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Abstract

The spectral properties of a compact operator 7' : X — Y on a normed linear space resemble
those of square matrices. For a compact operator, the spectral properties can be treated fairly
completely in the sense that Fredholm’s famous theory of integral equations may be extended to
linear functional equations Tz — Az = y with a complex parameter A. This paper has studied
and investigated the spectral properties of compact operators in Hilbert spaces. The spectral
properties of compact linear operators are relatively simple generalization of the eigenvalues of
finite matrices. As a result, the paper has given a number of corresponding propositions and
interesting facts which are used to prove basic properties of compact operators. The Fredholm
theory has been introduced to investigate the solvability of linear integral equations involving
compact operators.
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1 Introduction

Let X be a normed linear space and T': X — Y  be a linear transformation. A point A € C is
said to belong to the resolvent set of T' (denoted by p(T')) if T'— AI is O- invertible. Thus

p(T)={X € C: (T — AI)} is O-invertible
The complement of p(T'), i.e. the subset C — p(T') is called the spectrum of 7" and represented
by the symbol o(T). Thus o(T) = {\ € C: (T — M) or (\I —T)} is not invertible. If X is an
eigenvalue of T, then there exists an x € X such that x # 0 and Tz = Az (z is called on eigenvector
corresponding to the eigenvalue A) [1].

Hence (T — A )z = 0 for an & # 0. Thus T — A is not one to one. Hence T — \I is not O-invertible.
Therefore, A is in the spectrum of T i.e. A € o(T). Thus X is an eigenvalue of T implies that
X € o(T). Thus the spectrum of T includes all the eigenvalues of T' [2].

In general, o(T') includes some points of C which are not even eigenvalues of T. For instance even
if T — A is a bijection for some A € C, if the set inverse (T — A\I)™* (which exists) is not bounded,
then A € o(T).

The null space nr_xr of the operator T' — Al is called the eigenspace of T corresponding to the
eigenvalue A [3].

Ilustration: We have seen that if X is a Banach space, T € B(z) and || > lim, o0 ||T"H% the
BI-T or T—BI is O-invertible [4]. Thus if || > lim—ee | 7" then 8 € p(T) (hmn%o IT™||" = ro(T)
is the spectral radius of T'). Thus if |8] > r-(T) = B € p(T)

Therefore, the complement of the spherical ball of radius r,(7T") consists of points belonging to
the resolvent set of T. Hence the spectrum o (T") of T must be contained inside the neighborhood

N (O,75(T)). This paper has studied and investigated the spectral properties of compact operators

on Hilbert spaces. It has introduced the famous Fredholm theory to investigate the solvability of the

linear integral equations involving compact operators. The definitions in this paper are all standard
and can be found in [5], [6], [7] , [8], [9], [10], [4].

2 Spectral Properties

The spectral theory for compact linear operators represents the most natural introduction to the
general spectral theory of linear operators in a Hilbert space.

Proposition 2.1. Let H be a Hilbert space and T € B(H). Then the following conditions are
equivalent dim (H) = oo :
(i) T is compact.
() ||T — Fo|| = 0 as n — oo.
(iii) There is a sequence (Fy) of operators of finite rank on (H) such that | T — Fyn|| — 0 as

n — Q.

Proof. (i) = (ii ) : Suppose (i) is satisfied. We know that e, —= 0. Since T is compact Te, > 0.
Using the Cauchy—Bunyakovsky—Schwarz Inequality we have

lim [(Ten,cn)| < lim [[Te,| = 0.
n— oo n— oo

(i) = (iii): Given a positive integer, consider the class H of all orthonormal sets E € (H) for
which

1
(Te.6)| = 1-(c € E)
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(We allow the void set as one possible choice of E). By the hypothesis, each E € H is a finite
set. Since the union of a strictly increasing sequence of sets in H is again a member of H (and
therefore finite) each such sequence terminates. It follows that H has a maximal element Eq. If
M is the (finite-dimensional) linear subspace of H generated by Eo, then |(Tx,z)| < ;= whenever
z € M* and ||z|| = 1; for otherwise H contains EoU{z}, contradicting the maximality of Fo. Then
|(Tz,z)| < 2 whenever z € M and ||z| < 1. From the relation

(Tu,v) = i[(T(u +v),u+v) — {(u—v,u—0))]+i[(T(u+i),u+iv) — (T(u—iv),u —iv)]
it follows that

|(Tu,v)| < = for u,v € M*, ||ul| <1, |jv]| < 1 (2.1)

S

By taking u = (I — P)z and v = (I — P)y, where p is the orthoprojector on H onto M, we deduce
from (2.1) that

1
(= P)TU = Py < X
whenever z,y € H, ||z|| <1 and ||y|| < 1. Then ||(I — P)T(I — P)|| < 1. The operator
F,=PT'+TP—- PTP

has finite rank and ||T' — F,.|| < 1. Since F, is compact and Bo(H) is closed in B(H), it follows
that T is compact. O

Remark 2.1. Iff is a mapping from a set A of infinite cardinality into a normed linear space X,
we shall say that £ vanishes at infinity and write f(a) — 0 as n — oo, if the following condition is
satisfied: Given any positive €, the set

{acA:f(a)l =}

is finite. When this is so, the set {a € A : f(a) # 0} is at most countable since it is the union
of all the finite sets {a € A:||f(a)l| > 2} (n € N). Clearly, if {[(a):a € A} is summable, then
fla) = o0 as n — oo. With this interpretation, we can rewrite in place of condition (4) in
Proposition 2.1 in the form:

(i )" For every orthonormal system ({eq : o € A} € H) (Teq,ea) — 00 as n — oo (in the sense
described in the Remark above).

