

33(24): 60-69, 2021; Article no.JAMMR.78789 ISSN: 2456-8899 (Past name: British Journal of Medicine and Medical Research, Past ISSN: 2231-0614, NLM ID: 101570965)

Comparative Study of the Incidence of Co-infection of Soil-transmitted Helminths and *Helicobacter pylori* among Children and Women of Reproductive Age Living in Slum Settlements in Rivers State, Nigeria

Evelyn Orevaeghene Onosakponome^a, Amudatu Ambali Adedokun^{b*}, and Clement Ugochukwu Nyenke^a

^a Department of Medical Laboratory Science, Pamo University of Medical Sciences, Port Harcourt, Nigeria.

^b Department of Medical Laboratory Science, Fountain University, Osogbo, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. Authors EOO conceived the study. Author AAA designed the study protocol. Authors EOO collected the data, author CUN analyzed and author EOO interpreted the data. Authors AAA wrote the manuscript and author CUN revised the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMMR/2021/v33i2431224

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/78789

Original Research Article

Received 18 October 2021 Accepted 20 December 2021 Published 23 December 2021

ABSTRACT

Background: Soil-transmitted parasites, bacterial and other biological contaminants constitute the major causes of food-borne diseases often transmitted through food and water borne routes contaminated with faeces in developing countries. Children and Women of reproductive age (WRA) have high of getting infected and being potential sources of pathogenic micro-organisms.

Objective: This study was aimed to assess and compare the prevalence and risk factors of soiltransmitted helminths and *Helicobacter pylori* (*H. pylori*) among school-aged children and women of reproductive age at selected area in Eleme Local Government Area, Rivers State.

Methods: Cross-sectional study was conducted 580 participants were enrolled in May-August 2019. The gastrointestinal parasites were examined with wet mount and formol-ether concentration

^{*}Corresponding author: E-mail: amudatuadedokun@gmail.com;

techniques. Chi-square (χ 2) test was used to evaluate the association between categorical variables and infection prevalence using SPSS version 21, values were considered significant when the p-value was less than 0.05.

Results: The overall prevalence of soil-transmitted helminths among children was 12.3% (37/300) whereas WRA had 12.5% (35/280). *Trichuris trichura* was found to be prominent among the children with 18 (6.0%) while *Ascaris lumbricoides* 10 (3.6%) was most prevalent among WRA. Gender based Prevalence was 56.8% (21/37) and 43.2% (16/37%) for males and females respectively. The age-related prevalence is most common among age group 11-15 years. This prevalence was not statistically significant (p>0.05). *H. pylori* infection prevalence among the children and WRA were 11.7% (35/300) and 26.8% (75/280). The gender-related prevalence among the males had 18 (51.4%) and females 17 (48.6%) of the children group. The age group 1-5 years showed high prevalence of *H. pylori* than other groups. Among WRA, age group 23-27 and 33-37 years had equal prevalence of 20 (26.7%). In consideration of co-infection between children and WRA, *A. lumbricoides* coinfection *H. pylori* 15 (53.5%) was most prevalent among children while among women of reproductive age, hookworm co-infection *H. pylori* 8 (50.0%) was most prevalent. Risk factors that were statistically significant (p<0.05) were among those who wash hands with soap after playing/touching soil and those dewormed in the last three months.

children and WRA is low, however strategic planning of treatment regimen of community based should be encouraged.

Keywords: Co-infection; soil-transmitted helminths; helicobacter pylori; children; women of reproduction age; eleme.

1. INTRODUCTION

Soil-transmitted parasites are highly prevalent worldwide, particularly in low-income regions, such as most African, Southeast Asian, and Latin American countries [1]. Soil-transmitted parasites represent an overlooked health issue in Latin America, perhaps because they are not considered a component of the unfavorable conditions that perpetuate the cycle of poverty [2]. In fact, over the long term, diseases caused by these intestinal parasites can lead to diminished learning capacity in childhood and reduced economic productivity in adulthood [3,4].

Soil-transmitted helminths cause significant nutritional morbidity [5]. It has been estimated that the total number of disability-adjusted life years (DALYs) lost due to soil-transmitted helminths infections is between 1.2 and 10.5 million for *A. lumbricoides;* between 1.8 and 22.2 million for *T. trichiura;* and between 1.6 and 6.4 million for hookworm [6,7].

