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ABSTRACT 
 

Under the influence of some different perturbations, we study the stability of collinear equilibrium 
points of the Restricted Three Body Problem. More precisely, the perturbations due to the triaxiality 
of the bigger primary and the oblateness of the smaller primary, in addition to the relativistic effects, 
are considered. Moreover, the total potential and the mean motion of the problem are obtained. The 
equations of motion are derived and linearized around the collinear points. For studying the stability 
of these points, the characteristic equation and its partial derivatives are derived. Two real and two 
imaginary roots of the characteristic equation are deduced from the plotted figures throughout the 
manuscript. In addition, the instability of the collinear points is stressed. Finally, we compute some 
selected roots corresponding to the eigenvalues which are based on some selected values of the 
perturbing parameters in the Tables 1, 2. 
 

 

Keywords: Collinear points; triaxiality; oblateness; relativistic RTBP; stability. 
 

PACS No: 95.10.Ce 
 

1. INTRODUCTION  
 

The Lagrangian points are very important to the 
space community as target locations for large 

space missions, which can be used in many 
space applications. This needs accurate 
investigations of the stability of these points. The 
aim of this paper is to study the linear stability of 
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the collinear points under effects due to the 
triaxiality and oblateness of the massive and less 
massive primaries, respectively. The concerned 
Restricted Three Body Problem (in brief RTBP) 
dynamical system is linearized around the 
equilibrium points. The RTBP studies the motion 

of a test particle 3m  in the field of two massive 

bodies 1m  and 2m , which is  assumed move in 

circular orbits about their center of mass,  
Szebehely [1]. Euler [2] and Lagrange [3] found 
interesting solutions to the circular RTBP that 
describe equilibrium positions of the infinitesimal 
body when all net forces acting on it are zero. 
Concerning the relativistic effects, the readers 
can refer to, Brumberg [4,5]. Miandl and Dovrak 
[6] calculated the advance of perihelion of 
Mercury's orbit within the framework of the 
(RTBP), which is the most relevant relativistic 
effect in the motion of the planets around the 
Sun. The following researchers Ragos et at. [7] 
and Douskos and Perdios [8] showed that all 
collinear points were unstable in agreement with 
the non-relativistic collinear points. Many 
authors, such as Ahmed et al., [9], Ishwar and 
Kushvah [10], Vishnu Namboori et al. [11], Mittal 
et al. [12], and Kumar and Ishwar [13], Abd El-
Salam and Abd El-Bar [14], Abd El-Bar et al, 
[15], studied the circular RTBP with(out) the 
relativistic correction, triaxial and oblateness 
perturbations, and/or radiating. Elshaboury et al, 
[16], treated RTBP considering the primaries that 
are triaxial rigid bodies. They concluded that the 
three collinear equilibrium points are all unstable. 
Also, they paid special attention to investigate 
symmetric periodic orbits. Martínez and Simó 
[17] obtained the totality of relative equilibria as 

depending on the parameters κ  and the mass 
ratio  . 

 
The goal of this work is to study the linear 
stability of collinear equilibrium points with the 
effects of different combinations of perturbations 
on stability of collinear points. The rest of this 
paper is organized as follows: In sec.2, we 
derived the equations of motion, then we 
linearized them around the equilibrium points. In 
sec.3, we discussed the stability of the 
equilibrium points. While in sec. 4, we outlined 
the stability of the collinear points. In the 
subsections 4.1, 4.2, and 4.3 we derived 
derivatives that are required to study the stability 

of 1L , 2L  and 3L  respectively. In section 5, we 

solved the characteristic equation. In sec.6, we 
gave some stability visualization, and we studied 
the stability domains in different perturbed cases. 
Finally, the conclusion was stated in sec.7. 
 

2. RTBP DYNAMICAL EQUATIONS 
 
The motion of an infinitesimal body in the field of 
our perturbed model of RTBP in dimensionless 
barycentric-rotating coordinate system are 
Bhatnagar and Hallan [18]. 
 

