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Abstract

In this study, we derive a new representation for the Euler-Mascheroni constant and present various
expressions for the classical Euler-Mascheroni constant related to the Riemann zeta function. Also,
we proved that γ is not algebraic if the Schanuel conjecture is true.
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1 Introduction

The Euler-Mascheroni constant or simply the Euler constant, γ, was first investigated by Euler in
1734 and later by Mascheroni. As a mathematical constant, the Euler-Mascheroni constant appears
in the study of special functions such as the gamma and Riemann zeta functions and keeps recurring
in number theory and analysis [1] observed that the Euler-Mascheroni constant is in the class of
mathematical constants such as Ludolph’s number (π) and Euler’s number (e) and has applications
in general theory of relativity and quantum theory.

It is known that π and e are irrational and transcendental, but little is known about the algebraic
properties of the Euler-Mascheroni constant. An algebraic number is a complex number which is a
root of a polynomial with rational coefficients and a transcendental number is a complex number
which is not algebraic. It remains an open problem whether or not the Euler-Mascheroni constant
is irrational, transcendental or algebraic.

Euler-Mascheroni constant, γ, is defined as

γ = lim
n→∞

(
− ln(n) +

n∑
j=1

1

j

)
. (1.1)

Now, other representations of the Euler-Mascheroni constant are given by

γ = lim
n→∞

(Hn − ln(n)) , (1.2)

=

∞∑
n=2

(−1)n

n
ζ(n), (1.3)

where Hn is the nth harmonic number and ζ(n) is the Riemann zeta function.

Euler introduced (1.1) and later Lorenzo Mascheroni also studied this constant and gave a numerical
approximation for it up to 32 decimal places resulting in prominence as far as the Euler constant
is concerned. [2] examined the Euler-Mascheroni constant, and described various mathematical
developments about this constant and its connection with arithmetic functions, the Riemann
hypothesis, random permutations, and random matrix products. In an essay on the Euler-Mascheroni
constant, [3] delved into the recurrence of this constant in multiple branches of mathematics and
intimated the possibility that, γ, could be transcendental. He also concluded that based on the
computation of γ and its exponential, it strongly indicates that they are irrational.

[4] presented a new sequence that converges to the Euler-Mascheroni constant using an approximation
of Pade type. They established lower and upper bound estimates between their sequence and the
Euler-Mascheroni constant. A brief survey on the history of the Euler-Mascheroni constant, its
applications and appearances in various mathematical settings appears in [5].

In this paper, a new series representation for the classical Euler-Mascheroni constant is derived
through a generalized gamma function established in [6]. The study points to the connection
between the Riemann zeta function and the Euler-Mascheroni constant.
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2 Materials and Methods

The Riemann zeta is defined as

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1 (2.1)

=
∏
p

(
1− p−s

)−1
, Re(s) > 1 (2.2)

where p is a prime number.

The derivatives of the Riemann zeta function is given by

ζ(k)(s) = (−1)k
∞∑
n=1

lnk n

ns
. (2.3)

The digamma function is given by the logarithmic derivative of the gamma function:

ψ(z) =
d ln Γ(z)

dz
=

Γ”(z)

Γ(z)
. (2.4)

The digamma function is defined as

ψ(z + 1) + γ =

∞∑
n=1

(
1

n
− 1

n+ z

)
, z ∈ C, (2.5)

where γ is the Euler-Mascheroni constant.

For |z| < 1,

ln Γ(z + 1) = −γz +

∞∑
k=2

(−1)kζ(k)

k
zk, (2.6)

= − ln(1 + z)− (γ − 1)z +

∞∑
k=2

(−1)k(ζ(k)− 1)

k
zk. (2.7)

Stirling numbers fascilitate expansion of ln Γ(z + 1) in a power series about z = 0. The Stirling
numbers of the first kind,s(m, j), is defined by the generating function as

lnj
(

1 +
z

n

)
=

∞∑
m=j

j!

m!
s(m, j)

( z
n

)m
, (2.8)

where |z| < 1.

Alternatively, Stirling numbers of the first kind are also defined as

1

j
lnj(1 + t) =

∞∑
n=j

s(n, j)
tn

n!
, (2.9)

or

lnj(1− t) =

∞∑
n=j

(−1)n

n!
s(n, j)tn. (2.10)
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From the above, we see that s(n, 1) = (−1)n−1(n− 1)!, s(n, n) = 1,
s(n, 2) = (−1)n(n− 1)!