According to WHO, out of 17 Neglected Tropical Diseases (NTDs), eight diseases are intestinal parasitic infections. The population groups at high risk for STH morbidity include preschool children (1-4 years), school-age children (5-14 years) and women of reproductive age (WRA) (15-49 years) [8].

Helicobacter pylori is a Gram-negative bacterium that colonizes human gastric mucosa, leading

to chronic antral gastritis and peptic ulcer disease. lt is also associated with serious diseases, including gastric cancer and gastric mucosa associated lymphoid tissue lymphoma [9]. The organism is known to cause infection in humans worldwide [10]. The prevalence of H. pylori infection is about 50% globally [11]. The prevalence varies in relation to geographical location, ethnicity, socioeconomic ade and status of the population, being higher developing countries than in the developed ones [11]. H. pylori prevalence is estimated to be 79.1% in Africa, and the World Health Organization estimates that 600 million school children live in areas with a high risk of parasite transmission [12,13].

The frequency of co-infections adds to the complexity of understanding disease, as different organisms can have potentially synergistic or antagonistic interactions, impacting treatment, clinical outcomes, and susceptibility to other diseases [14,15,16,17]. Previous studies have shown the rates of co-infection with *Helicobacter pylori* (*H. pylori*) and one or more other intestinal parasites ranging from 22.4% to 44.3% in various populations [18,19,20,21,22]. Previous studies showed that geographic area, age, gender, race, educational level, sanitation, and socioeconomic status are among the factors that influence the prevalence of *H. pylori* infection [23].

Owing to the fact that, there is rarity of information on co-infections of soil-transmitted helminths and *H. pylori* among school age children and women of reproductive age in Eleme Local Government, this study was aimed to evaluate the incidence and risk factors of coinfection.

2. MATERIALS AND METHODS

2.1 Study Area

This was carried out in selected areas of Eleme Local Government Area, Rivers State. It has a coordinates of latitude $5^{\circ}04'60.00"$ N and longitude $6^{\circ}38'59.99"$ E (Fig. 1).

2.2 Study Design

It was a cross-sectional study carried out among 580 participants aged between 1 and 38 & above years enrolled from April - July 2019. Participants were categorized into sex and age groups. Questionnaire were given to the participants for information of their sociodemographic factors and personal hygiene.

A cross-sectional design was employed to analyse the prevalence of *Helicobacter pylori* and various soil-transmitted helminths and the relevant co-infection status among study participants. Various social and demographic risk factors were analysed in association with the coinfection prevalence rates among participants.

2.3 Sample Collections

Participants received leak proof, plastic containers to collect faecal samples with clear

instructions. All collected stool samples were screened for soil-transmitted helminths by using direct smear examination for stool samples, formol-ether sedimentation concentration technique. Two millilitres (2) mL blood sample was collected and the serum obtained and was examined serologically for *H. pylori* immunoglobulin G (IgG) antibodies.

2.4 Laboratory Analysis

2.4.1 Direct wet mount microscopy

A wooden applicator was used to mix another portion of the stool sample, approximately 2 mg, with 0.85% NaCl solution to suspend the stool. The uniform suspension was placed under a 22 \times 22-mm coverslip for evidence of parasitic infection. At x10 objective lens, the sample was examined for parasitic cysts, ova, and/or mobile trophozoites. At x40 objective lens, specific parasite species were identified.

2.4.2 Formol-ether concentration technique

In this technique, an applicator was used to homogenize about 1 g of the stool sample in 8 mL of formol saline. The resulting emulsification was allowed to stand for 10 minutes. It was sieved using a cotton gauze in a centrifuge tube. Three (3) mL of diethyl ether was added and mixed vigorously for 1 minute. This was followed by centrifugation for 1 min at 3000 rpm. The supernatant was decanted, the remaining sediment was subjected to microscopic examination for parasitic ova and larvae.

Fig. 1. Study location

2.4.3 H. pylori status

pvlori was detected using immune н chromatographic rapid test kits (Global H. pylori test kit, China), which is nationally approved and used for serological diagnosis of H. pylori infection. The manufacturers' instruction was strictly followed for diagnosis of H. pylori infection to determine the presence of antibodies. Monoclonal anti-H. pylori antibodies were used to capture antibodies while peroxidase conjugated monoclonal antibodies were used for detection. Approximately 1 to 2 drops of blood serum were added to the test well, in which a double antigen chromatographic lateral flow immunoassay was performed Following a 15-min wait period, the test was read for analysis. The presence of both control and test lines was defined as a positive result, even in the case of the control line being much darker than the test. However, if the only line present was the control, this test was considered negative.