Proposition 2.2. Let T € B(H) be compact and A € K be not 0 . Then R(AM — T') is closed.
Proof. Let y € R(AI —T). So there is a sequence (z},) of elements in H such that
yn = (M =Tz, —y

writing H = 1y, @ nar—r, we have the decomposition z}, = x, + ! where z, € an,T and
€ nar—7 and hence
Yn =M = T)(Tn + 1) —> y.

But (A\ — T2y, =0 (2, € nay-1) i yn = M = Tzn —> y.

We shall show that (z,) is bounded. Assume the contrary. Then we can choose a subsequence
(zn,) of (zn) such that ||zn,|| = 0 as Kk — co. Without loss of generality, we may assume that
|lzn] = 0 as n — co. Define &, = ||zn]| 'z, Vn € N. (So &, € Mg_r) 50 &) =1 VneN.

Since (&) is bounded (for ||Z,|| =1 Vn € N) and T is compact; there exists a subsequence (2, )
of (£,) such that 7%, converges strongly to some element of H. Now

Fi = % {\ = T)&n, — Tin,}
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Since
Tn Yn

M -T2, =N -T =
A =T)dn = =D = Tl

—0 (2.2)
So (A — T)dn, — 0 by (2.2)

Therefore, &n, = 3 {(AI = T)&n, — T'dn, } — « for some x € H
Now [|Zn,||=1 ¥n € N.

Therefore, ||#n, || — ||z| as k¥ — oo. Therefore ||z| = 1. Since each &,, € myj_r and ny;_p is
closed, so A € n37_p.

On the other hand, (A — T)&, — 0. We get
A —T)ip, —>50 (2.3)

Since #n, —» x and A — T is bounded. Therefore, (AI — T)#y, — (M —T)z =0 by 2.3
i.e. T € Mar—r

But (2.2) contradicts (2.3) since ||zn|| = 1. This contradiction shows that the supposition (z,) is
unbounded is unacceptable.

Therefore, (z,) must be bounded. Hence since T is compact there must be a sequence (zn, ) of (z,)
such that Tx'nk converges strongly. Hence there is a subsequence (x;%) of (z,) such that x’nk B
say (known result).

Since T is compact, Tz, — Tx.

Now yy,, = (M —T)z},, . Since y, — y and (y,,, ) is a subsequence of (y») so yr, —> y Now

T = 5 (W + T2 (2.4)

Since yn — ¥y so (y;k) being a subsequence of (y,) also converges to y, i.e. y;k — y. We have
seen above that (Tm%k) converges strongly. Hence x,, -+ & € H. Using this in (2.4)

z= %(y—FTi) ie. M =y+T4% or
(M — T)& = y which implies y € Rar—r
Therefore Rar—7 € Rar—r
Thus, Rar—7 is closed O
Proposition 2.3. Let T € B(H) be compact. Then Po(T) — {0} = o(T) — {0}.
Proof. Since Pa(T) C o(T), so Po(T) C o(T) —{0}. We need to prove the reverse inclusion i.e.
Po(T) — {0} € o(T) — {0}

i.e. for a A # 0,
AEP(T)=X¢ o(T)

ie. A € p(T). Let A ¢ Po(T). Hence AI —T is one to one. Hence the inverse linear map
(M — T)*1 : Rar—1T — H exists.
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By proposition 2.2, Rar—r is closed in H and so Rx;—7 is a Hilbert space (A closed linear subspace
of a Banach space is a Banach space (with induced norm)).

Now Al =T : H — Rxr—7 is a bounded bijection and hence by the Banach inverse theorem, A\ — T
is invertible i.e. (A —T)~ ' € B(Rx;—7, H). We will show that Rx;_r = H; it would then follow
that A € p(T) ie A ¢ o(T'). Suppose H is not true, that Ryx;—r = H in which case Raj—7 is a
proper closed subspace of H.

Define Ho = H and let H,, = (A = T)"H = R(x;—1)» Vn € N. Thus we get a decreasing nested
sequence of linear subspaces (all of which are closed)

AN -T

H=H"" H | M, | M H R =
Roxr-m) Bxr—7)2 Rixr—mys Rixr—myn—1 Rxi—myn
Indeed, H, =R(M —T)". Now,
A =T)" =X"T—=A""'"T+ X" o (=) T
_ )\nl T [)\n_lf _ )\n—QT 4 (_1)n—1Tn—1}
=\ —T,
Where s = X' — A" 72T + - + (=1)""'T""'. Since T € B(H), so s € B(H). Since T is

compact, so T'S is compact. Thus Hn, = Riy—ryn = R (A" —T's). We claim that the sequence
(Hp) is strictly nested (decreasing). Suppose the contrary, in which case there is ng € N such that

Hpy = Hnpt1 i€ RAI-T)n=R |1 0o 41
AI-T A-T AI-T AI-T
H:H0—> H1 l —)HQ l —)...Hn_l l Hn —)Hn+1 l
Rixr-m) Bxr—m2 Boxr—ryn-1 Ror-myn Rixr—myn+1

In this case, we get (M —T)"")"" H, = H i.e. A\ —T) " Hpy, = HA —T) ™ Hpy41 = Hi.
Since Hyp, = Hny+1, so H = H; which is a contradiction to our assumption. Hence the sequence
(Hn);o, is strictly nested i.e. H=Ho C H1 CHs CHz C ...

