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ABSTRACT 
 

The infections caused by S. aureus have emerged as a grave challenge to human health 
worldwide. Further, conventional antibiotic therapies for S. aureus-mediated infections are 
gradually becoming ineffective due to the emergence of drug-resistant strains like methicillin-
resistant Staphylococcus aureus (MRSA). In search of alternative novel therapeutic strategies 
against S. aureus, the use of metal nanoparticles is proliferating. Among different synthesis 
methods of metal nanoparticles, chemical and physical methods are the most common. Despite 
reports of metal nanoparticles' efficacy against drug-resistant S. aureus strains, contemporary 
reports that the bacteria can evolve resistance to nanoparticles are a significant source of concern. 
There is also the issue of metal nanoparticle toxicity, which affects a variety of organisms. The 
clinical translatability of published research conclusions is another major hurdle in nanotherapeutics 
research. More research is needed to make nanoparticle-based treatments a viable and long-term 
therapy for infections caused by S. aureus. The present review provides an overview of the 
therapeutic application of physicochemically synthesized nanoparticles (electron beam, mechanical 
grinding, milling, spray pyrolysis, vapour phase synthesis, electrolysis, photochemical, solutions 
and gels, wound healing, anticancer, antioxidant, biosensing, cosmetics, antimicrobial, human 
health care and water treatment) of various metals (transition metals, post-transition metals, 
alkaline earth metals, rare earth metals, etc.) against various S. aureus strains. 
 

Review Article 
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ABBREVIATION 
 
MRSA       :  Methicillin-resistant Staphylococcus 

aureus,  
AgNPs : Silver nanoparticles,  
ZnO NPs : Zinc oxide nanoparticles,  
AuNPs : Gold nanoparticles,  
MBC : Maximum bactericidal concentration,  
DMF : Dimethylformamide,  
PAA : Polyacrylic acid,  
TBO : Toluidine blue O,  
CTAB : Cetyl trimethyl ammonium bromide,  
NiO NPs : Nickel oxide nanoparticles,  
ROS : Reactive oxygen species,  
PdNPs : Palladium nanoparticles   

MIC : Minimum inhibitory concentration 
 

1. INTRODUCTION 
 
Staphylococcus aureus (S. aureus) is a gram-
positive bacterium that belongs 
to Staphylococcus and was first isolated by 
surgeon Alexander Ogston from human pus in 
1880.  It is a standard part of the body's 
microbiota, commonly found in the upper 
respiratory tract and skin. It is one of the most 
frequent causes of skin and soft tissue infections 
that generally start as a minor boil or abscesses 
but may lead to severe life-threatening blood, 
muscle, and bone infections. Moreover, it may 
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spread to the other vital internal organs such as 
the brain, lungs, hearts, etc [1,2]. Endocarditis, 
meningitis, osteomyelitis, pyomyositis, 
necrotizing fasciitis, impetigo, etc., are some 
significant diseases caused by S. Aureus [3,2]. It 
is the most commonly isolated bacterial strain 
from hospitalized patients in the United States 
from 1998 to 2005 [4] and the second most 
cause for nosocomial infections related deaths in 
the United States [5]. S. aureus can also form 
biofilm by colonizing both host tissue and artificial 
surfaces like medical implants.  
 
The biofilm-forming ability of S. aureus is an 
important virulence factor that provides 
resistance against antibiotics, allows bacterial 
persistence in host tissues, and helps the 
bacteria overcome host defense [6].  The 
severity of S. aureus-associated infections is 
further exacerbated by the emergence of 
antibiotic-resistant strains such as methicillin-
resistant Staphylococcus aureus (MRSA), 
vancomycin-resistant Staphylococcus aureus, 
vancomycin-intermediate Staphylococcus 
aureus, and delafloxacin-
resistant Staphylococcus aureus — a newly 
isolated strain from hospitals in Brooklyn, New 
York, USA [7]. Importantly, S. aureus has 
created a considerable economic burden on 
society and healthcare institutions due to the 
need for treatment and hospitalization [8,9]. The 
current antimicrobial approaches against S. 
aureus are plagued with multiple problems, such 
as human toxicity, bacterial resistance, and 
inadequacy against bacterial biofilms [10,11].  

 
The World Health Organization [12] emphasized 
that methicillin-resistant Staphylococcus aureus, 
vancomycin-resistant Staphylococcus aureus, 
vancomycin-intermediate Staphylococcus 
aureus are among the high-priority multi-drug 
resistant organisms that demand coordinated 
efforts in the research and development of new 
antibiotics and novel therapeutic approaches.  

 
Nanomedicine is one such novel approach that 
has been exploited by numerous studies to 
combat S. aureus. Nanomedicine is a fast-
growing multidisciplinary field combining material 
science, chemical science, pharmacological 
science, and biological science. It is the 
application of nanotechnology in medicine, 
serving clinical roles in screening, diagnosis, 
management, and therapy of diseases [13-16]. 
Over conventional medicine, nanomedicines 
offer better solubility and bioavailability, fewer 
side effects, and a lower likelihood of 

development of resistance by the biological 
system against them [17,18]. Further, 
nanomedicines, particularly nanoparticles (NPs), 
have been explored and, in some cases, 
approved. By the concerned agencies after 
successful clinical trials for treating various 
medical conditions. Such as cancer, infectious 
diseases, renal diseases, immune disorders, 
endocrine and exocrine disorders, 
neurodegenerative disorders, diabetes, and 
cardiovascular diseases [19-22]. Nanoparticles 
are structures with a size range from 1 to 100 nm 
(although some studies include molecules up to 
1000 nm with specific properties under the 
definition of nanoparticles) and play a leading 
role in nanomedicine [23,24]. In this review 
paper, we have discussed the use of metal 
nanoparticles synthesized by chemical and 
physical methods for inhibiting the growth of S. 
aureus. Further, the review mainly focuses on 
the therapeutic use of monometallic 
nanoparticles against S. aureus infection. 
 