2.5 Data Analysis

Data was analysed using SPSS Version 22. Associations between categorical variables and *H. pylori* was determined using the Chi square test. A p-value of <0.05 was considered statistically significant at 95% confidence interval.

3. RESULTS AND DISCUSSION

3.1 Results

A total of 700 questionnaires was distributed, only 580 questionnaires were returned. Of the 580 respondents, males were 115 (19.8%) while females are 465 (80.2%).

3.1.1 Socio-demographic results

A total of 700 questionnaires was distributed, only 580 questionnaires were returned. Of the 580 respondents, males were 115 (19.8%) while females are 465 (80.2%). There were 31.7% who were between 16 and 18 years of age (95), followed by 28.3% aged 1 to 5 (85), 21.7% between 6 to 10 years old (65) and 18.3% for 11 to 15 years old (55) among the children respondents. Among the women respondents, 30.4% who were between 33 and 37 years of age (85) followed by 20.7% between 23 and 27 years (58), while 18.3% between 28 and 32 years (54) and 38 & above and between 18 and 22 years had 15.3%(43) and 14.3%(40) respectively. Children of 33.3% had a history of been dewormed in the past three months (100). There were 80 children respondents who had hand washing with soap after toilet, 65 of them had their hands washed with soap after playing/touching soil, while 35 of them wash fruits and vegetables before eating and 45 put on footwear outside the house.

3.1.2 Distribution of *H. pylori* and soiltransmitted helminth infections

Overall, 12.3% (37/300) of the children were infected with at least one soil-transmitted helminths while the women of reproductive age had 12.5% (35/280).

Trichuris trichiura was the most prevalent soiltransmitted helminths (6.0%) followed by *Ascaris lumbricoides* (3.6%) among the children while hookworm was most prevalent (6.1%) followed *Ascaris lumbricoides* (3.6%) among the Women of Reproductive Age. *H. pylori* was detected in 11.7% of children (35/300) while WRA had 26.8%(75/280) (Table 1).

Among the male respondents, 20(55.6%) had soil-transmitted helminths while 18(51.4%) were infected with H. pylori. Of the 21 male respondents affected with soil-transmitted helminths, Trichuris Trichiura 11(61.1%) was most prevalent, followed by Ascaris lumbricoides 6(54.5%) and hookworm 3(42.9%). Similarly, respondents with soil-transmitted female helminths were 16(44.4%) and those with H. pvlori were 17(48.6%). The most prevalent was also T. Trichiura 7(38.9%) followed by A. lumbricoides 5(45.5%) and hookworm 4(57.1%).

In this study, children of age group 1-5years, had a total of 85 respondents of which 10(27.8%) were soil-transmitted helminths while *H. pylori* had 12(34.3%). Among the soil-transmitted helminths identified, *Trichuris Trichiura* 5(27.7%) was most prevalent and the least was *A. lumbricoides*. This may be as a result of insufficient immune responses to diseases and lack of personal hygiene among this age group.

Similarly, women of reproductive age group between 23 and 27 years had most prevalent of soil-transmitted helminths (25.7%), followed by age group between 18 and 22 years and 33 and 37 years (22.9%) each while age group between 28 and 32 years and 38 years & above had 20.0% and 8.5% respectively. However, findings were considered statistically insignificant (p=0.5777).