Where U  is the Pseudo-Potential of the 

problem, 1 2 1 2, ( )m m m m  and m  are the 

masses of the massive, less massive primaries, 
and the infinitesimal body, respectively. as 
shown in the Fig 1. 
 

2 , 2
U d U U d U

n n
dt dt

   
   

      
        

      

  
 

(1) 
 

 
 

Fig. 1. Geometry for the RTBP 
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Let 2 1 2m m m    is the small parameter of the 

problem, ( 1,2)i i  and 2 1A  be on respective 

the numerical values of the coefficients of  

triaxiality of the massive and oblateness of less 

massive primaries, c  is the speed of light in 
vacuum. 

 
The Pseudo-Potential function U of the relativistic RTBP is given by 
 

     2 2
2 2
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where, c  is the speed of light, ,   are the test particle coordinates in synodic frame of reference. 

The distance of the test particle from the two massive bodies and from the origin respectively are. 
  

2 2 2 2 2 2

1 2
, ,( ) ( 1)r r r                                                                              (3) 

 
The perturbed mean motion n  is given by 
 

1 2 2

3 3

22 2

2 (2 )
1

1 ( (1 ) 3)
2

An
c

                                                                                       (4) 

 
The included dynamical variables are made dimensionless according to the following normalization 

criteria: the sum of masses in the system is normalized as 1 2 1m m  , the time is normalized such 

that unperturbed mean motion 0 1n  . The length is normalized according to considering the distance 

between the two primaries is unity. 
 

2.1 The Stability of the Collinear Points , 1,2,3L    

 
To study the stability of the orbits near the collinear points, we linearized the equations of motion about the 

perturbed locations of these points. Let ),( oo   be the unperturbed coordinates of , 1,2,3L   . They satisfy 

the equations 
 

0 0 0 02 , 2

o o

U U
n n
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 

 
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                                                                                (5) 

 

Substituting in equation (1) 1 1 0,o        and 1 1 0,o        yields the linearized version of Eq. (1) 

as 
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where 

2 2 2

2
, ,

U U U
U U U     

  
  

   
 and 

2

2

U
U







. Retaining 1st order terms in Eq. (6) we 

obtain linear differential equations with constant. The system (6) has a solution which can be 
represented as  
 

1 1,t tAe Be                                                                                                            (7) 

 

where A and B are constants, and   are the eigenvalues. 
 

The characteristic equation corresponding to eq. (6) is 
 

   
2

4 2
, , , , ,4 0, 1,2,3

L L L L L
U U U U U

    
               

  
                                  (8) 

 

where ,LU
  and ,LU

  are evaluated at the concerned equilibrium point,  is the roots of the eigenvalue 

equation (8). 
 
In the collinear points 0  , hence 

, 0
L

U


   , and the characteristic equation of the system is given by 

 

 4 2
, , , ,4 0, 1,2,3
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or 
 

4 2 0, 1, 2,3L L 
     N M                                                                                               (9) 

 

where, 
 

, , , ,4,
L L L LL LU U U U

    
        N M                                                                      (10) 

 

So, the roots of equation (9) are 
 

   
2 2

1,2 3,4

4 4
, ,

2 2

L L L L L L     
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From equation (11) there are three possible 

solutions for the 2
1,2 , the first one when  2

1,2  is 

real and negative. In this case two                

purely imaginary roots 2
1,2  exist, which    

leads to oscillatory stable solutions, so we        

will only investigate the case when real 2
1,2 0 < . 

The other two cases when (i) 2
1,2 is          

complex           with non-vanishing imaginary 

part, and (ii) when 2
1,2  is real and positive will 

lead to instability. 
 