Since H,—1 C H,Vn € N, we can from the subspaces H,_1 & H, = Hp,—_1 N H,J; which are all
non-empty. (Note H,—1 © H, = {x € Ho—1 : © L H,}). Choose an x,, € H,,_1 such that ||z,|| =1
and z, L H, Vn € N. Since z, € Hn—1, so (M —T)zy, € H,. Now Tz, = ALy — (M —=T)zn
~ ——

€H,_10H, cH,

Therefore Az, L (A — T)xyp.

Henceby Pythagoreantheorem, || Tz |® = | Aza|l® + [|(M = Dza|® > AP |za]® = [N? Vn €
Nie. ||[Tzn| > A Vn € N(2.5)
Now (x,) is an orthonormal sequence in H. {Indeed: z, € Hn—1 © Hy : zn € Hy—1 and z, €
Hyxpn+1 € Hy, and py1 L Hiova
Therefore, 2, | 2nt1 ¥n € N and||z,| = 1 ¥nN }. Hence (z,) — 0.
Since T is compact,

Ty, =50

i.e. by continuity of the norm ||.|| in H we have || Tz, || — [|0]| = 0 as n — oo.

But this contradicts (2.5) since A # 0. This shows that the supposition that Raj—r # H is
unaccepted. Therefore, Raj—r = H i.e. A € p(T) i.e. A ¢ o(T) and the proof is complete. O
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Corollary 2.1. Let dim H = oo and T be compact. Then o(T) = Po(T) UO0.

Proof. In this case, (by proposition 2.3). So
(o(T) = {0}) U {0} = (Po(T) — {0}) U {0}
o(T) = Pp(T)U{0}

It follows from proposition 2.3 and the corollary that when dim H = 400 any non-zero complex
number must be either in p(T") or be an eigenvalue of T i.e.

A£A0=>Aea(T)or A€ a(T)
= Xep(T) or A € Po(T) U {0}
= Xe€p(T) or € Po(T)

O

Proposition 2.4. Let T € B(H) be compact and p > 0. Then there can be at most a finite number
of linearly independent eigenvectors of T corresponding to eigenvalues X of T satisfying |A| > p.

Proof. Suppose there is an infinite set of linearly independent eigenvectors corresponding to all
eigenvalues A with |A| > p.

Background knowledge: If an eigenvalue X is of geometric multiplicity n i.e. dim nxj—7 = n
then there exists a linearly independent set {z1,...,z,} such that

[{'Tla e '7‘7:71]] =TMN\I-T-

If A, are distinct eigenvalues and z, y are eigenvectors corresponding to A, p respectively, then {z, y}

is linearly independent. So if {z1,...,zn},{y1,...,yn} are linearly independent sets spanning the
eigenspaces nxr—r, Nui—1 respectively then {z1,...,zn},{y1,...,ym is also linearly independent.
Choose a sequence (x,,) of distinct eigenvectors from this linearly independent set. So {z1,z2,...,Zn,...

is linearly independent. Let the eigenvalue corresponding to x, be Aj.

By employing the Gram- Schmidt orthogonalization process, we can find an orthornomal sequence
(en) such that
{z1,...,zn}] =[{e1,...,en}] VR EN
and so for each e,, we can write
€n = Qn, 121 + Qp2T2 + -+ + QAn nTn.
STen = anaTxr + an2Tx2 + -+ annTn.
Now Txn = Anzn Vn € N.
STen = ani ATl + an2doTa + ..o+ Qnn AnTn.
s Ten — Apen = (an,l)\lxl + OCn,2>\2$2 +...+ an,n>\nxn) - An (xnan,l + noxe + -0+ an,nxn) .
= Qin,1 ()\1 — An) xr1 + Qn 2 ()\2 — )\n) T2+ -+ apn-1 ()\n—l — /\n) Tn—1
= PBn-1,1€1 + PBn—22€2+ -+ Bn_1,n—1€n—1
Since [{z1,...,zn-1}] = [{€1,- .., €n-1]]
S Ten = Bn-1,1€1 + Bn-1,2e2 + -+ Bn-1,n—1€n—1 + Anén.

Hence
<T€n,6n> = <)\nen76n> = )‘2 ||e"7'H2 = A”

since (e,) is an orthornormal sequence. (But e, — 0 and T is compact. So Te, — 0 etc.)
Infact, we have already seen that, if T is compact

lim [(Ten;Bn)| =0

n—
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ie. limpsoo|An| = 0 (For (Ten,en) = AnVn € N) and this contradicts the hypothesis for we
consider all eigenvalues A with |[A| > p( so |\,| > p > 0). Hence the supposition that there are
infinitely many linearly independent eigenvectors corresponding to all eigenvalues A with |[A| > p is
unacceptable and this proves the theorem. O

Corollary 2.2. Let T € B(H) ( dim H = o) be compact. Then for each X # 0 nxr—t must be
finite dimensional.

Proof. Suppose nar—7 is infinite dimensional. Let {x, : € N} be a linearly independent subset of
H spanning nar—7.

Now |A| # 0. So we have an infinite set of linearly independent eigenvectors corresponding to the
eigenvalue \. {(T — M)z, =0 Vne N}.

Hence there are infinitely many linearly independent eigenvectors corresponding to eigenvalues p
with |p| > |A| which contradicts the result of the proposition 2.4.