2. CHEMICAL AND PHYSICAL 
SYNTHESIS OF NANOPARTICLES 

 
Depending on the starting material used in the 
reaction, nanoparticles can be synthesized by 
either a top-down or bottom-up approach. The 
physical method represents top-down strategy, 
whereas the chemical method can be applied in 
both top-down and bottom-up strategies of 
nanoparticles synthesis [25-28]. Physical 
methods include the preparation of nano-sized 
structures by breaking-down bulk materials. 
Mechanical ball milling, electrospraying, physical 
vapor deposition (sputtering, electron beam 
evaporation, pulsed laser deposition), inert gas 
condensation, melt mixing, laser pyrolysis, and 
flash spray pyrolysis are some of the most 
frequently used physical methods for the 
fabrication of nanoparticles [26].   
 
The chemical synthesis of nanoparticles 
generally involves the reduction of metal ions in 
aqueous or non-aqueous solutions into their 
metallic form in the presence of a reducing agent 
and stabilizing agent. Such as polyvinyl alcohol 
(PVA), polyvinyl pyrrolidone (PVP), sodium 
dodecyl sulfate (SDS), dodecanoic acid (DDA), 
surfactin, etc., which prevent aggregation of 
nanoparticles [29]. The common reducing agents 
used in the chemical synthesis are ascorbic acid, 
dimethylformamide (DMF), ethylene glycol, 
hydrazine hydrate, sodium borohydride (NaBH4), 
sodium citrate, polyols, etc [30,29]. Sol-gel 
method, microwave-assisted synthesis, 
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sonochemical synthesis, microemulsion method, 
hydrothermal and solvothermal methods, polyol 
synthesis. The chemical reduction method, 
chemical vapor deposition technique, and 
supercritical fluid precipitation method are the 
most routinely used chemical methods for 
synthesizing nanoparticles [31]. The metallic 
nanoparticles synthesized via physical and 
chemical methods have shown promising results 
in controlling S. aureus growth (Fig. 1). 
 
This review catalogs the antibacterial application 
of metal (gold, silver, copper, zinc, iron, and other 
transition metals; post-transition metals; rare-
earth metals; alkaline earth metals) nanoparticles 
fabricated through either chemical or physical 
methods against S. aureus infection (Fig. 2). 
 

3. SILVER-BASED NANOPARTICLES  
 
Silver has been known to humanity for its 
antibacterial property for hundreds of years. 
Many silver-based nanoparticles have been 
prepared by chemical or physical methods to 
kill S. aureus. Hwang and group [32] reported 
that chemically synthesized spherical-shaped 
silver nanoparticles (AgNPs) have a mean size of 
3 nm. In combination with antibiotics (ampicillin, 
chloramphenicol, and kanamycin), inhibit the 
growth of and biofilm formation by S. aureus. 
Guzman et al. [30] synthesized AgNPs with a 
size between 10 and 20 nm from the chemical 
reduction of aqueous silver nitrate solution in the 
presence of reducing agents hydrazine hydrate 
and sodium citrate, and stabilizer SDS. The 
authors reported excellent antibacterial activity 
for the AgNPs against both S. aureus and drug-
resistant strain MRSA. 
 
Further, according to the authors, the silver ions 
released by AgNPs and the affinity of silver with 

sulfur and phosphorus groups present in the 
bacterial cell membrane were responsible for the 
bactericidal effect of AgNPs against S. 
aureus and MRSA [30]. Chudobova and group 
[33] synthesized silver phosphate nanoparticles 
having a size between 200 and 300 nm via a 
chemical method. The silver phosphate 
nanoparticles inhibited the growth of S. aureus, 
with the minimum inhibitory concentration (MIC) 
and total inhibitory concentration of 10 µM and 
300 µM, respectively [33]. AgNPs fabricated in a 
microwave-assisted method in the presence of 
ascorbic acid as reluctant and starch as 
stabilizers exhibited antibacterial properties 
against S. aureus in disk diffusion assay [34]. 
Wady and group [35] synthesized AgNPs in a 
chemical reduction method that utilized sodium 
borohydride as a reductant and PVA as a 
stabilizing agent. The authors reported the 
bacteriostatic and bactericidal effect of AgNPs 
on S. aureus and MRSA planktonic cells. Ayala-
Núñez and group [36] found that the size of 
AgNPs affects its antibacterial property 
against S. aureus. The authors used AgNPs in 
three different sizes: 10 nm, 30-40 nm, and 100 
nm. The smallest-sized AgNPs (10 nm) had the 
highest antibacterial activity against MRSA. They 
were non-toxic to the HeLa cells, whereas 
AgNPs with large sizes (30-40 nm and 100 nm) 
had a moderate effect on MRSA and had a toxic 
effect on HeLa cells [36].   

 
Similar to the size, the shape of AgNPs also 
affects their antibacterial activity against S. 
aureus. For example, Gao et al. [37] synthesized 
spherical-shaped AgNPs in a chemical reduction 
method with L-ascorbic acid as the reluctant and 
PVP as the surface modifier. The authors 
demonstrated superior antibacterial activity for 
spherical-shaped AgNPs than triangle-shaped 
nanoplates versus S. aureus.  

 

 
 

Fig. 1. Schematic illustration of the various mechanisms of nanoparticles against 
Staphylococcus aureus 
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Fig. 2. Graphic representation of the various antibacterial metal nanoparticles against 
Staphylococcus aureus 

 
Bankier and group [38] showed the antibacterial 
effect of rod-shaped AgNPs prepared from 
thermal plasma techniques against S. aureus. 
Actis et al. [39] prepared, through two different 
chemical methods (a novel thermal method and 
polyol process), AgNPs in three different 
geometries: spherical with size 34.10±3.18 nm, 
triangular with size 28.80±4.89 nm, and cuboid 
with size 75.29±7.15 nm. The authors did not find 
any significant effect of shape on the 
antibacterial activity of AgNPs against S. aureus; 
however, MRSA showed higher susceptibility to 
cuboid-shaped AgNPs than either to spherical- or 
triangular-shaped AgNPs [39]. AgNPs can also 
be used to prepare surfaces to prevent the 
growth of S. aureus strains. In one such study, 
AgNPs coated on glass surfaces inhibited biofilm 
formation by clinically isolated strains MRSA and 
methicillin-sensitive S. aureus (MSSA) [40]. 
 