Age group	No. examined	H. pylori	STH	AL	TT	HW	Chi- Square
	oxumnou						(γ^2)
							(n-
							(p- valuo)
Childron							
Ciliuren							(0.5777)
Sov							(0.5777)
Mala	115	18(51 /)	21(56.8)	6(54 5)	11(61 1)	3(37 5)	
Female	185	17(48.6)	16(13.2)	5(45 5)	7(38.9)	5(62.5)	
Total	300	35(11 7)	37(12 3)	11(3.6)	18(6 0)	8(2 7)	
Children	000	00(1117)	07(12.0)	11(0.0)	10(0.0)	0(2.17)	
1 - 5 vrs	85(28.3)	12(34.3)	11(29.7)	3(27.2)	5(27.8)	2(25.0)	
6 - 10 vrs	65(21.7)	8(22.9)	7(19.0)	2(18.2)	3(16.7)	3(37.5)	
11-15 vrs	55(18.3)	6(17.1)	11(29.7)	4(36.4)	6(33.3)	1(12.5)	
16-18 vrs	95(31.7)	9(25.7)	8(21.6)	2(18.2)	4(22.2)	2(25.0)	
Total	300(100)	35(11.7)	37(12.3)	11(3.6)	18(6.0)	8(2.7)	
WRA			- \ -/	X = /	- \ /		
18 – 22	40(14.3)	15(20.0)	8(22.9)	2(20.0%)	1(12.5%)	5(29.4%)	
23 – 27	58(20.7)	20(26.7)	9(25.7)	2(20.0%)	3(37.5%)	4(23.5%)	
28 – 32	54(18.3)	8(10.6)	7(20.0)	2(20.0%)	2(25.0%)	3(17.6%)	
33 – 37	85(30.4)	20(26.7)	8(22.9)	3(30.0%)	2(25.0%)	3(17.6%)	
38 & above	43(15.3)	12(16.0)	3(8.5)	1(10.0%)	0(00.0%)	2(11.8%)	
Total	280	75(26.8)	35(12.5)	10(3.6)	8(2.8)	17(6.1)	

Table 1. Demographic characteristics of respondents

Legends: STH: Soil-transmitted helminths; WRA: Women of Reproductive Age; AL: Ascaris lumbricoides; TT: Trichuris trichiura; HW: Hookworm; p>0.05

H. pylori infections of the WRA was most prevalent among age group between 23 & 27 and 33 & 37 years (20.7%) and the least was between age group 28 and 32 years (10.6%) (Table 1).

3.1.3 Co-infection prevalence

Of the 300 School age children with complete data for both soil-transmitted helminths and *H. pylori*, 9.3% (28/300) were co-infected with soil-transmitted helminths and *H. pylori*, while 5.7% (16/280) of the women of reproductive age were co-infected with soil-transmitted helminths and *H. pylori* (Table 2).

3.1.4 Risk factors for soil-transmitted helminths and *H. pylori* co-infection among children and WRA

This study as assessed the association of potential risk factors with the prevalence of soil-transmitted helminths and *H. pylori* among children and women of reproductive age. Using Chi-Square statistic, it revealed that children age

and gender is not significantly associated with infection prevalence of (soil-transmitted helminths and H. pylori). However, risk factors such as washing hands with soap after playing/touching soil and deworming in the last three months have significant association with prevalence infection (soil-transmitted of helminths and H. pylori). Other risk factors are not significantly associated with prevalence of infection (soil-transmitted helminths and H. pylori) (Table 3).

Similarly, the Chi-Square statistic for women of reproductive age revealed that age is not significantly associated with prevalence of infection (soil-transmitted helminths and *H. pylori*). More so, the risk factors are not significantly associated with prevalence of infection (soil-transmitted helminths and *H. pylori*).

Consequently, the children and women of reproductive age were not significantly associated with prevalence of soil-transmitted helminths and *H. pylori* infection (Table 4).

Soil-Transmitted Helminths	No. Positive Children (%)	No. Positive WRA (%)
A. lumbricoides + H. pylori	15(53.5)	3(18.7)
Hookworm + <i>H. pylori</i>	8(28.6)	8(50.0)
T. trichiura + H. pylori	5(17.9)	5(31.3)
Total	28(9.3)	16(5.7)

Table 2. Co-infection of soil-transmitted h	helminths and <i>H. pylori</i> .	
---	----------------------------------	--

Number H. pylori STH Chi-Square (χ^2) p-value Examined Wash hands with soap after toilet 9 (11.3) Yes 80 (100) 10 (12.5) 0.33 0.5657 No 220 (100) 25 (11.4) 28 (12.7) Wash hands with soap after playing/touching soil Yes 65 (100) 18 (27.7) 8 (12.3) 6.77 0.0093* No 235 (100) 17 (7.2) 29 (12.3) Wash fruits and vegetables before eating Yes 35 (100) 10 (28.6) 0.06 0.8065 9 (25.7) 265 (100) 26 (9.8) 27 (10.2) No Deworm in the last three months 100 (100) 17 (17.0) 0.0051* Yes 6 (6.0) 7.85 No 200 (100) 18 (9.0) 31 (15.5) Wears footwear outside the house 20 (44.4) 19 (42.2) 0.24 0.6242 Yes 45 (100) No 255 (100) 15 (5.9) 18 (7.1)