These roots can be expressed as 1,2 ib    and 

3,4 c    where b  and c are real numbers.     The 

product of all root’s equals to the       constant term in 

the characteristic equation (i.e., L
M ), this implies 

that the condition of       stability must    be  
 

, , 0
L LL U U

  
  M >                            (12) 

 

Substituting 0   into the second                 order 

derivatives ,LU
  and ,LU

  yields, 
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         (14) 

2.2 For 1L  
 

Since the considered point is a collinear one, then 0.   The solution of the classical RTBP satisfies 

 

1 1 2 2 1r r B B ,  1 1r x  B ,         2 2 1r x   B                                                             (15) 

 
The 1L  point locates between the two massive primaries and geometry of  1L  can be visualized as 

given by Fig. 2. 
 
At the point 1 ,L 1 2 1 B B equation (15) becomes  
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Fig. 2. The location of 1L  and its corresponding parameters 

 
We can assume the position of the 1L is given by 

 

1 11 1 2 1 1 1, , 1L Lr a r b a b                                                                                                (17) 

 

From which we have 
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where 
1L  is very small 1a and  1b  are the classical positions of  1r  and 2r , respectively, and 1b is given by 
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After some lengthy algebraic manipulation, the location of 1L is 
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where non-vanishing coefficients 
(1)
kF  are given Appendix A 

 

Substituting from equations (18) into equations (13) and (14), yields 
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                                                                 (21) 

and 
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 

   

1 1 1

1 1

1

1

1 1 1

1 2 1 1 2 1 1 1 2 1 1

2
21

1 12

1 1 1

,

1 1 1

(1 )(1 3 ) (1 3 )

3
(1 5 ) (1 )(2 )(1 5 ) 3(1 )( )(1 5 )

2

(1 )1
1 3 (1 ) ( 3)

2

3 (1 ) (1 ) (1

L L L

L L

L

L

D T S E

G A E D Q D Q

b
T S

c

E D S

U n

T E D

    

         


   

     

      

           

  
         



       



 )

 1 1 1 1 1 1
(1 )

( 6 4 7 )( ) 2 (1 )
2

T b S T S T
 

  
 

            


                                                        (22) 

 

Where 1 1 1 1 1 1 1 1 1, , , , , , , ,D E F G H J Q S T and 1W are all functions of   

 

2.3 For 2L  

 

The 2L  point lie on x-axis on far side of each primary with respect to the barycenter. The geometry of 

2L  can be visualized as given by Fig. 3. 

 

 
 

Fig. 3. The location of 2L  and its corresponding parameters 

 

Follow the same procedure as done in 1L , with the corresponding values of 1 21, 1B B     into (15) we get 

 

1 2
1 2 1 21, , 1, 1

r r
r r r r   

 

 
        

 
                                                      (23) 

 

The perturbed position of 2L  could be written as a little deviation 
2L  from the classical position as 

 

2 21 2 2 2 2 2, , 1L Lr a r b a b                                                                                              (24) 

 
From which we have 
 

  2 2
1 2 2 2

2 2

1 1 , 1
1

L L
r b r b

b b

    
             

,                                                                         (25) 

 

where 2a and 2b are unperturbed positions of 1r  and 2r , respectively, and 2b  is given by 
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 
 

1 3

2 3 4 5
2

1 1 31
,

3 9 81 3 1
b O


     



 
         

.                                                (26) 

 

After some lengthy algebraic manipulation, the location of 2L  is 

 

2

1 2 4 59
(2) 3 3 3 3

, 2
3

7 8
2 33 3

1 1 5 4 1084 886
( ) ( ) ( ) ( ) ( )

3 3 9 3 3 3 486 3 243 3

8843 12796 2872 1915435
( ) ( ) ( ) ( ) ...