Similarly, Piçarra and groups [41] coated glass, 
polystyrene, and steel surfaces with AgNPs and 
noted good antibacterial activity for the coated 
surfaces against S. aureus. Combining AgNPs 
with antibiotics, drugs, blue light, or other 
chemical groups can increase AgNPs' 
antibacterial efficacy versus S. aureus. For 
example, Akram et al. [42] found that the triple 
combination of AgNPs (15-20 nm) blue light (460 
nm and 250 mW for one hour). Moreover, 
different antibiotics (amoxicillin, azithromycin, 

clarithromycin, linezolid, and vancomycin) more 
effectively killed clinical MRSA isolates in 
comparison with the double combination of 
AgNPs and antibiotics or AgNPs and blue 
light. Cavassin et al. [43] synthesized citrate-, 
chitosan-, and PVA-functionalized spherical 
AgNPs, respectively, and reported antibacterial 
activity for the functionalized AgNPs against 
oxacillin-resistant Staphylococcus aureus. 
Similarly, in another study, PEG-functionalized 
AgNPs of 14 nm exhibited the most miniature 
MIC (3.31±0.03 µg/mL) and thus the highest 
bactericidal activity compared with the T80-
functionalized AgNPs of 45 nm size and SDS-
functionalized AgNPs of 54 nm size against S. 
aureus [44].  
 
AgNPs functionalized with antibiotics such as 
ampicillin [45]. vancomycin [46-48]. cephradine 
[49] rifampicin [50] have been effectively utilized 
as antibacterial agents against S. aureus and 
MRSA. Li and group (2011) studied the 
mechanism of AgNPs against S. aureus and 
reported that AgNPs damage the cell membrane 
integrity, interfere with healthy cell metabolism, 
and condense the bacterial DNA. 
 

4. GOLD-BASED NANOPARTICLES  
 

Like silver, gold is another metal whose 
nanoparticles are extensively explored for its 
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antibacterial properties against S. 
aureus. Shamaila et al. [51] in a chemical 
method using NaBH4 as a reducing agent, 
synthesized gold nanoparticles (AuNPs) in two 
size ranges: 7-34 nm and 30-40 nm. Both types 
of AuNPs exhibited antibacterial activities 
against S. aureus, with MIC values of 3.92 µg/mL 
and 3.98 µg/mL for AuNPs with sizes 7-34 nm 
and size 30-40 nm, respectively. 
 

On the other hand, some studies found no or 
deficient antibacterial activity against S. 
aureus for naked AuNPs that is AuNPs without 
any surface modification [52,53]. Conjugation of 
AuNPs with antibiotics such as gentamicin [54] 
amoxicillin [55] ampicillin [56] vancomycin [57] 
streptomycin, and kanamycin [58,59] etc. have 
been shown to improve the antibacterial efficacy 
of both AuNPs and antibiotics against S. aureus. 
Darabpour's group [60] attached methylene blue 
dye to the surface of AuNPs and used the 
conjugated AuNPs in photodynamic antimicrobial 
chemotherapy to deactivate the MRSA biofilm. 
Kuo et al. [61] prepared gold nanorods coated 
with polyacrylic acid (PAA) and conjugated with 
toluidine blue O (TBO).  
 
The modified gold nanorods in the presence of 
633 nm HeNe laser caused photothermal 
deactivation of MRSA [61]. In two separate 
studies, antibiotic-loaded, antibody-conjugated, 
polymer-coated gold nano-constructs were 
combined with photothermal heating to kill S. 
aureus [62,63]. AuNPs conjugated with vascular 
endothelial growth factor A165 (VEGF-A165) and 
(11-mercaptoundecyl)-N, N, N-
trimethylammonium (11-MTA) cation showed 
wound healing property on MRSA-induced 
wounds in diabetic mice [64]. AuNPs have also 
been used in therapeutic systems devised to 
inhibit MRSA biofilm formation [65-67]. The 
shape of AuNPs affects its antibacterial 
properties against S. aureus. In one such 
exciting study, authors found flower-shaped 
AuNPs (40.6±2.2 nm) to have more potent 
antibacterial activity than sphere- and star-
shaped AuNPs towards S. aureus [69].  
 

In a similar study, the maximum antibacterial 
activity toward S. aureus was shown by gold 
nanocubes (zone of inhibition of 16.5 mm) 
followed by gold nanospheres (zone of inhibition 
of 13.5 mm) and gold nanostars (zone of 
inhibition of 12.5 mm) [70]. Similarly, other 
studies reported the therapeutic potential of gold 
nanorods with various surface modifications 
against S. aureus [71,72]. 
 