Table 3. Risk Factors of Children Prevalence

Legends: H. pylori: Helicobacter pylori; STH: Soil-transmitted helminths; *: p<0.05

Table 4. Risk factors of women of reproductive age (WRA) prevalence

	Number	U Dulari	етц	. 2.	n voluo	
	examined	п. Руюп	311	Chi-Square (χ^2)	p-value	
Wash hands with soap after toilet						
Yes	91 (100)	20 (22.0)	5 (5.5)	1.98	0.1594	
No	189 (100)	55 (29.1)	30 (15.9)			
Wash hands with soap after playing/touching soil						
Yes	74 (100)	30 (40.5)	8 (10.8)	2.96	0.0853	
No	206 (100)	45 (21.8)	27 (13.1)			
Wash fruits and vegetables before eating						
Yes	45 (100)	22 (48.9)	10 (22.2)	0.01	0.9203	
No	235 (100)	53 (22.6)	25 (10.6)			
Deworm in the last three months						
Yes	70 (100)	37 (52.9)	16 (22.9)	0.11	0.7401	
No	210 (100)	38 (18.1)	19 (9.0)			
Wears footwear outside the house						
Yes	40 (100)	40 (100)	18 (45.0)	0.05	0.8231	
No	240 (100)	35 (14.6)	17 (7.1)			
Legends: H. pylori: Helicobacter pylori; STH: Soil-transmitted helminths						

3.2 Discussion

Children are of high risk for soil-transmitted helminths morbidity including preschool children (1-4 years), school-age children (5-14 years) [8]. Women of reproductive age are a large and diverse group of individuals who are at different stages in their reproductive life. Each stage presents different challenges for patient care programmes in terms of delivery strategies [24]. It is observed from the result that, the overall occurrence rate of soil-transmitted helminths among the children 12.3%. This is not in accordance with finding of study carried out among children in Ihite-Udi in Abia State, Nigeria [25] with prevalence of 30.0%. On the contrary, this study is higher than study conducted in Iran 7.1% [26] and Saudi Arabia 4.7% [27] respectively.

The women of reproductive age (WRA) had prevalence rate of 12.5%. This rate was found to be lower compared to the prevalence rate reported elsewhere in Nigeria [28], Ethiopia [29], Nepal [30] and Ghana [31] with prevalence of 43.4%, 31.5%, 18.3% and 13% respectively. The disparity in the prevalence could be due to variations in the specific type of study subjects, the methods employed for stool examination, and seasonal variation, geographical locations, socioeconomic status, laboratory analysis and prevention and control strategies used.

Simultaneous human colonization by soiltransmitted parasites and *H. pylori* are a common phenomenon. Moreover, the two groups of pathogens share the similar predisposing factors [16]. The prevalence of *H. pylori* however in this study is moderately low among the school age children (11.7%) and the women of reproductive age (26.8%).

In previous study in Turkey, lower occurrence rate of 7.61% was reported by Ugras and Miman [32]. The findings were not statistically significant (p>0.05). In our opinion, it means that soil-transmitted helminths and *H. pylori* has no significant association in infection rate.

Ascaris lumbricoides, Trichuris trichiura and hookworm were reported as the most prevalent soil-transmitted helminths identified in this study. This finding is in agreement with study by Ford et al. [30] in Nepal and Rahman et al. [33] in Bangladesh.

T. Trichiura was found to be more prevalent among school age children, on the contrary, women of reproductive age had *A. lumbricoides* as most prevalent soil-transmitted helminths.

Other studies have reported on associations with various species of protozoa and soil-transmitted helminths [34,16,35,36]. Prevalence of endemic variations have been in several studies that show different prevalence rates of species identified in different geographical locations may contribute to discrepancies in the clinical outcome of gastric cancer, possibly due to the ways in whichspecific species of microorganisms interact [36]. The distribution of soil-transmitted helminths and *H*.

pylori among the gender had 56.8% prevalence of soil-transmitted helminths and 51.4% prevalence of *H. pylori* among school age children. Studies in Nigeria, Palestine, Egypt, and Iran have found no differences between males and females regarding *H. pylori* infection [37,38,39,40].