2178 3 19683 3 59049 3 354294 3

o L

k

k
c

    


   






      




     



G

                              

(27) 
 

Where non-vanishing coefficients 
(2)
kG  are given appendix B 

 
Substituting eq. (25) into eq. (13) and (14), yields 
 

 

2 2

2 2

2 2 2 1 2

2 2 2 1 2 2 2

2
22

2 22

, 2 (1 )(1 3 ) (1 3 )

6 (1 5 ) (1 )(2 )(1 5 )

3(1 )1
1 2 (1 ) ( 3)

2

L L

L L

L D T S E

G A E D Q

b

U n

T S
c

     

     


   

       

       

  
         



 

   

  

2 2 2 2 2

2 2
2 2 2 2 2 2 2 2

6(1 ) (1 ) 3 (1 )

2 (1 ) (1 ) 2 (1 ) (1 )

b F H E D

J H F W S T E D

    

       

       

           
 

 

 2 2 2 2 2 2
(1 )

2 2( 6 4 7 )( ) 14( )
2

T b S T F H
 


 

        


                                    

(28) 
 
and 
 

 

   

2 2 2

2 2

2

2

2 2 2

2 2 2 1 2 2 2

1 2 2 2

2
22

2 22

2 2 2

,

2 2 2

(1 )(1 3 ) (1 3 )

3
(1 5 ) (1 )(2 )(1 5 )

2

3(1 )( )(1 5 )

(1 )1
1 3 (1 ) ( 3)

2

3 (1 ) (1 ) (1

L L L

L L

L

L

D T S E

G A E D Q

D Q

b
T S

c

U

E D S T E D

n    

     

   


   

     

      

       

   

  
         



       



 )

 

 2 2 2 2 2 2
(1 )

(6 4 7 )( ) 2 (1 )
2

T b S T S T
 

  
 

          


                                                 (29) 

where 2 2 2 2 2 2 2 2 2, , , , , , , ,D E F G H J Q S T and 2W are all functions of  . 

2.4 For 3L  
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The 3L  point lie on the negative xaxis, the geometry of 3L  can be visualized as given by Fig. 4. 
 

 
 

Fig. 4. The location of  and its corresponding parameters 
 
Follow the same procedure as done in 1L , with the corresponding values of 1 21, 1B B     into (15) 

we get 
 

1 2
2 1 1 21, , 1 , 1

r r
r r r r   

 

 
          

 
                                                 (30) 

 

Proceeding similarly as before following the same steps  
 

3 31 3 2 3 3 3, , 1L Lr a r b a b                                                                                               (31) 

 

From which we have 
 

  3 3
3 3 2 3

3 3

1 1 , 1
1

L L
r b r b

b b

    
              

,                                                                        (32) 

 

where 3a and 3b  are unperturbed positions of 1r  and 2r  respectively, and 3b is given by 

 

4
3

7 23 25921
2 1

12 144 2985984
b   

 
    

 
                                                                                     (33) 

 

After some lengthy algebraic manipulation, the location of  is 
 

3

9
(3) 2 3 5

, 2
3

1 3 7 3227 51037
...

4 16 41472 497664ko L
k c

    


 
       

 
 J                                       (34) 

 

Where non-vanishing coefficients (3)
kJ  are given appendix C 

 
Substituting eq. (32) into eq. (13) and (14), yield 
 

3L

3L
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 

   

3 3 3

3 3

3 3 3 3

3 2 3 1 2 3 3

2
23

3 32

3 3 3

,

3 3

2 (1 )(1 3 ) (1 3 )

6 (1 5 ) (1 )(2 )(1 5 )

3(1 )1
1 2 (1 ) ( 3)

2

6(1 ) (1 ) 3 (1 )

L L

L L

L D T S E

G A E D Q

b
T S

c

b F H

n

E D

U     

     


   

    

       

       

  
         



       

 

  2 2
3 3 3 3 3 3 3 32 (1 ) (1 ) 2 (1 ) (1 )J H F W S T E D                  

 
 

 3 1 3 3 3 3
(1 )

2 2( 6 4 7 )( ) 14( )
2

T b S T F H
 


 

        


                                                       (35) 

 

and 
 

 

3 3 3

3 3

3

3

3 3 3

3 2 3 1 2 3 3 1 2 3 3

2
23

3 32

, (1 )(1 3 ) (1 3 )

3
(1 5 ) (1 )(2 )(1 5 ) 3(1 )( )(1 5 )

2

(1 )1
1 3 (1 ) ( 3)