5. IRON- BASED NANOPARTICLES 
 

Iron nanoparticles have emerged as a promising 
antibacterial agent because of their superpara 
magnetic properties and biocompatibility [73,74]. 
Another advantage of magnetic nanoparticles is 
that they can be retrieved after being used in the 
treatment [75]. The commonly used iron oxide 
nanoparticles for antibacterial properties are α- 
Fe2O3 (hematite), γ- Fe2O3 (maghemite), and 
Fe3O4 (magnetite). Tran et al. [76] synthesized 
PVA-coated iron oxide nanoparticles (mixture of 
γ-Fe2O3 and Fe3O4) using a matrix-mediated 
method. The PVA-coated iron nanoparticles had 
the size of 9±4 nm and arrested the growth of S. 
aureus in the live/dead assay [77]. 
Rhombohedral-shaped Fe2O3 NPs with an 
average size of 35.16±1.47 nm were bactericidal 
against S. aureus at a maximum bactericidal 
concentration (MBC) value of 80±1.5 µg/mL [78]. 
Ravikumar and group [78] found a zone of 
inhibition in agar well diffusion assay for Fe2O3 
NPs (size, 9-11 nm) against S. aureus. Hematite 
NPs (50-110 nm) synthesized by pulsed laser 
ablation method in dimethylformamide (DMF) 
and SDS solutions showed excellent antibacterial 
activity toward S. aureus [79]. Similarly, Fe3O4 
NPs (9.7 nm) synthesized by flame spray 
pyrolysis method displayed antibacterial activity 
against S. aureus, with MBC value between 10 
and 100 µg/mL [80]. In another study, spherical 
magnetite NPs (50–100 nm) coated with oleic 
acid showed excellent anti-biofilm activity 
against S. aureus [81]. Similarly, EDTA-Na3-
functionalized magnetite NPs were found to have 
biofilm removing ability against MRSA [82]. Kim's 
group [83] conjugated magnetite NPs with anti-S. 
aureus protein-A antibody. Under the influence of 
heat generated by the high-amplitude, high-
frequency, alternating magnetic field, the 
conjugated magnetite NPs effectively killed S. 
aureus. They promoted wound healing in S. 
aureus-infected mouse model [83]. Iron oxide 
nanoparticles can also be used as a drug 
delivery vehicle to treat S. aureus-
associated infections [84]. For example, Manna 
and group [82]. used amine-functionalized, 
biocide-coated, non-spherical Fe3O4 NPs of 
varied shapes (cubic, disk-like, hexagonal, 
rectangular, and rod-like) to deactivate MRSA 
bacteria entirely in only two hours. Very recently, 
Nickel and group [83] synthesized magnetic 
nanoparticles (a mixture of Fe3O4 and γ-Fe2O3) of 
distinct shapes (spherical, cubic, and tetrapod) 
via thermal decomposition of iron oleate. The 
researchers used magnetic nanoparticles to 
transport biocidal agent cetyl trimethyl 
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ammonium bromide (CTAB) within the 
extracellular matrix of the bacterial cells to 
eradicate MRSA biofilms [84].  
 

6. NICKEL-BASED NANOPARTICLES 
 

Nickel-based nanoparticles have also been 
studied for their antibacterial activities toward S. 
aureus. Pang et al. [85] synthesized nickel oxide 
(NiO) nanotubes and nanoflowers from the 
precursor bis (dimethylglyoximato) nickel (II) and 
NiCl2, respectively. The NiO nanotubes exhibited 
more potent antibacterial activity with a MIC 
value of 6.25 µg/mL than NiO nanoflowers 
having a MIC value of 50 µg/mL against S. 
aureus. Baek and An [86] compared the 
antibacterial activities of nickel oxide 
nanoparticles (NiO NPs), copper oxide 
nanoparticles (CuO NPs), zinc oxide 
nanoparticles (ZnO NPs), and antimony trioxide 
nanoparticles (Sb2O3 NPs) against S. aureus. All 
tested metal oxide nanoparticles showed 
antibacterial activities against S. aureus, and the 
order of their antibacterial activities was as 
follows: CuO NPs > NiO NPs > ZnO NPs > 
Sb2O3 NPs [86] .Similarly, in another comparative 
study, Argueta-Figueroa and group [87] reported 
that. In contrast, copper NPs exerted a 
bactericidal effect on S. aureus; nickel NPs only 
showed a bacteriostatic effect on the bacteria. 
Mirhosseini and group [88] synthesized nickel 
nanoparticles (NiNPs) and nickel hydroxide 
nanoparticles (Ni(OH)2 NPs) of 5 nm and 75 nm 
size, respectively, by chemical reduction method. 
NiNPs exhibited higher antibacterial activity with 
the MIC and MBC values of 0.81 mg/mL and 
1.62 mg/mL than Ni(OH)2 NPs for which the MIC 
and MBC values were 6.5 mg/mL and 13 mg/mL 
[88].  
 

7. COPPER--BASED NANOPARTICLES 
 

Nanoparticles of copper metal have also 
emerged as potent nanotherapeutics against 
infectious diseases caused by microbes, 
especially S. aureus. Copper-based 
nanoparticles synthesized through various 
chemical and physical methods, such as flame 
spray pyrolysis method [80]. sol-gel method  [89] 
mechanical milling [90]. pulsed laser ablation 
method [91] chemical reducing method [87] 
hydrothermal technique [92] have been found to 
possess antibacterial activity against S. 
aureus strains. Kruk and coworkers [93] 
presented the effectiveness of monodispersed 
copper NPs (50 nm) synthesized by reducing 
copper salt with hydrazine in the aqueous SDS 
solution against MRSA. Spherical-shaped copper 

oxide nanoparticles (CuO NPs) with a size range 
from 5 to 10 nm were synthesized through the 
electrochemical reduction method. The 
nanoparticles showed good antibacterial activity 
against S. aureus [93] Azam et al. [77] revealed 
that CuO NPs restrict S. aureus growth in size- 
and concentration-dependent manner. CuO NPs 
exhibited higher antibacterial activity for Gram-
positive bacteria than for Gram-negative bacteria. 
Ren et al. [94] used thermal plasm technology to 
prepare CuO NPs. The CuO NPs were active 
against MRSA and other S. aureus strains, with 
MBC values ranging from 100 µg/mL to 2500 
µg/mL [94]. Chatterjee and coworkers [95] 
prepared spherical-shaped copper NPs with 56.2 
nm size by reducing CuCl2 in the presence of 
gelatin as a stabilizer. The copper NPs inhibited 
the growth of S. aureus, with the MIC and MBC 
values of 4.5 and 9 µg/mL, respectively. Usman 
et al. [96] synthesized copper NPs (2–350 nm) 
via chemical method using chitosan polymer as a 
stabilizer and reported the antibacterial activity of 
copper NPs toward MRSA. Nanoparticles of 
various oxide phases of copper (Cu, CuO, and 
Cu2O) were synthesized at different pH (3, 5, 7, 
9, and 11) in a low-temperature chemical 
reduction method by Moshalagae Motlatle et al. 
[97]. The researchers reported a difference in the 
bactericidal property of the tested nanoparticles 
against S. aureus. The highest zone of inhibition 
in disk diffusion assay was shown by copper 
nanoparticles formed at pH 7 [97]. Further, the 
authors suggested that the difference was due to 
the pH that affected surface charges on copper 
nanoparticles [97]. Copper-based nanoparticles 
have also been shown to inhibit biofilm formation 
and act against resistant S. aureus strains 
[98,99].  