Hence the supposition that nx;—r is infinite dimensional is unacceptable. O

Proposition 2.5. Let T € B(H) be compact. Then T has atmost Countably many eigenvalues. If
the number of eigenvalue of T is infinite, then 0 is the only limit point of Po(T).

Proof. Suppose a non-zero A is a limit point of Po(T"). Then we can find an infinite sequence (A,)
of distinct eigenvalues such that A\, — X as n — oo.

Thus there will exist a sequence (x,) of ements of H such that z, # 0 and z, is an eigenvector
corresponding to the eigenvalue A,. From a result of linear algebra we see that {z, :n € N} is
linearly independent.

Let H, = [{z1,+- ,zn}]Vn € N,{Ho = {6}}. So we have the strict containment
HyCH CH,C...CH,.1CH,C....

All the H,, are closed linear subspaces of H, (= Hilbert spaces). Consider H, & H,_1 for each
n € N. For each n € N, 3y, € H, such that ||y,|| =1 and y, L Hn,_1. Thus we obtain a sequence
(yn) of unit vectors. This sequence is orthonormal.

Indeed, let m # n (m,n € N) and for definiteness, let m < n consider the elements ym, yn. Now
Ym € Hn O Hm—1,Yn € Hy© Hn—1. Therefore, y, € Hy, and 1 Hn—1 and ym € Hy (and L Hpy—1).
Since m <n,som<n—1

Hn Q anl Q Hn.

Ym € Hpn,yn € Hp.
Yn € anlayn S Hn

Now y, € Hho Hp-1 = yn L Hy—1. From y,, € Hp,—1 and y,, L Hn—1 we get ym L yn and this is
valid Ym # n.

Thus (y») is orthonormal. Hence y» — 0 and since T is compact, Ty, — 0 € H say. Now
TYn = Anln — (Ml —T)yn VR € N (2.6)

the element Ay, € H, © Hp—1

On the other hand, since y, € H, = [(z1,...,Zn)] We can write

Yn = AniT1 + an22 + ..., AnnTy, for scalars an; (i =1,...n)
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Consequently,
O = T)yn = M = T) (an171 + an2®2 + -+ + GnnTn)
= )\n (anlxl + -+ annxn) - (aanml +...+ annTxn) .
= A (anxl +-+ annajn) - (anlAll‘l + -+ ann)\nxn) .
Since A; is an eigenvalue with eigenvector x; Vi € N,
=An—A)anmz1 + -+ (A — Ans1) Gpi(n—1)Tn-1
S [{331, R ,.Iin_1}] =H,1

Since A\pyn € Hn, © Hp—1, s0

Hence it follows from 2.6, using Pythagorean theorem
ITynll* = 1 Anynll® + [(Anl = T) yal* ¥n € N
ATyl Z Ayl = [[Anll = (Al
(Since A\p, — X as n — oo). This contradicts the result Ty, — 0 (above). Hence the supposition

that A # 0 is a limit point of Po(T) is unacceptable. Thus if the number of eigenvalues is infinite,
then 0 can be the only limit point. O

Proposition 2.6. If A # 0 is an eigenvalue of a compact T € B(H) then, X is an eigenvalue of
T*.

Proof. We saw earlier that T is compact implies T* is compact. For any T' € B(H), we have the
result,
o (T*) = o(T), where

o) = {A: A€ o (D)}

Since T™ is compact,
Po (T*)—{0} =o (T") — {0}

= Po(T) — {0}
= Po(T) - {0}
Therefore, if A € Po(T) and A # 0, then A € Po (T*) and the proof is over. O

Proposition 2.7. Let H be a Hilbert space and T € B(H) be compact. Let A # 0. Then A € p(T)
if and only if Rxi—r = H.

Proof. If X € p(T), we have Rx;—r = H, as seen in proposition 2.2 (since T is closed). Conversely,
let Rar—7 = H(X # 0). Suppose A € o(T). Then by Proposition 2.2, A € Po(T). Let z; be a
corresponding eigenvector. Since Rar—r = H, we can inductively construct a sequence such that.

(T — M)zn = 2n—1Yn > 1 (z0 = 0)

Again by induction we show that the vectors z, (n > 1) must be linearly independent. Clearly,
x1 # 0 for z; is an eigenvector. Suppose {x1, -+ ,Tn—1} is linearly independent and

Zakmk = 6 (27)
k=1
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Then we have

6 = (T - )\I) <i akxk> = iak(T — /\I):Ek = iakxk_l (:IZ() = 6)

We conclude that az = as = --- = a,, = 0 and by (7) since x1 # 0, also a; = 0. Therefore
{z1, -+ ,2n} is linearly independent. Let. {en},., be the orthonormal sequence obtained from
{zn},, by the Gram-Schmidt orthonormalization process. As in the proof of Proposition 2.4, we
have (writing e, = an1T1 + @22 + - - + ApnTn)

(T — )\l)en = (T — )\I) <§n: nnk:rk> = <§n: O'nk(T — )\l)xk)

= Zankwk,1 = gn(say)
k=1

Hence gn, = V"' {zx} = V"' {cx}. We can therefore write
gn = Bnie1 + -+ Bnn_1€n—1.
Thus gn L e,. Now Te, = Aen + gn. Therefore
(Ten,en) = (Aen + gn,€n) = Men,en) =A#0Vn €N
and this contradicts Proposition 2.1((i) = (ii)). Hence A is not in Po(T), so A is not in o(7") O

An immediate consequence of Proposition 2.7 is the next result.