On the age group prevalence among the children, 1-5yrs and 11-15yrs had 29.7% each for soil-transmitted helminths while *H. pylori* had 1-5yrs and 16-18yrs of 34.3% and 25.7% prevalence. Among the women of reproductive age, age prevalence of soil-transmitted helminthswas recorded among 23-27yrs with 25.7%, 23-27yrs and 33-37yrs had 26.7% prevalence each for *H. pylori*. On the contrary, Fadul et al. [41] reported high prevalence rate of 50% among age group >66 years old.

Among the school age children, Ascaris lumbricoides + H. pylori co-infection were the most prevalent with 53.5%, on the contrary, hookworm + H. pylori co-infection recorded 50.0% prevalent among the women of reproductive age. Seid et al. [20] and Ankarklev et al. [19]; reported co-infection of Giardia spp with H. pylori in children with 22.3%.

Other studies have reported on associations with various species of protozoa and soil-transmitted helminths [34,16,35,36].

In this study, the washing of hands with soap after playing/touching soil among other risk factors was found to be statistically significant (p<0.05). nevertheless, other studies in Ethiopia had sources of drinking water and maternal education to be significantly associated with the prevalence of co-infection of intestinal parasites and *H. pylori* [20,36].

Limitations of this study is the unavailability of the advance laboratory techniques for diagnosis to show real correlation of soil-transmitted helminths and *H. pylori*.

4. CONCLUSION

Ascariasis is more in occurrence among *H. pylori* participants in the children category compared to the women of reproductive age group. Infection rate was not affected by gender. The highest infection rate was reported in the 1-15 and 46-60 age group among *H. pylori* patient and 31-45 years age group among the control patients.

CONSENT

Written, informed consent was obtained from parents prior to delivering an interviewer led questionnaire to collect demographic and lifestyle information from parents of children and women of reproductive age.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

We thank the laboratory staff for their supports and the participants for making the work possible.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Barreto SM, Miranda JJ, Figueroa JP, Schmidt MI, Munoz S, Kuri-Morales PP, et al. Epidemiology in Latin America and the Caribbean: current situation and challenges. Int J Epidemiol. 2012;41(2):557-71. Available:https://doi.org/10.1093/ije/dys017 PMID: 22407860.
- Speich B, Croll D, Fu[°]rst T, Utzinger J, Keiser J. Effect of sanitation and water treatment on intestinal protozoa infection: a systematic review and meta-analysis. Lancet Infect Dis. 2016;16(1):87-99. Available:https:// doi.org/10.1016/S1473-3099(15)00349-7 PMID: 26404667.
- Berkman DS, Lescano AG, Gilman RH, Lopez SL, Black MM. Effects of stunting, diarrhoeal disease, and parasitic infection during infancy on cognition in late childhood: a follow-up study. Lancet. 2002;359(9306):564-71. Available:https://doi.org/10.1016/S0140-6736(02)07744-9 PMID: 11867110.
- 4. PAHO. Pan American Health Organization. Epidemiological profiles of neglected diseases and other infections related to poverty in Latin America and the Caribbean; 2009.

Available:https://www.

paho.org/per/index.php?option=com_docm an&view=download&alias=274epidemiological-profilesneglecteddiseases-other-infections-related-topoverty-in-latin-america-caribbean-4&category_slug=enfermedadesdesantendidas-001&Itemid=1031.

- Joseph SA, Mupfasoni D, Montresor A. Evaluation of the large-scale administration of drugs for the control of soil-transmitted helminthiasis: Review of the evidence of morbidity. PLoS Negl Trop Dis; 2017. (in press).
- Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disabilityadjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990– 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197-223. https://doi.org/10.1016/S01406736(12)616 89-4

PMID: 23245608.

 Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors. 2014;7(37). https://doi.org/10.1186/1756-33057-37

PMID: 24447578.