 
8. ZINC-BASED NANOPARTICLES 
 
Zinc-based nanomaterials are additional 
nanotherapeutics that many studies have used 
against S. aureus infection. For instance, Baek 
and An [86] reported inhibition of S. 
aureus growth by zinc oxide nanoparticles (ZnO 
NPs) having a size range of 50 to 70 nm. 
Similarly, ZnO NPs of tiny size (3 nm) exhibited 
bacteriostatic and bactericidal activities toward S. 
aureus, with the MIC and MBC values of 0.5 
mg/mL and 8 mg/mL, respectively [100]. In a 
comparative antibacterial study against S. 
aureus, hexagonal-shaped ZnO NPs (19.89±1.43 
nm) showed maximum antibacterial activity 
followed by CuO NPs (29.11±1.61 nm), and the 
minor antibacterial activity was shown by Fe2O3 
NPs (35.16±1.47 nm) [77]. Pati and coworkers 
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synthesized spherical shaped ZnO NPs of 500 
nm size via wet chemical methods using zinc 
nitrate and sodium hydroxide as precursors and 
soluble starch as a stabilizing agent. The authors 
reported that ZnO NPs perturbed biofilm 
formation by both S. aureus and MRSA and 
substantially reduced the S. aureus bacterial load 
and inflammation in vivo skin infection mice 
model [101].  
 

Similarly, in another study, ZnO NPs reduced the 
bacterial load and promoted wound healing in an 
experimental mice model infected with S. 
aureus [102]. In Jesline et al.'s [103] study, ZnO 
NPs of size less than 100 nm showed good 
antibacterial activity against biofilm-forming and 
non-biofilm forming MRSA strains. Salina and 
group [104] reported that the antibacterial activity 
of ZnO NPs against S. aureus is pH and 
temperature-dependent. The authors observed 
that ZnO nanofluid formed by dissolving zinc 
oxide NPs in glycerol and ammonium citrate 
inhibited the growth of S. aureus in a 
concentration-dependent manner, and 
temperature increase and acidic pH can further 
improve the antibacterial effect of ZnO nanofluid 
on S. aureus [104]. ZnO NPs (20.4 nm) 
synthesized by flame spray pyrolysis method 
showed antibacterial activity against S. 
aureus, with MBC value between 1-10 µg/mL 
[80]. 
 

Similarly, very small-sized (3 nm) ZnO NPs 
synthesized via the sol-gel method exhibited a 
prominent antibacterial effect at the exponential 
phase of S. aureus. Reyes-Torres et al. [105] 
synthesized spherical ZnO NPs of 15 nm size 
using the mixture of LiNO3/NaNO3 as inorganic 
media and found the nanoparticles, alone and 
with the antibiotic ampicillin, to be effective 
against S. aureus. In a new study, Kadiyala et al. 
[106] showed the concentration-dependent killing 
of S. aureus by spherical and hexagonal shape 
ZnO NPs. The researchers found that the 
antibacterial activity of ZnO NPs against MRSA 
is not mediated by reactive oxygen species 
(ROS), as commonly reported, but by the 
regulation of energy metabolism pathways. Such 
as carbohydrate metabolism, amino acid 
biosynthesis, and pyrimidine biosynthesis 
pathway. Further, the authors also proposed that 
the changes in the energy metabolism of the 
bacteria could be due to the biomimetic role 
played by ZnO NPs in the bacterial cells [106]. In 
another new study, Choi and coworkers [107] 
synthesized novel caffeic acid-conjugated ZnO 
nanoparticles that inhibited the growth of both S. 
aureus and MRSA. Patra et al. [108] reported the 

microwave-assisted synthesis of ZnO NPs with 
hexagonal shape and size distribution of 18-20 
nm. The authors further conjugated ZnO NPs 
with antibiotic ciprofloxacin and found an 
excellent antibacterial activity for the conjugated 
nanoparticles against the clinically isolated 
multidrug-resistant strain of S. aureus [108]. De 
Souza et al. [109] utilized the sonochemical 
method to synthesize rod-shaped ZnO NPs, with 
a length of 145.1 nm and a diameter of 97.2 nm 
that showed a zone of inhibition in agar well 
against S. aureus. Horky et al. [110] investigated 
the efficacy against S. aureus and MRSA of zinc 
phosphate-based NPs that were prepared using 
different precursors: (NH4)2HPO4, 
Na2HPO4·7H2O, Na4P2O7, and Na5P3O10. Zinc 
phosphate-based NPs exhibited better 
antibacterial activity against S. aureus with IC50 
value ranging between 0.5 and 1.6 mmol/L, 
whereas against MRSA, the nanoparticles were 
less potent with IC50 value ranging from 1.2 to 
4.7 mmol/L [110]. 
 

9. ADDITIONAL TRANSITION METALS 
 
Physicochemically synthesized nanoparticles of 
transition metals other than silver, gold, iron, 
nickel, copper, and zinc have been less studied 
as antibacterial agents against S. aureus. 
Transition metals include titanium, palladium, 
cobalt, molybdenum, cadmium, vanadium, 
manganese, tungsten, zirconium, and platinum.  
 
Ghosh et al. [111] in a pyrolysis method using 
two different cobalt precursors, a coordination 
polymer and a dinuclear complex, synthesized 
two types of cobalt oxide nanoparticles (Co3O4 
NPS): square-shaped with a smaller size range of 
10-25 nm and hexagonal-shaped with a more 
extensive size range of 100-150 nm. Both types 
of Co3O4 NPS displayed bacteriostatic and 
bactericidal activity toward S. aureus. The MIC 
and MBC values were 128 µg/mL for square-
shaped Co3O4 NPS and 64 µg/mL and 128 
µg/mL, respectively, for hexagonal-shaped 
Co3O4 NPS [111]. Similarly, Co3O4 NPS of 11.5 
nm size synthesized by flame spray pyrolysis 
method showed antibacterial activity against S. 
aureus, with an MBC value of 100 µg/ml [80]. In 
a recent report, researchers fabricated cobalt 
nanosuspension from three different cobalt-
based metallosurfactants -CoCTAC 
(bishexadecyltrimethylammonium cobalt 
tetrachloride), CoDDA (bis-dodecyl amine cobalt 
dichloride). Furthermore, CoHEXA 
(bishexadecylamine cobalt dichloride)-via 
microemulsion method without using any 
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reducing agents and reported antimicrobial 
activities against S. aureus for all the three 
cobalt-based nanosuspension [112]. 
 