∑n−1
j=1

1
j

and

s(n, 3) = 1
2
(−1)n+1

(
H2
n−1 −H

(2)
n−1

)
,

where Hn−1 is the (n− 1)th harmonic number and H
(2)
n−1 is a harmonic number of order 2.

[6] established a generalized gamma function as

Γk(z) = lim
n→∞

∏n
j=1 exp

(
1
k+1

lnk+1
(

1 + 1
j

)z)
exp

(
1
k+1

lnk+1 z
)∏n

j=1 exp
(

1
k+1

lnk+1
(

1 + z
j

)) (2.11)

and a functional equation as

Γk(z + 1) = exp

(
1

k + 1
lnk+1 z

)
Γk(z), (2.12)

where z ∈ C \ Z−U{0} and k ∈ N0.

Euler’s formula for calculating ζ(2k) is expressed as

ζ(2k) =
(−1)k(2π)2kB2k

2(2k)!
, (2.13)

where B2k are Bernoulli numbers.

An identity for ζ(2k + 1) was established in [7] as

ζ(2k + 1) =
(−1)1−k(2π)2k+1

2(2k + 1)!

∫ 1

0

B2k+1(t) cot(πt)dt, (2.14)

where k ∈ N.

[8] observes that if fn is a sequence in a measurable function space L+, then by the monotone
convergence theorem ∫ ∑

n

fn =
∑
n

fn

∫
fn. (2.15)

Lemma 2.1. (Lindemann-Weierstrass)

Given a positive integer n and distinct algebraic numbers α0, ..., αn. The numbers eα0 , ..., eαn are
linearly independent over the set of algebraic numbers, A for β0, ..., βn ∈ A not all zero.

Lemma 2.1 implies that

n∑
k=0

βke
αk 6= 0. (2.16)

Lemma 2.2. (Schanuel Conjecture)

Let z1..., zn be complex numbers that are linearly independent over the rational numbers Q. Then
the extension field Q (z1, ..., zn, e

z1 , ..., ezn) has transcendence degree of at least n where ez is the
complex exponential of z.
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The Lemma below was established as a Corollary in [3].

Lemma 2.3. For any positive integer n, the numbers lnπ and
√
nπ are linearly independent.

Remark 2.1. By letting n = 1 in lemma 2.3 implies that lnπ and π are transcendental.

For |z| < 1, [6] established that

lnk+1(j + 1)− lnk+1 j =
1

j
(k + 1) lnk j

+

∞∑
m=2

(
1

j

)m
1

m!

m∑
n=1

(k + 1)!

(k + 1− n)!
s(m,n) lnk+1−n j. (2.17)

In [9], the sine function is given as

sinx

x
=

∞∏
n=1

(
1− x2

n2π2

)
. (2.18)

3 Results and Discussion

We begin by establishing a new representation for the Euler-Mascheroni constant.

Theorem 3.1. The Euler-Mascheroni constant is given by

γ = lnπ − 2

∞∑
m=2

ζ(m)

m2m
, (3.1)

where ζ(m) is the Riemann zeta function.

Proof. From (2.11), we have

Γk(z) =
exp

(∑∞
j=1

z
k+1

lnk+1
(

1 + 1
j

))
exp

(
1
k+1

lnk+1 z
)
∗ exp

(∑∞
j=1

1
k+1

lnk+1
(

1 + z
j

)) . (3.2)

By (2.17), we obtain

Γk(z) =
exp

(∑∞
m=2

(
z
m!

)∑m
n=1

k!s(m,n)
(k+1−n)!ζ

(k+1−n)(m)
)

exp
(

1
k+1

lnk+1 z
)
∗ exp

(∑∞
m=2

(
zm

m!

)∑m
n=1

k!s(m,n)
(k+1−n)!ζ

(k+1−n)(m)
) . (3.3)

By letting z = − 1
2

and k = 0 yields

Γ

(
−1

2

)
=

exp
(
− 1

2

∑∞
m=2

(
1
m!

)∑m
n=1

s(m,n)
(1−n)! ζ

(1−n)(m)
)

exp
(
ln
(−1

2

))
exp

(∑∞
m=2

(
(− 1

2 )m

m!