- WHO. Soil-transmitted helminthiases: eliminating soil-transmitted helminthises as a public health problem in children: progress report 2001-2010 and strategic plan 2011-2020. Geneva, Switzerland: World Health Organization; 2012. WHO/HTM/NTD/PCT/2012.4.
- Sethi A, Chaudhuri M, Kelly L, Hopman W. Prevalence of *Helicobacter pylori* in a first nations population in Northwestern Ontario. Can Fam Physician. 2013;59(4):e182-e7.
- 10. Blecker U. *Helicobacter pylori*-associated gastroduodenal disease in childhood. South Med J. 1997;90:570-76. DOI: 10.1177/000992289603500401.
- Hunt RH, Xiao SD, Megraud F, Leon-Barua R, Bazzoli F, van der Merwe S. et al. *Helicobacter pylori* in developing countries. World Gastroenterology Organization Global Guideline. J Gastrointestin Liver Dis. 2011;20(3):299-304.

DOI: 10.1097/MCG.0b013e31820fb8f6.

12. Sitotaw B, Mekuriaw H, Damtie D. Prevalence of intestinal parasitic infections

and associated risk factors among Jawi primary school children, Jawi town, North-West Ethiopia. BMC Infect Dis. 2019;19:341.

- Melese A, Genet C, Zeleke B, Andualem T. *Helicobacter pylori* infections in Ethiopia; prevalence and associated factors: a systematic review and metaanalysis. BMC Gastroenterol. 2019;19:8.
- 14. Chard AN, Baker KK, Tsai K, Levy K, Sistrunk JR, Chang HH, et al. Associations between soil-transmitted helminthiasis and viral, bacterial, and protozoal enteroinfections: a cross-sectional study in rural Laos. Parasit Vectors. 2019;2:216.
- Mcardle AJ, Turkova A, Cunnington AJ, 2018. When do co-infections matter? Curr Opin Infect Dis. 2018;31(3):209-15.
- 16. Krzyzek P, Gosciniak G. Frequency and immunological consequences of *Helicobacter pylori* and intestinal parasite co-infections: a brief review. Ann Parasitol. 2017;63(4):255-63.
- Queiroz DM, Rocha AM, Crabtree JE. Unintended consequences of *Helicobacter pylori* infection in children in developing countries: iron deficiency, diarrhea, and growth retardation. Gut Microbes. 2013;4(6):494-504.
- Zeyrek D, Zeyrek F, Cakmak A, Cekin A. Association of *Helicobacter pylori* and giardiasis in children with recurrent abdominal pain. Turkiye Parazitol Derg. 2008;32(1):4-7.
- Ankarklev J, Hestvik E, Lebbad M, Lindh J, Kaddu-Mulindwa DH, Andersson JO, Tylleskar T, Tumwine JK, Svard SG. Common coinfections of *Giardia intestinalis* and *Helicobacter pylori* in nonsymptomatic Ugandan children. PLoS Negl Trop Dis. 2012;6(8):e1780.
- 20. Seid A, Tamir Z, Kasanew B, Senbetay M. Co-infection of intestinal parasites and *Helicobacter pylori* among upper gastrointestinal symptomatic adult patients attending Mekanesalem hospital, northeast Ethiopia. BMC Res Notes. 2018;11:144.
- Sabet EA, El-Hadi H, Mohamed DS, Sheneef A, Fattouh M, Esmat MM. Gastritis; *Helicobacter pylori* or *Giardia lamblia* infection or both. Egypt J Med Microbiol. 2009;18(4):165-78.
- 22. Ibrahim A, Ali YB, Abdel-Aziz A, El-Badry AA. 2019. *Helicobacter pylori* and enteric parasites co-infection among diarrheic and non-diarrheic Egyptian children:

seasonality, estimated risks, and predictive factors. J Parasit Dis. 2019;43(2):198-208.