Konieczny et al. [113] demonstrated size-
dependent inhibition of S. aureus growth by 
using a colony-reduction assay using PVP-
coated platinum nanoparticles NPs (PtNPs). 
Similarly, small-sized pectin-capped PtNPs (2-5 
nm) fabricated via chemical reduction method 
displayed excellent bacteriostatic effect at the 
MIC value of 31.2 µg/ml toward S. aureus [114]. 
Platinum nanoparticles disintegrate the 
cytoplasmic membrane and cell wall of S. aureus 
and induce leakage of intracellular components 
[115].  
 

Recently, transition metal molybdenum has also 
generated interest due to its limited toxicity to 
humans, biodegradability, and fast elimination 
from the body [116]. Irregularly shaped 
molybdenum oxide nanoparticles (MoO3 NPS) of 
46 nm size prepared via electrochemical 
reduction method were reported to be efficient in 
killing S. aureus in agar well diffusion assay 
[117]. Similarly, MoO3 NPS synthesized in a one-
step thermal decomposition method using 
ammonium heptamolybdate tetrahydrate as 
precursor inhibited the growth of both MSSA and 
MRSA at MIC value of 700 µg/ml [118]. Desai 
and coworkers [119] reported antibacterial action 
against S. aureus of MoO3 NPS nanocrystals 
having hexagonal rods with sea urchin-like 
morphology prepared through the chemical bath 
deposition technique. The coating of MoO3 NPS 
on the glass surface also exhibited good 
antibacterial activity against S. aureus [41]. 
 

Titanium nanoparticles have also been explored 
for their antibacterial properties against S. 
aureus [120,80]. The titanium nanoparticles are 
mainly utilized as an antibacterial coating on 
implants to keep them safe from infection after 
surgery [121]. Roy and group [120] synthesized 
titanium dioxide NPs (TiO2 NPs) via the sol-gel 
method using citric acid as a reducing agent and 
α-Dextrose saturated solution as a surfactant. 
The researchers observed that TiO2 NPs could 
enhance the effectiveness of common antibiotics 
(β-lactam, cephalosporins, aminoglycosides, 
glycopeptides, fluoroquinolones, azalides, 
macrolides, lincosamides, and sulphonamides) 
against MRSA [120]. Jesline's group reported the 
efficacy of commercially synthesized TiO2 NPs 
(<50 nm) against biofilm-forming MRSA strains. 
TiO2 NPs (12.2 nm) synthesized by flame spray 
pyrolysis method showed antibacterial activity 
against S. aureus, with an MBC value of >100 

µg/Ml [80]. TiO2 is commonly found in three 
different phases: anatase, brookite, and rutile. 
Nanoparticles of all the three-phase variants 
have been studied as antibacterial agents 
versus S. aureus. Haq et al. [122] prepared TiO2 
NPs via the chemical precipitation method at 
room temperature and investigated the effect of 
temperature on the antibacterial activity of the 
nanoparticles against S. aureus. Researchers 
found that TiO2 NPs at 120°C consisted of 
anatase phase with tetragonal morphology and 
were toxic for S. aureus, whereas TiO2 NPs at 
900°C contained only rutile phase with tetragonal 
geometry and exhibited no antibacterial activity 
against the bacteria [122]. On the contrary, Fei 
and group [123] found that cotton fabrics treated 
with rutile phase TiO2 nanocrystals of less than 
10 nm size prepared at room temperature 
showed bactericidal activity toward S. aureus. 
Similarly, in another study, thin films of anatase 
TiO2 NPs on glass and titanium surfaces in the 
presence of UV light showed photocatalytic 
bactericidal activity against S. aureus [124]. The 
biphasic brookite-anatase TiO2 NPs in 
combination with UV light showed better 
antibacterial activity than either TiO2 NPs or UV 
light alone against the drug-resistant strain of S. 
aureus [125]. 

 
Palladium is another transition metal whose 
nanoparticles have been exploited for their 
antibacterial activity toward S. aureus. Adams et 
al. [126] fabricated spherical palladium 
nanoparticles (PdNPs) from the precursor 
palladium acetate via a modified pyrolysis 
reaction. The researchers obtained PdNPs in 
three sizes (2.0±0.1 nm, 2.5±0.2 nm, and 3.1±0.2 
nm) and found that PdNPs at a concentration as 
low as 10-9 M could kill S. aureus. Moreover, the 
small-sized PdNPs (2.0±0.1 nm) were more toxic 
than the PdNPs with sizes of 2.5±0.2 nm and 
3.1±0.2 nm to S. aureus. Similarly, PdNPs 
having a size of 15.1 nm synthesized by flame 
spray pyrolysis method showed antibacterial 
activity against S. aureus, with MBC value in the 
range between 10 and 100 µg/mL [80]. Recently 
in a fascinating study, authors reported the 
shape dependence of PdNPs on its antibacterial 
activity toward drug-resistant S. aureus [127]. 
The authors used the hydrothermal method to 
prepare cube-shaped and octahedron-shaped 
PdNPs. The cube-shaped PdNPs were more 
effective than octahedron-shaped PdNPs in 
killing drug-resistant S. aureus. Further, 
according to Fang et al. [127] oxidase- and 
peroxidase-like properties of PdNPs generate 
reactive oxygen species that damage S. aureus.  
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Azhir et al. [128] investigated the effect of 
hausmannite manganese oxide nanoparticles 
(Mn3O4 NPs) (10–30 nm) prepared via 
precipitation method on S. aureus. The Mn3O4 
NPs inhibited S. aureus concentration-dependent 
with MIC and MBC values of 625 and 1250 µg/ml 
[128]. Aurora and group (2015) utilized the flame 
spray pyrolysis method to synthesize Mn3O4 NPs 
(15.2 nm), which showed antibacterial activity 
against S. aureus with MBC value 10-100 µg/ml. 
Cherian et al. [129] using the co-precipitation 
method, fabricated spherical-shaped manganese 
dioxide nanoparticles (Mn3O4 NPs) have sizes 
40.5–70 nm and found the nanoparticles toxic 
to S. aureus.  
 