2

L L L

L L L

L D TU S E

G A E D Q D

S

n

Q

b
T

c

    

         


   

      

           

  
         





    3 3 3 3 3 33 (1 ) (1 ) (1 )E D S T E D            

 1 3 3 3 3 3
(1 )

( 6 4 7 )( ) 2 (1 )
2

T b S T S T
 

  
 

           


                                                (36) 

 

where 3 3 3 3 3 3 3 3 3, , , , , , , ,D E F G H J Q S T and 3W are 

all functions of   

 

2.5 Solution of the Characteristic eq. (9) 
 

Recalling eq. (9) 
 

4 2 0, 1, 2,3L L 
     N M  

 

where L
N  and L

M  are given by eq. (14a). Among 

several methods, we carry out the stability analysis 

based on the linearized equations by considering roots 

of the characteristic equation. For , 1,2,3L   , we 

computed the numerical values of L
M , in the  

 

interval (0.0.5) . In all cases we obtained

, , 0
L LL U U

  
  M < which leads to two real and 

two imaginary roots of the characteristic equation. 

Therefore, under considered perturbations, the 

collinear points are unstable as in the classical RTBP. 

The following tables (1 – 2) show the obtained 

solutions. Each solution corresponds to one of the 

collinear points. For several values 1 2,  and 2A  

we also sketched the variations in 
, ,L L

U U
 

  
versus 

the mass ratio  in each case. 

 
2.6 Numerical Representations and 

Analyses for Stability of , 1, 2,3L    

 
A program is constructed using Mathematica 9 
software package so as to draw the variations in

U U    of , 1, 2,3L   versus the whole range of 

the mass ratio   taking into account the oblateness 

effects 2A , the triaxial effect 1 2,   and the 

relativistic corrections. 

Analysis of the Fig. 5 and Fig. 6 

The curve in Fig.5 shows that the  0U U     for 

whole domain of the mass ratio, i.e., 1L  is still 

unstable as is known in RTBP. Its magnitude is 
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increasing with respect to the increase in the mass 
ratio. While in Fig. 6, the curve shows that the  

0U U     for whole domain of the mass ratio, i.e., 

2L  is still unstable as is known in RTBP. Its 

magnitude is decreasing with respect to the increase in 
the mass ratio. 

Analysis of the Fig. 7 and Fig. 8 
 

In Fig. 7, the bigger the gravitational harmonics  

1 2, ,  2A  the bigger the perturbations on  U U    

but it still negative  0U U     for whole domain of 

the mass ratio,

Table 1. The roots of the characteristic equations for points , 1,2,3L   for different values of 1 2, , 

2 0.001A  and 0.35   
 

Triaxiality Coefficients ' s  Roots 1L  Roots 2L  Roots  3L  

1

2

0 04

0 04









.

.
 

3  

4  

1  

2  

-4.1710 
4.1710 
-3.0283i 
3.0283i 

-1.4950 
1.4950 
-1.4489i 
1.4489i 

-0.9917 
0.9917 
-0.9832i 
0.9832i 

1

2

0 04

0 03









.

.
 

3  

4  

1  

2  

-4.2665 
4.2665 
-3.1153i 
3.1153i 

-1.5242 
1.5242 
-1.4551i 
1.4551i 

-1.1761 
1.1761 
-1.2237i 
1.2237i 

1

2

0 03

0 025









.

.
 

3  

4  

1  

2  

-4.1252 
4.1252 
-3.0307i 
3.0307i 

-1.4809 
1.4809 
-1.4471i 
1.4471i 

-1.1070 
1.1070 
-1.2156i 
1.2156i 

1

2

0 02

0 015









.

.
 

3  

4  

1  

2  

-4.0277 
4.0277 
-2.9898i 
2.9898i 

-1.4523 
1.4523 
-1.4427i 
1.4427i 

-1.0697 
1.0697 
-1.2286i 
1.2286i 

1

2

0 01

0 0075









.

.
 