Proposition 2.8. Let T be a compact linear operator in a Hilbert space H and if for a fized A # 0
the equation

Tex—dzx=y (2.8)
has a solution for each y € H, then the equation
Tz —Ax=0 (2.9)

has the unique solution x = 0, i.e X is not an eigenvalue of the operator T. The conclusion holds in
pre-Hilbert spaces as well.

Proof. Tt is clear from (2.8) that Rr_; = H), since A # 0, € Po(T) or p(T). Since z = 0 is the
only solution of (2.9), it. follows that A is not. in Po(T).

We now establish Proposition 2.8 when H is a pre-Hilbert space. Assume the contrary, namely, that
equation (2.9) has a solution z1 # 0. Thus vector x2 : Txo — Ax2 = 1. Then we find a vector x3
such that Tz — Azs = x2. Continuing this process we find an infinite sequence of vectors (zn)no
such that
Txr — Az = xkfl(k € N).
We now claim that the set of vectors {z) : k € N} is linearly independent. We do this as we did in
the proof of Proposition 2.7. Orthogonalizing this sequence, we get an orthogonal sequence (Zx),
where
T1 = 01171, T2 = Q21T1 + Q22T2, -+ , Tk = Qp1T1 + QgaT2 + -+ - + QrkTk
It follows that
Tz = apiTz1 + areTxo + -+ + agr Tz

= apiAT1 + g1 (T1 + Az2) + -+ + ok (Th—1 + Azk)

= (agaw1 + a3z + -+ + arpTi—1) + A (1 + a2 + -+ - + QrkTr)

= (akeT1 + arsx2 + - - + QpkTr—1) + ATk

= Br1®1 + Bre®2 + - 4 Brk—1Tk-1 + A (k € N)
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Since (TZk,ZTx) = A # O0Vk € N we have limg—, oo (T Tk, Tr) # 0. On the other hand, since T is
compact, we must have limg_, oo ( TZx, Tx) = limg_ o0 Brk = 0. Thus we have a contradiction. Hence
the assumption z1 # 0 is inadmissible. Hence z; = 0. This proves that (2.9) has unique solution
z =0. O

Corollary 2.3. If for a fized A # 0, equation (2.8) is solvable for each y € H, then giveny € H,
this equation has a unique solution and consequently the operator (T — AI) has an inverse on all of
H.

Proof. The main Proposition shows that if (2.8) is solvable for each y € H then (2.9) has the unique
solution z = 0 ( A fixed). Now fix y at yo and assume that (2.8) is solvable. Suppose there are two
vectors x1,x2 € H which solve (2.8) for the given A and the given y;,. Then

Tz1 + Ax1 = Txs + Aw2 = yo, ie, T (x1 —x2) — A (71 —72) =0
O

Proposition 2.9. Let H be a Hilbert space and T' € Boo(H). A complex number A # 0 is an
eigenvalue of T if and only if \ is an eigenvalue of T™.

Proof. This follows from ¢ (T*) = o(T) = {A: A € o(T)} and o (T*) /{0} = Po (T*) /{0}.
The last equality holds since T™ is compact. O

Remark 2.2. The last Proposition cannot be extended to bounded normal operators on H.

Proposition 2.10. Let T be a compact linear operator in a pre-Hilbert space H and fix A\ # 0.
Then there exists a constant L depending on T and X\ such that if the equation

Ter—Azx =y (2.10)
is solvable for a fixed right member y, at least one of its solutions x satisfies

[zl < Liyll (2.11)

Remark 2.3. Before providing the proof, we clarify as to what the Proposition conveys. In asking
whether A € o(T'), we could be interested in the invertibility of (T —AI). An inverse of T — A would
assign to every y € Rr_xr a unique x. Moreover, if (T — )\1)71 is bounded, then we must have
l|lz|| < L||ly|| for some constant L (which depends only on T and X\ ). The statement of Proposition
2.10 asserts that we can always reverse the action of (T' — AI) in a bounded way. Ignoring the
question of uniqueness of (T — M) ({y}) (when (2.10) is solvable for a y € H ) there is always a
candidate x associated with y by some sort of bounded inverse of (T — \I), the bound being L.

Proof. Fix y and assume that (2.10) has a solution z*. If A is an eigenvalue of T, let x1,--- ,xg
be a linearly independent set. of eigenvectors spanning nr—x;. In this case, the general solution of
(2.10) has the form
r=x" 4+ oz 4+ oz
where a1, -, ay are arbitrary complex numbers. We select these numbers solution of (2.10) with
minimum norm. If A € p(T), then & = z*(k = 0). Now let y vary over the: set M of all vectors for
which (2.10) is solvable. To each vector y € M, there corresponds a minimal solution Z. We now
claim that.
]

sup +—- < 00
ven [[v]l
Suppose the contrary. Then there exists a sequence (yi) of vectors such that as k —— oo, H;Q”

oo, where Zj, is the minimal solution of (2.10) with right. member yx. Dividing both sides of the
equation
TZr — ATk = yk(k € N)
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by [z, we get
Tz, — A%, = yi(k € N)

where y;, = ||Zx| "' wk, |Z}]| = 1vk € N. Thus, the minimal solution Z}, of (2.10) has norm 1
if the right member is y;. Since T' is compact, there exists a subsequence () of (i},) for which
s—lim; 00 T'Ey,, exists. Since yj,s-0 as k — 00, s—lim; 00 T'En, also exists, say z, and consequently,
Tz — Az = 0 where ||z|| = 1. Thus z is an eigenvector of the operator T. Both the vectors z,, — 2
and z;,, are solutions of (2.10) with right member y;,.. But because of the minimum norm of a
solution of this equation being 1 , we have for each i

[0, — 2 =1
Since this is impossible, the proposition is proved. O

Example 1. When H is a Hilbert. space, we can modify the proof of Proposition 2.10 as follows:
Let Py be the orthoprojector on H onto nr—xi. Given any y € Rr_xr and any x such that (2.10)
holds, we observe that

(T = XI) (w —1:') =y if and only if £’ € nr_a1.