Nanoparticles of cadmium oxide, another 
transition metal, were synthesized by Salehi and 
group [130] using a chemical method including 
cadmium sulfate as a precursor and CTAB as the 
surfactant. Cadmium oxide NPs (CdO NPS) 
inhibited the growth of S. aureus in a 
concentration-dependent manner, and at 20 
µg/ml, it ultimately killed S. aureus within 25-30 
hours [130]. Similarly, Nandhini and group [131] 
used the precipitation method to synthesize CdO 
NPs, effective against S. aureus. Abd et al. [132] 
prepared a thin film of CdO NPs with (50–110 
nm) antibacterial property against S. aureus. 
Rectangle shape CdO NPs prepared in a 
microwave-assisted hydrothermal method 
inhibited S. aureus growth in agar well diffusion 
assay [133].  
 
Vanadium is another transition metal whose 
nanoparticles have been utilized against S. 
aureus. For instance, via a hydrothermal method, 
Natalio et al. [134] prepared vanadium pentoxide 
nanowires (V2O5 NWs) of 300 nm length and 20 
nm width. The nanowires of V2O5 were found to 
mimic the role of enzyme vanadium 
haloperoxidases and cause significant reduction 
(96%) in S. aureus growth [134]. Wang and 
coworkers [135]. prepared metallic vanadium 
NPs, V2O3 NPs, VO2 NPs, and V2O NPS films by 
depositing them on quartz glass via the 
magnetron sputtering method. All nanofilms 
proved to be effective against MRSA and were 
further found to be non-toxic to mammalian cells, 
thus holding promises for therapeutic application 
in controlling implant-related infection caused 
by S. aureus [136].  
 
Zirconium nanoparticles represent another 
transition metal-based approach against S. 
aureus, although multiple studies on the 
antibacterial effect of zirconium-based 

nanoparticles toward S. aureus have shown 
contradictory results. For example, Ravikumar et 
al. [78] did not find any anti-S. aureus activity for 
commercial zirconium dioxide nanoparticles 
(ZrO2 NPs) with less than 100 nm size either in 
well diffusion assay or broth dilution assay. 
Similarly, neither Jangra et al. found any 
antibacterial activity against S. aureus for ZrO2 
NPs of two size ranges (5–30 nm and 15-20 nm), 
both synthesized by hydrothermal method. On 
the other hand, in the study of Fathima and 
group [137] chemically-synthesized spherical-
shaped ZrO2 NPs (15–21 nm) showed 
antibacterial activity versus S. aureus in disc 
diffusion assay. Similarly, agglomerated ZrO2 
NPs of 30 nm size synthesized by the sol-gel 
method exhibited good antibacterial activity on S. 
aureus [138]. Thakare and group [139] utilized 
the sol-gel method to fabricate tetragonal ZrO2 
NPs (35–60 nm). The nanoparticles were 
capable of arresting the growth of S. 
aureus bacteria [139]. 
 
Nanoparticles of transition metal tungsten can be 
effective against S. aureus. Aruoja et al. [80] 
reported the efficacy of tungsten trioxide 
nanoparticles (WO3 NPs) of 10.6 nm size 
synthesized by flame spray pyrolysis method 
against S. aureus, with an MBC value of more 
than 100 µg/mL ([80]. Similarly, in another study, 
tungsten nanoparticles (SNPs) (8.1±2.8 nm) at 
the MIC value of 1500 µg/mL inhibited the growth 
of S. aureus in direct spotting method and cup 
diffusion method [140].  Bankier et al. [38] did not 
find any antibacterial effect for tungsten carbide 
nanoparticles (250 nm, hexagonal) on S. 
aureus in flow cytometry dead assay. A recent 
study showed that tungsten oxide (WO3-x) 
nanodots could inhibit S. aureus in a 
concentration- and a time-dependent fashion 
[141]. 
 

10. POST-TRANSITION METALS 
 

Few studies have explored physicochemically 
synthesized nanoparticles of pure post-transition 
metals such as aluminum, bismuth, and tin 
against S. aureus.  
 

Ravikumar et al. [78] prepared aluminum oxide 
nanoparticles (Al2O3 NPs) and found antibacterial 
activity for the nanoparticles against S. 
aureus only in well diffusion assay but not in 
broth dilution assay. Aruoja et al. [80] used the 
flame spray pyrolysis method to synthesize Al2O3 
NPs of (11.4 nm) that showed anti-S. 
aureus antibacterial activity with an MBC value of 
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more than 100 µg/ml. Similarly, spherical Al2O3 
NPs (9.5 nm) arrested the growth and 
reproduction of clinically-isolated S. 
aureus strains, MRSA, and MSSA [142]. 
 

Campos and group [143] compared antibacterial 
activities of bismuth sulfide nanoparticles (Bi2S3 
NPs), metallic bismuth nanoparticles (BiNPs), 
bismuth oxide nanoparticles (Bi2O3 NPs), and 
silver nanoparticles (AgNPs) on S. aureus. In the 
study, both BiNPs and Bi2O3 NPs showed 
suitable antibacterial activities, whereas Bi2S3 
NPs exhibited minor antibacterial activity [143]. 
Kadhim [144] using laser ablation techniques, 
synthesized spherical-shaped BiNPs, and 
reported their effectiveness against S. aureus. 
Very recently, Vazquez-Munoz and coworkers 
[145] synthesized PVP-coated BiNPs with sizes 
ranging from 1.7 nm to 44.4 nm via a chemical 
reduction method. The nanoparticles exhibited 
excellent antibacterial activity against 
planktonic S. aureus cells at the MIC value of 1 
µg/ml, and they also inhibited biofilm formation 
by S. aureus [145]. Amininezhad and group [146] 
prepared spherical-shaped tin oxide 
nanoparticles (SnO2 NPs) by the solvothermal 
method and showed their antibacterial potential 
toward S. aureus. Similarly, Kumar et al. 
[147,148] also showed tetragonal rutile 
nanocrystals of SnO2 to have bactericidal activity 
on S. aureus bacteria. 
 