3  

4  

1  

2  

-3.8982 
3.8982 
-2.9258i 
2.9258i 

-1.4167 
1.4167 
-1.4375i 
1.4375i 

-1.0143 
1.0143 
-1.2332i 
1.2332i 

 

Table 2. The roots of the characteristic equations for points , 1,2,3L   for versus 

 0.04,0.48 , 2 0.001A  , 1 0.03  and 1 0.025   

 

   ' s  Roots 1L  Roots 2L  Roots  3L    Roots 1L  Roots 2L  Roots  3L  

0.04 3  

4  

1  

2  

-3.5786 
3.5786 
-2.6781i 
2.6781i 

-2.1364 
2.1364 
-1.8009i 
1.8009i 

-0.4477 
0.4477 
-0.9505i 
0.9505i 

0.24 -4.0377 
4.0377 
-2.9809i 
2.9809i 

-1.6484 
1.6484 
-1.5365i 
1.5365i 

-0.9094 
0.9094 
-1.1274i 
1.1274i 

0.08 3  

4  

1  

2  

-3.7330 
3.7330 
-2.7852i 
2.7852i 

-1.9879 
1.9879 
-1.7218i 
1.7218i 

-0.5743 
0.5743 
-0.9929i 
0.9929i 

0.32 -4.1075 
4.1075 
-3.0214i 
3.0214i 

-1.5240 
1.5240 
-1.4699i 
1.4699i 

-1.0487 
1.0487 
-1.1890i 
1.1890i 

0.12 3  

4  

1  

2  

-3.8416 
3.8416 
-2.8570i 
2.8570i 

-1.8817 
1.8817 
-1.6638i 
1.6638i 

-0.6742 
0.6742 
-1.0303i 
1.0303i 

0.36 -4.1302 
4.1302 
-3.0331i 
3.0331i 

-14669 
1.4669 
-1.4398i 
1.4398i 

-1.1290 
1.1290 
-1.2257i 
1.2257i 

0.16 3  

4  

1  

2  

-3.9236 
3.9236 
-2.9098i 
2.9098i 

-1.7943 
1.7943 
-1.6159i 
1.6159i 

-0.7601 
0.7601 
-1.0646i 
1.0646i 

0.4 -4.1461 
4.1461 
-3.0401i 
3.0401i 

-1.4122 
1.4122 
-1.4112i 
1.4112i 

-1.2476 
1.2476 
-1.2816i 
1.2816i 

0.2 3  -3.9874 -1.7177 -0.8375 0.48 -4.1609 -1.3088 -2.2503 
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4  

1  

2  

3.9874 
-2.9501i 
2.9501i 

1.7177 
-1.5741i 
1.5741i 

0.8375 
-1.0967i 
1.0967i 

4.1609 
-3.0417i 
3.0417i 

1.3088 
-1.3580i 
1.3580i 

2.2503 
-1.8062i 
1.8062i 

i.e., 1L  is still unstable as is known in RTBP. The 

magnitude of U U    is decreasing for a very short 

interval of mass ratio, then increasing with respect to 
the increase in the mass ratio. While in Fig. 8, the 

curve shows that the  0U U     for whole domain 

of the mass ratio, i.e., 2L  is still unstable as is known 

in RTBP. Its magnitude is decreasing with respect to 
the increase in the mass ratio. 

Analysis of the Fig. 9 and Fig. 10 

In Fig. 9, Considering the oblateness effect only and 
ignoring the triaxiality effects we get the smallest 

effects in magnitude onU U   , while ignoring the 

oblateness and considering only the triaxiality 
perturbations we get the largest effects  
 

in magnitude on  U U   , but it still negatives i.e.  

 

0U U     for whole domain of the mass ratio, i.e., 

1L  is still unstable as is known in RTBP. The general 

trend of all curves are as follows: the bigger the 

gravitational harmonics  1 2, ,  2A  the bigger the 

perturbations on  U U    The magnitude of U U    

is decreasing for a very short interval of mass ratio, 
then increasing with respect to the increase in the 
mass ratio. While in Fig. 10, the dynamics of 

U U    seems inverse of Fig. 7, but the dynamical 

behavior of 2L   does not change from. 