For &' = Pax € Nr—xi and T = x — P xx we obtain

(T-ADi=y (2.12)
where ||z|| = ||z — Pxz|| = min {||z — 2’| : ' € nr — A} and therefore
|Z]] = min{Hx”H (T — )\I)x” = y} (2.13)

Note that in this manner we have associated every y € Rr_x; with a unique vector T such that
(2.12) holds. We now assert that there is a real constant L > 0 such that ||| < L||ly|| Yy € Rr—xi.
Assuming the contrary we have

7| _
sup{||y|| :y;«éO,yeRTM} =00

We can therefore choose a sequence (yn)oo, of elements from Rr_x such that yn # 0y n € N and

limy, o0 |H|;Z|H| =oco. For i, = HiTZ 1Yn = H”T’; , we obtain from (2.12) and (2.13)
(T = ADZ, = yn (2.14)
||Z5 || = min {||z”|| : (T = ADz2" =y, } (2.15)
lim y, =0
n—oo

Let (:’i%k) be a weakly converging subsequence of (Z;,) (Every bounded sequence in a Hilbert space
contains a weakly convergent subsequence). Then T, converges strongly to some vector z and as
a consequence
. —/ . ~/ ’
kll)ngo ATy, = kll)rgo (T:rnk —ynk) =z

Since X # 0, the sequence (f'nk) converges strongly and its limit is the vector z' = 5. From

(T — AI)z' = lim (T — A&, = Jim. Y, =0

k—oo

and (2.14) we conclude
(T — AI) (f; — z/) =y,

while limy o0 ||Zn, — 2’| = 0 and therefore ||Z;, — 2'|| < 1 for infinitely many n € N. This however
contradicts (2.15).
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We now strengthen Proposition 2.8 which asserts that if X # 0 is an eigenvalue of a compact linear
operator T in a pre-Hilbert space H, then the equation

Ter—dzx =y (2.16)

is not solvable for every y € H. If H is a Hilbert space, we shall determine the set of all vectors y
for which (2.16) is solvable.

Proposition 2.11. Let T be a compact linear operator in a Hilbert space H and let X\ be a nonzero
element of K. Then the equation (2.16) not an eigenvalue of T, then nr-_x; = {0}, that is, in
this case, equation (2.16) is solvable for everyy € H.

Proof. Now Tx — Ax = y is solvable for each y € Rr_x;. By Proposition 2.1, Rp_x; is closed.
Now, Rr_x; = 77%*—;\1' Hence Rr_»r = n:#*-i[' Thus equation (2.16) is solvable if and only if
Y € N7« 5, If X is not an eigenvalue of T* (which is compact since T is compact) it follows (by
the Corollary to Proposition 2.8) that (2.16) is uniquely solvable for all y € H O

Remark 2.4. The reader can formulate an analogous proposition for the compact operator T™.
(see proposition 2.13).

Proposition 2.12. Suppose H is a Hilbert space and T' € Boo (H). If A # 0 is an eigenvalue of T
(hence X is an eigenvalue of T* ) then nxi—r and nx;_p« have the same dimension (which is finite)
(This is called Fredholm’s Third Theorem) (See proposition 2.13).

Proof. We have dimnx;—r < dimny;_,. There exists an isometric operator V' on nx;—r into
nar—7+ = Ryj_r. Let P represent the orthoprojector on H onto nxr—r. The operator is of finite
rank and hence is compact. Consider the operator 71 = T+ V P. Clearly T; is compact. We shall
show that nyx_r, = {0}, i.e., A is not an eigenvalue of Ti. Indeed, let (A\I —T1)r = 02 that is,
Mt — Tz —VPx=0or A\t — Te = VPz. Now Az — Tz € Ra;_r, whereas |Px € Ry;_r. Hence
Az — T2 =0 = VPz. Since V is an isometry, 0 = ||V Pz|| = ||Pz||. Hence = € n3;_s. The relation
Mx — Tx = 0 shows that z € nx;—_7. Thus z = 0.

By Proposition 2.11, X is not an eigenvalue for Ty, that, is, 75;_r+ = {0}. Since -1y = RfI,Tl.
We have Ry; 7, = {0}. We now show that.

Rxr—1, = Rxi—7 ® Rvp.

If y € Rar—71, then y = (Al — T1) x for some x € Z and thus which shows that y € Rxi—r © Rvp,
that is
Rxr—my CRxi—-7® Rvp

Conversely. let y € Ryxj—7 & Rvp. Then
y=(\ —T)x' +VPz" for z’,2" € H) .

