= 0.025 and relativistic correction
— A,=0.003, gy =0, o= 0 and relativistic correction

A,=0, 0, =0.04, o= 0.03 and relativistic correction

0.5

Fig. 13 The variations in U g;U . of L, point versus the mass ratio 4 at different values 5y, 0,, 4,
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Analysis of the Fig. 11, Fig. 12 and Fig. 13

n <0 for

The curve in Fig. 11 shows that the U,.U
whole domain of the mass ratio, i.c., L3 is still
unstable as is known in RTBP. Its magnitude is
increasing with respect to the increase in the mass
ratio. While in Fig.12, the curve shows that the

U..U,, <0 for whole domain of the mass ratio, i.e.,

L, is still unstable as is known in RTBP. Its
magnitude is increasing with respect to the increase in
the mass ratio. The effect of changing the oblateness
and the triaxiality of the primaries are clear from the
figures, see Fig.12. In Fig.13 Considering the
oblateness effect only and ignoring the triaxiality
effects we get the smallest effects in magnitude on
U.U,, . while ignoring the oblateness and
considering only the

triaxiality perturbations we get the largest effects in
magnitude on U, .U, but it still negative i.e.

U..U,, <0 for whole domain of the mass ratio, i.e.

L3 is still unstable as is known in RTBP.

nn

nn

3. CONCLUSION

In conclusion, firstly, we have treated the
problem of the stability of collinear equilibrium
points of the RTBP under the influence of
triaxiality of the more massive primary,
oblateness of the less massive primary and the
relativistic corrections. Secondly, we have built
up the potential like function of the problem
and computed the mean motion of the problem.
Moreover, we have constructed the equations of
motion of the problem. To study the stability of
the current problem, we linearized the equations
of motion around the collinear points. In addition,
we have derived the characteristic equation of

the collinear points. Our study revealed the
existence of two real and two imaginary roots of
the characteristic equation as deduced from the
plotted figures in the manuscript. We have
computed some selected roots corresponding to
the eigenvalues based on some selected values
of the perturbing parameters. These eigenvalues
have reflected the instability nature of the
collinear points. Finally, as seen from the curves
plotted in Figs. 5- 13, that the value of
M, =U, U is negative in the whole

L, M,
domain of the mass ratio x<(0,0.5) under the

considered model of perturbations. i.e., it
ensures the negativity of vU..U, ~thus the

conclusion of instability of the collinear points is
true. Also, tables 1 and 2 revealed the existence
of two real and two imaginary roots of the
characteristic equation that means the collinear
points are unstable.
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