 
 

 
 
 

Fig. 5. The variations in U U    of 1L  point 

versus the mass ratio   at 2 0.0024A  , 

1 0.0004  , 2 0.0003   and relativistic 

corrections 

 
 

Fig. 6. The variations in U U    of 2L  point 

versus the mass ratio   at 2 0.0024A  , 

1 0.0004  , 2 0.0003   and relativistic 

corrections 
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Fig. 7. The variations in U U    of 1L  point 

versus the mass ratio  , at different values

1 2, ,  2A and relativistic corrections 

 
 

Fig. 8. The variations in U U    of 2L  point 

versus the mass ratio  , at different values

1 2, ,  2A  and relativistic corrections 

 
 

Fig. 9. The variations U U    of 1L  point versus 

the mass ratio  at different values 1 2, ,   2A  

and relativistic corrections 

 
 

Fig. 10. The variations in U U    of 2L  point 

versus the mass ratio  at different values

1 2, ,  2A and relativistic corrections 

 
 

 
 

Fig. 11. The variations in U U    of 3L  point 

versus the mass ratio  at 2 0.0024A  ,

1 0.0004  , 2 0.0003  and relativistic 

corrections 
 

 
 

Fig. 12. The variations in U U    of 3L  point 

versus the mass ratio  at different values

1 2, ,  2A and relativistic corrections 
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Fig. 13 The variations in U U    of 3L   point versus the mass ratio  at different values 1 2, ,  2A

and relativistic corrections 

Analysis of the Fig. 11, Fig. 12 and Fig. 13 

The curve in Fig. 11 shows that the  0U U     for 

whole domain of the mass ratio, i.e., 3L  is still 

unstable as is known in RTBP. Its magnitude is 
increasing with respect to the increase in the mass 
ratio. While in Fig.12, the curve shows that the  

0U U     for whole domain of the mass ratio, i.e., 

3L  is still unstable as is known in RTBP. Its 

magnitude is increasing with respect to the increase in 
the mass ratio. The effect of changing the oblateness 
and the triaxiality of the primaries are clear from the 
figures, see Fig.12.  In Fig.13 Considering the 
oblateness effect only and ignoring the triaxiality 
effects we get the smallest effects in magnitude on 

U U   , while ignoring the oblateness and 

considering only the  
triaxiality perturbations we get the largest effects in 

magnitude on  U U   , but it still negative i.e. 

0U U     for whole domain of the mass ratio, i.e. 

3L  is still unstable as is known in RTBP. 

 

3. CONCLUSION 
 
In conclusion, firstly, we have treated the 
problem of the stability of collinear equilibrium 
points of the RTBP under the influence of 
triaxiality of the more massive primary, 
oblateness of the less massive primary and the 
relativistic corrections. Secondly, we have built 
up the potential like function of the problem     
and computed the mean motion of the problem. 
Moreover, we have constructed the equations of 
motion of the problem. To study the stability of 
the current problem, we linearized the equations 
of motion around the collinear points. In addition, 
we have derived the characteristic equation of 

the collinear points. Our study revealed the 
existence of two real and two imaginary roots of 
the characteristic equation as deduced from the 
plotted figures in the manuscript. We have 
computed some selected roots corresponding to 
the eigenvalues based on some selected values 
of the perturbing parameters. These eigenvalues 
have reflected the instability nature of the 
collinear points. Finally, as seen from the curves 
plotted in Figs. 5- 13, that the value of 

, ,L LL U U
  

  M is negative in the whole 

domain of the mass ratio (0,0.5)  under the 

considered model of perturbations. i.e., it 
ensures the negativity of U U    thus the 

conclusion of instability of the collinear points is 
true. Also, tables 1 and 2 revealed the existence 
of two real and two imaginary roots of the 
characteristic equation that means the collinear 
points are unstable. 
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