1"

We can write ' =z} + x5, 2" = 2{ + 24 where 21,27 € nxj_7, 25,25 € nf[,T. Clearly

(M —=T)z' = (M = T) (z' + x5) = (A = T)zb and
VPz" =VP(zf +23) = VPay
Thus,
y= A —T)xy+ VP =\ - T — VP) (x5 — a)
=\ =Th) (x5 — a7)
which shows that y € Rar—7. Next it is easily seen that Ry p = Ry. Thus Raj—17 = Rxi—7 @ Rv.

Consequently, B
{0} = xs—r = Rar-my = [Rar-7 ® Ry] "

59



Isabu et al.; ARJOM, 18(8): 48-65, 2022; Article no. ARJOM.88546

which yields
Ry = Ry_r

Since V is an isometry
dimnyr—7 = dim Ry = dimny;_r

The other case can he treated similarly.

Alternative proof:

Suppose nr—xr (which is the same as ma;—7 ) has dimension p less that dimnr - X = q. Let
{e;;7 =1, - ,p} be an orthonormal basis for nr_x; and {fi;k = 1,--- , ¢} be an orthonormal basis
for np«_x7. We define in H an operator 71 by

Tlx:T1:+Z(x,ej)fj (2.17)

j=1

Clearly T is compact and ) is not an eigenvalue of Th. For suppose there was a vector y # 0 such
that

Hence by (2.17),
(T—=Ay)+ > (ye;) f; =0

j=1

NOW, <(T—)\I)y+2§;1 <y7€]f77‘f2> :O’Z: ]_’ , D-

(v, (T4 —X) fi)l{y,e1) =0

But since the first term on the left is 0 , we have

<y761> :O(Z:1727 7p) (219)
Hence, it follows from (2.18) that T1y = T'y and from (2.18) that Ty = Ay. Thus y is an eigenvector
of the operator T and by (2.19) it is not. a linear combination of the eigenvectors e;(j = 1,--- ,p).

This is impossible. Hence (2.18) is impossible, that is, A is not an eigenvalue of the operator 7T7.
Hence there is a vector = such that.

(Ty =AD& = fpin
But since, by (2.16)

(Tha, fpr1) = (T, fpy1) = (@, T" fpr1) = (@, AMfpr1) = M@1 fpy1)

we have
L= (fp, for1) =((Th = AD)z, fp1) =0

Thus the hypothesis that ¢ > p leads to an absurdity. Since 7' = (T)", we can reverse the roles of
the operators T and T™. Hence, by what has already been proved, it is also impossible that p > q.
Hence the Proposition. O

Remark 2.5. The reader should note that occasionally we write A\I — T in place of T — A and
correspondingly X — T* in place of T* — M. He can adopt uniformly in this matter for the proofs
are the same for all the propositions (with minor alterations). We now summarize the assertions of
propositions 2.11 and 2.12 and the remark following the former into a single proposition called the
Fredholm alternative. This proposition is a generalization of the Fredholm alternative in the theory
of linear integral equations.
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Proposition 2.13. (FREDHOLM ALTERNATIVE).

Let H be a Hilbert space and T € B(H) be a compact operator and A be a nonzero element of K.
Then we have the Frodholm alternative. Either the inhomogeneous equations

(T—M)z=yand (T" = X)E=7
are uniquely solvable Yy, € H or the homogeneous

(T—X)-z=0and (T"—=X)z=0
hate non-trivial solutions.

The spaces of the solutions of the two homogeneous equations have the same (finite) dimension and
(T — M)z = y 1is solvable if and only if y is orthogonal to every solution T of (T* — )J) 2=0. that
1s, if and only if y L np«_5;. Similarly, (T* — )\I) Z =g is solvable if and only if § L nr_xr1.

Proof. Either A € p(T) and so A € p(T*) or A € Po(T) and hence A € Po (T*) (propositions
2.2,2.9). In the first case we have

e=(T—-X) 'y,&=(T"-\)7j
where (T'— \I)™*, (T* — ;\I)_1 € B(H). In the second case, we have

1
nt_s; = Ry« _x; (for Ry« _5; is a closed linear subspace).

The equation (T* - 5\1) Z = ¢ has a solution z if and only if § € Rp+_57, thzit is, if and only if g

is orthogonal to nr—xr, which in turn consists of all solutions of (7" — AI)z = 0. Similarly from
Rr_xi =07 _5;

the remaining statements of the Proposition follow. (I

The following example shows that a non-zero compact linear operator may not have any eigenvalues

at all (the spectrum then reduces to its absolute minimum, consisting of one single point only. At
the same time it illustrates that the conclusion of Proposition 2.9 breaks down for A =0 ).

Example 2. Let T be the linear operator on £2( N) defined by
oo 1 <
T(nk)kzl = (Eak_l) ap = 0
k=1

that is, T (a1, 02, -+ ) = (0, 301, 3a2) V (an )i, € £2(N). Show that.

(a) T is compact.

(b) Po(T)=0.

(c) The only eigenvalue of T* is 0, i.e, Po (T") = {0}.

(d) T is not normal.