- 23. Brown LM. *Helicobacter pylori*: epidemiology and routes of transmission. Epidemiol Rev. 2000;22(2):283-97.
- Mofid LS, Gyorkos TW. The Case for Maternal Postpartum Deworming. PLoS Negl Trop Dis. 2017;11(1):e0005203. Available:https://doi.org/10.1371/journal.pn td.0005203 PMID: 28056019.
 - PMID: 28056019.
- 25. Ihemanma C. Prevalence of intestinal parasites and associated risk factors among school children (5-16 years) in Ihite-Udi, Ofeme Community in Umuahia North L. G. A., Abia State. Int J Res Rev. 2015;2(12):732-738.
- 26. Afrakhteh N, Marrhaba Z, Mahdavi SA, Garoosian S, Mirnezhad R, Eshkevar M, et al. Prevalence of *Enterobius vermicularis* amongst kindergartens and preschool children in Mazandaran Province, North of Iran. J Parasit Dis. 2016;40(4):1332-1336. DOI: 10.1007/s12639-015-0683-z
- Zaglool DAM, Khodari YAW, Gazzaz ZJ, Dhafar KO, Shaker HAS, Farooq MU.
 2011. Prevalence of intestinal parasites among patients of Al-Noor Specialist Hospital, Makkah, Saudi Arabia. Oman Med J. 2011; 26(3):182-185.
- Egwunyenga AO, Ajayi JA, Nmorsi OPG, Duhlinska-Popova DD.
 Plasmodium/intestinal helminth coinfections among pregnant Nigerian women. Mem Inst Oswaldo Cruz, Rio de Janeiro. 2011;96:1055-9.
- 29. Derso A, Nibret E, Munshea A. Prevalence of intestinal parasitic infections and associated risk factors among pregnant women attending antenatal care center at Felege Hiwot Referral Hospital, northwest Ethiopia. BMC Infect Dis. 2016;16:530. DOI: 10.1186/s12879-016-1859-6
- 30. Ford ND, Bichha RP, Parajuli KR, Paudyal N, Joshi N, Whitehead RD, Jr, et al. Factors associated with anemia in a nationally representative sample of nonpregnant women of reproductive age in Nepal. Matern Child Nutr. 2020;e12953. Available:https://doi.org/10.1111/mcn.1295 3
- Baidoo SE, Tay SCK, Obiri-Danso K, Abruquah HH. Intestinal helminth infection and anaemia during pregnancy: A community-based study in Ghana. J Bacteriol. 2010;2:9-13.

- Ugras M, Miman O. The prevalence of intestinal parasites in children with *Helicobacter pylori* gastritis evaluated retrospectively. Turkish J Parasitol. 2014;37(4):245-48. DOI: 10.5152/tpd.2013.3191
- 33. Rahman AS, Sarker SA, Ahmed T, Islam R, Wahed MA, Sack DA. Relationship of intestinal parasites, *H. pylori* infection with anemia or iron status among school age children in rural Bangladesh. Gastroenterol Hepatol Res. 2013;2(9).
- Yakoob J, Abbas Z, Khan R, Tariq K, Awan S, Beg MA. 2018. Association of *Helicobacter pylori* and protozoal parasites in patients with chronic diarrhea. British J Biomed Sci. 2018;75(3):1-5.
- Fuenmayor-Boscán AD, Hernández IM, Valero KJ, Paz AM, Sanrea LB, Rivero Z.
 2016. Association between *Helicobacter pylori* and intestinal parasites in an Añu indigenous community of Venezuela. Indian J Gastroenterol. 2016;35(2):106-12.
- 36. Ek C, Whary MT, Ihrig M, Bravo LE, Correa P, Fox JG. Serologic evidence that ascaris and toxoplasma infections impact inflammatory responses to *Helicobacter*

pylori in Colombians. Helicobacter. 2012;17(2):107-15.

- 37. Obiageli ER, Ivan EC. Prevalence of *Helicobacter pylori* and its associated peptic ulcer infection among adult residents of Aba, Southeastern, Nigeria. Int J Curr Microbiol Appl Sci. 2016;5(6):16-21.
- Mezeid N, Shaldoum F, Al-Hindi A, Mohamed FSA, Darwish ZE. Prevalence of intestinal parasites among the population of the Gaza Strip, Palestine. Ann Parasitol. 2014;60(4):281-89.
- Hamed ME, Hussein HM, El Sadany HF, Elgobashy AA, Atta AH. Seroprevalence of *Helicobacter pylori* infection among family members of infected and non-infected symptomatic children. J Egypt Soc Parasitol. 2013;43(3):755-66.
- 40. Shokrzadeh L, Baghaei K, Yamaoka Y, Shiota S, Mirsattari D, Porhoseingholi A, Zali MR.. Prevalence of *Helicobacter pylori* infection in dyspeptic patients in Iran. Gastroenterol Insights. 2012;4(1):24-27.
- 41. Fadul N, Ahmed M, Elamin T, Elfaki M, Elsayid M. Prevalence rate of *Giardia lamblia/Helicobacter pylori* co-Infections in Khartoum State, Sudan. Int J Sci Res. 2016;5(3):181-90.

© 2021 Onosakponome et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/78789