11. ALKALINE EARTH METALS 
 

Alkaline earth metals like calcium and 
magnesium at a nanoscale size have been found 
to possess the ability to kill S. aureus. For 
example, magnesium oxide nanoparticles (MgO 
NPs) (13.6 nm) synthesized by flame spray 
pyrolysis method showed antibacterial activity 
against S. aureus at the MBC value of more than 
100 µg/mL [80]. On the contrary, in Ravikumar et 
al. [78] study, MgO NPs of less than 50 nm size 
did not show any activity against S. aureus in 
healthy diffusion or broth dilution method. In 
another study, Bindhu et al. [149] reported the 
synthesis of well-dispersed spherical 
nanoparticles of magnesium oxide through a wet 
chemical reaction method. The magnesium oxide 
nanoparticles displayed antibacterial properties 
toward S. aureus [149]. Similarly, in the study of 
Nguyen et al. [150] MgO NPs (size 23±5 nm) 
exhibited bacteriostatic and bactericidal activities 
against S. aureus and MRSA. The MIC and MBC 
were 0.7 and 1.4 mg/ml against S. aureus; and 
1.0 and 1.4 mg/ml against MRSA [150]. In other 
studies, magnesium oxide nanoparticles were 
prepared from the wet chemical method 

[150,152] and microwave-assisted synthesis 
[153] were found to control the growth of S. 
aureus. 
 

12. RARE-EARTH METALS 
 

Rare earth metals-based nanoparticles are 
gaining widespread importance in biomedical 
applications because of their low toxicity and 
high chemical and thermal stability [154]. Limited 
studies have utilized pure rare-earth metals 
nanoparticles to destroy S. aureus. Studies have 
used them as a dopant to improve upon the 
various properties of other metal nanoparticles 
[155]. 
 

The studies on cerium oxide nanoparticles (CeO2 
NPs) as an antibacterial agent against S. 
aureus have shown conflicting results. 
Ravishankar et al. [156] synthesized spherical-
shaped CeO2 NPs by solution combustion 
technique using ceric ammonium nitrate as an 
oxidizer and ethylenediaminetetraacetic acid 
(EDTA) as fuel at a high temperature of 450°C. 
The researchers did not find any activity for CeO2 

NPs up to the concentration of 1000 µg/50 µl 
against S. aureus either in agar well diffusion 
assay or in broth dilution assay. On the other 
hand, Ravikumar et al. [78] reported inhibition 
of S. aureus by commercially available CeO2 
NPs in agar healthy diffusion test. However, the 
authors did not find any antibacterial activity of 
CeO2 NPs in the broth dilution method. In 
another interesting study, Masadeh and group 
[157] reported that the spherical-shaped CeO2 
NPs have a size in the range from 25 to 50 nm 
significantly reduced antibacterial activity of the 
antibiotic ciprofloxacin against MSSA and MRSA. 
The MIC values for ciprofloxacin against MRSA 
and MSSA planktonic culture were 0.10±0.04 
and 0.40±0.20 µg/mL. However, in the presence 
of CeO2 NPs, the MIC values increased many 
folds indicating a decrease in efficacy of the 
antibiotic against both MRSA and MSSA [157]. 
 

Balusamy et al. [158] in a comparative study, 
reported that spherical lanthanum oxide 
nanoparticles (La2O3 NPs) of size 100 nm 
showed antibacterial activity against S. aureus, 
whereas La2O3 bulk material having a size of 1 
µm was not effective against the bacteria. In 
another study, Dědková and group [159] 
prepared nanoparticles of gadolinium oxide 
(Gd2O3), samarium oxide (Sm2O3), and erbium 
oxide (Er2O3) in a simple thermal decomposition 
reaction and observed that all tested rare earth 
metals nanoparticles could inhibit the growth 
of S. aureus [160-167]. 
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Fig. 3. Schematic representation of the various antibacterial mechanisms of metal 
nanoparticles against Staphylococcus aureus 

These include (1) disruption of bacterial membrane and leakage of intracellular content, (2) reactive oxygen 
species (ROS) generation that cause break in DNA, protein degradation, etc. (3) disruption of electron transport 

chain, (4) release by certain meta nanoparticles of metal ions that further wreak havoc inside the cell, (5) 
alteration in the bacterial metabolic pathway, (6) inhibition of biofilm formation 

 
13. CONCLUSION 
 

Staphylococcus aureus causes various infections 
responsible for a significant number of deaths 
worldwide. The emergence of many drug-
resistant strains of S. aureus has made treating 
the associated infections very difficult. The failure 
of conventional antibiotics has led to novel 
therapeutic approaches, such as nanosize 
structures. In this review, we have highlighted the 
application of metal nanoparticles prepared 
through chemical and physical methods 
against S. aureus strains. Large metal 
nanoparticles can be synthesized through 
diverse chemical and physical methods. 
Although research in nanoparticle-based 
therapeutics for infectious diseases is growing at 
a breakneck pace, it is still far behind the use of 
nanoparticles for cancer therapy. Similarly, 
despite reports of the effectiveness of metal 
nanoparticles against S. aureus' drug-resistant 
strains, the recent reports that the bacteria can 
develop resistance against nanoparticles are a 

significant concern. Additionally, there is the 
issue of metal nanoparticle toxicity to multiple 
organs such as kidney, brain, muscle, bone, skin, 
liver, heart, spleen, etc. The other major 
challenge in nanotherapeutics research is the 
clinical translatability of published research 
findings. Therefore, there is opportunity for 
further research to make nanoparticles-based 
therapeutics a viable and long-term solution 
for S. aureus-associated infections. 
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