)∑m
n=1

s(m,n)
(1−n)! ζ

(1−n)(m)

) ,

=
exp

(
− 1

2

∑∞
m=2

(
1
m!

)∑m
n=1

s(m,n)
(1−n)! ζ

(1−n)(m)
)

exp
(

ln
(
i2

2

))
exp

(∑∞
m=2

(
(− 1

2 )m

m!

)∑m
n=1

s(m,n)
(1−n)! ζ

(1−n)(m)

) ,
−2
√
π = −2 exp

(
1

2

∞∑
m=2

(−1)mζ(m)

m
+

∞∑
m=2

(−1)2mζ(m)

m ∗ 2m

)
.
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Further simplifying gives

√
π = exp

(
γ

2
+

∞∑
m=2

ζ(m)

m2m

)
. (3.4)

By applying logarithm on both sides of (3.4) and making γ the subject completes the proof.

Remark 3.1. If k = 0 and z = 1
2

in (3.3), we obtain

Γ

(
1

2

)
= 2 exp

(
−1

2

∞∑
m=2

(−1)mζ(m)

m
+

∞∑
m=2

(−1)mζ(m)

m ∗ 2m

)
. (3.5)

Simplifying further gives

√
π = 2 exp

(
−γ
2

+

∞∑
m=2

(−1)mζ(m)

m2m

)
. (3.6)

Taking logarithm on both sides of (3.6) and making γ the subject gives

γ = ln
4

π
+ 2

∞∑
m=2

(−1)m

m2m
ζ(m), (3.7)

which is a known representation of the Euler-Mascheroni constant also found in [10].

We observe that the series in (3.1) converges faster than that of the Euler-Mascheroni constant
given by (1.3). The Euler-Mascheroni constant, as a mathematical constant, keeps reoccurring
in the study of special functions and in analysis, supportive of the suitability of the constant
λ =

∑∞
m=2

ζ(m)
m∗2m in numerical calculations where γ converges slowly.

By the use of infinite series calculator (www.wolframalpha.com/widgets), the constant λ converged
to 0.283757.

Next, we present a new representation of the constant, eγ , in corollary 3.2.

Corollary 3.2.

eγ =
π

e2λ
, (3.8)

where γ is the Euler-Mascheroni constant and λ =
∑∞
m=2

ζ(m)
m∗2m

Proof. From (3.1), we obtain

π = eγe2
∑∞
m=2

ζ(m)
m∗2m . (3.9)

By making eγ the subject in (3.9) completes the proof.

The constant eγ is vital in number theory and relates to the Marten’s third theorem in the following
form:

eγ = lim
n→∞

1

ln pn

n∏
i=1

pi
pi − 1

, (3.10)

where pn is the nth prime number.

Following Theorem 3.1, we present various representations of the Euler-Mascheroni constant.
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Theorem 3.3.

γ = ln
(

ln(i)−2i
)
− 2

∞∑
m=2

ζ(m)

m2m
, (3.11)

where i2 = −1.

Proof. Given Euler’s identity, we obtain

π = ln(i)−2i. (3.12)

Substituting (3.12) into (3.1) completes the proof.

Theorem 3.4.

γ = ln
1

2
− 2ζ′(0)− 2

∞∑
m=2

ζ(m)

m2m
. (3.13)

Proof. [11] established that

ζ
′
(0) = −1

2
ln 2π. (3.14)

By making lnπ the subject, we get

lnπ = − ln 2− ζ′(0). (3.15)

Substituting (3.15) into (3.1) completes the proof.

Theorem 3.5.

γ = ln
1

2
+ 2

∞∑
m=2

(
lnm− ζ(m)

m2m

)
. (3.16)

Proof. For k = 1 and z = 0, (2.3) becomes

ζ′(0) = −
∞∑
m=1

lnm. (3.17)

which yields

−1

2
ln 2π =

∞∑
m=1

lnm. (3.18)

Making lnπ the subject, we obtain

lnπ = ln
1

2
+

∞∑
m=1

lnm2. (3.19)

Substituting (3.19) into (3.1) completes the proof.

Theorem 3.6.

γ = ln
√

6 +
1

2
ln
∏
p

(
1− p−2)−1 − 2

∞∑
m=2

ζ(m)

m2m
. (3.20)
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Proof. Substituting s = 2 into (2.1) gives

ζ(2) =
∏
p

(
1− p−2)−1

, (3.21)

and further yields

π2

6
=
∏
p

(
1− p−2)−1

. (3.22)

Applying logarithm on both sides of (3.22), we get

lnπ =
1

2
ln 6 +

1

2
ln

(∏
p

(
1− p−2)−1

)
. (3.23)

Substituting (3.23) into (3.1) ends the proof.

Remark 3.2. Comparing (3.13) and (3.23), we get

ζ
′
(0) = ln

(√√
6

2
√

3

)
− 1

4
ln

(∏
p

(
1− p−2)−1

)
. (3.24)

Theorem 3.7.

γ = ln 2 +

∞∑
m=1

ln

(
4m2

4m2 − 1

)
− 2

∞∑
m=2

ζ(m)

m2m
. (3.25)

Proof. By letting x = π
2

and substituting into (2.18) , we obtain

π

2
= ln

(
∞∏
m=1

(
2m

2m− 1

2m

2m+ 1

))
, (3.26)

a Wallis product formula for π
2

.

Taking logarithm on both sides of (3.26) gives

lnπ = ln 2 + ln

(
∞∏
m=1

(
2m

2m− 1

2m

2m+ 1

))
. (3.27)

Substituting (3.27) into (3.1) ends the proof.

Theorem 3.8. The constant λ is given by

λ =

∞∑
m=1

(
lnm− ln

(
m− 1

2

)
− 1

2m

)
. (3.28)

Proof. Integrating (2.5) and using (2.15), we get

ln Γ(z + 1) + γz =

∞∑
m=1

( z
m
− ln(m+ z) + ln(m)

)
. (3.29)

By letting z = − 1
2
, (3.33) yields

lnπ − γ = 2

∞∑
m=1

(
− 1

2m
− ln

(
m− 1

2

)
+ lnm

)
. (3.30)

By substituting (3.30) into (3.1) completes the proof.
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New series representations emerge for the Euler-Mascheroni constant involving Bernoulli numbers
and Bernoulli polynomials.

Theorem 3.9.

γ = lnπ −
∞∑
k=1

(−1)k(π)2kB2k

2k(2k)!
+

∞∑
k=1

(−1)1−k(π)2k+1

(2k + 1)(2k + 1)!

∫ 1

0

B2k+1(t) cot(πt)dt, (3.31)

where B2k and B2k+1(t) are Bernoulli numbers and polynomials respectively.

Proof. For even values of m, (3.1) becomes

γ = lnπ − 2

(
∞∑
m=2

ζ(m)

2mm
−
∞∑
m=2

ζ(m+ 1)

2m+1(m+ 1)

)
. (3.32)

Let m = 2k for k ∈ N, then we obtain

γ = lnπ − 2

(
∞∑
k=1

ζ(2k)

22k2k
−
∞∑
k=1

ζ(2k + 1)

22k+1(2k + 1)

)
. (3.33)

Substituting (2.13) and (2.14) into (3.33), the proof is complete.

In Theorem 3.1, lnπ is a term in the new representation for the Euler-Mascheroni as well as the
constant λ =

∑∞
m=2

ζ(m)
m2m

. Understanding the nature of these constants can reveal the nature of
the Euler-Mascheroni constant. Already, it is observed that the constant λ is algebraic in nature.
The transcendentality of lnπ is shown in lemma 3.10.

Lemma 3.10. Let the Schanuel conjecture be true. Then, lnπ is transcendental.

Proof. Assuming lemma 2.2 and lemma 2.3 are true. This implies that π and lnπ are algebraically
independent over the set of rational numbers.

Thus, if lemma 2.2 and lemma 2.3 are true, then lnπ is transcendental.

Claim

γ is transcendental.

Proof. By (3.1) and Lemma 3.10, the proof is complete.

Remark 3.3. The Euler-Mascheroni constant is not algebraic.

4 Conclusions

A new series representation of the Euler-Mascheroni constant has also been derived and various
representations given. We also present a new representation for eγ which is useful in number theory
and proved that if lnπ is transcendental, then the Euler-Mascheroni constant is also transcendental.
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