Solution

(a) Now (Ten,en) = <%+1€n+17€n> =0vn € N.  Hencc lim, 00 < Ten, e, >= 0. (This does not
imply T is compact.) Define T, on £*(N) by

1 1 1
Tn (ak)pe, = <07 S, SO,

B 3 ,m,0,0,~~~>Vn€N
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Then if = (ax),.,, we have

11 1 11 ?
T r—Tzl? = . Sy e —— )= . Sy, -
|| n& 33” "(0,2(11730‘27 7n+170707 ) (0,206173062, )
1 1 2
{0 — -
H( 5 7n+2an+17n+30€n+2, )
1 2 2 1 2
= m |an+1| +m‘an+2| + -
12 n+ 22 n + 22
N (n+2) [\an+1\2+ n+3 +|an+2|2+ n+4 +|an+3|2+-~~
1 2 1
< gy Hal Hlef +- ] = mmlel, ve € £(N)

Hence (T, =T < R%LQVn € N. Now each T, being of finite rank (n + 1), is compact and
limy, o0 |7 — T'|| = 0. Hence T is compact (by proposition 2.11).

(b) Let z = (an)5r ;. SoTx = (0,%,92,---). Nowif A € K, then Tz = Az implies (0, 4, 32,--+) =

123 123

(A, Aoz, Aas, - -+ ). So 0 = Aaa, G = dae, 2 = Aas, a"n’l = Aan, - . If A =0, then a1 = ax =

-+ =0, i.ez =0, and hence A = 0 is not an eigenvalue of "T. If A # 0 then again a1 = a2 =--- =0
and again since x = 0 necessarily, it follows that X is not in Po (7). Thus Po(T) = 0.

(C)Letl': (01:0@:"')724: (617627637”') EZQ(N) Then <TI7y> = <(0704721’%’) 7(517ﬂ27"')>

:%g+%g+...:<(a1’a2’...)7<%’%7.“>>
=(zTy

and this shows that

. B2 P1 Pa

T L)y = (22 22
(617627637 ) (2,3747

Now A # 0 cannot be in Po (T*) for then A would be in Po(T) (see Proposition 2.9). But
Po(T) = 0. So A # 0 cannot be in Po (T*). Consider A = 0. Then T*y = \y implies T*y = 0, i.e
all n > 2. Thus for any 51 # 0, the vector (81,0,0,---) = B1e1 is an eigenvector corresponding to
the eigenvalue 0 . It follows that Po (T*) = {0}.

(d) If T was normal, then Po(T) = Po (T*) and so A = 0 must also be an eigenvalue of T. But
Po(T) = 0. Hence T is not normal.

Definition 1. An operator T' € B(H), where H is a complex Hilbert space is said to be quasi-
nilpotent if its spectral radius is O .

It is clear that T € B(H) ) is quasi-nilpotent if and only if o(T) consists of the single point 0 (Note:
o(T) is nonvoid).

Proposition 2.14. Let H be a Hilbert space and T € B(H)) be quasi-nilpotent. If ImT: T =
A+ iB where A = %(T—l— T),B = % (T —T*),i = +/—1 and A, B are bounded self-adjoint; so
ImT = % (T - T*)) is compact, then T is compact.

Proof. Let A = ReT (= 2 (T'+T"*)),B = ImT, so that A and B are self-adjoint. Now B is
compact. We have to show that A is compact. Suppose the contrary. Then, there is an orthonormal
system {eqr : @ € A} such that (Ae,,e,) - 0 asn — oo
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For some § > 0, the set
Ao ={a e A:|(Aeq,eq)| > 6}

is infinite. If {f, : n € N} is a countable infinite subset of {e, : @ € A}, then (f,) is an orthonormal
sequence and

[(Afn, fn)| 2 6(n € N) (2.20)
Since [(A™ fu, fa)]* < |A™ ful> = (A™ fr, A™ f) = (A?fn, fn) for all positive integers m and n, it
follows from (2.20) that

[ (A" f, fn)1 > 8™ (n € N)

whenever m = 27 for some ¢ = 0,1,2,---. (Indeed, <A2fn,fn> > \(Afn,fn>|2, <A4fn,fn>
|<A2fn, fn>|2 > [(Afn, fn)|4 > 6%, e.t.c). For sufficiently large m of the form 29

\Y
Y

L
[ <o

(For T is quasi-nilpotent. Note 7(T) = lim,— oo ||T"H% = 0 ) and hence..... Now (A +:iB)™
A™ +m (A1) (iB) + - -+ 4 (iB)™ (Binomial expansion)

=A" + (imA™ ' + .- 1i"B"™ ") B

Since (imA™ ' +--- 4+ i™B™" ') € B(H) and B is compact, it follows that (imA™ '+ ---4+i"B™" ') B

C (say) is compact. Thus 6™ > |[|[T™] = ||A™ — C]||, for a compact linear operator C. We have
<Cfn, fn> — 0 ns n — oco. Hence:

(A7 fu £ < 1AE) S [0 [ 1

< ||Am—0||+\<c/,fn> <om

for sufficiently large n. This contradicts (2.20) and completes the proof of the proposition. O
Next we discuss a generalization of Example 2 by describing a class of compact linear operators.

Example 3. Suppose that (X, S, 1) is a o-finite measure space, (X x X, S X S, pux u) is the product
of this measure space with itself and K € L*(X x X, 8 x S, x p). By Fubini’s theorem

o1 = [ | [ s 0P auto)| auce (2.21)

(here, and subsequently, the norm of any function refers to the usual norm in the appropriate L*
space). For almost all s € X, K(s,t) is of class L*(X,S, ;1) as a function of t. Let Z denote the
exceptional set of measure 0. If f € L*(X, S, ), it follows from the Cauchy—Bunyakovsky—Schwarz
inequality that

(e = [ K@)
exists whenever s € X — Z and

(Tf(s)] < HfHQ/IK(syt)f(t)lzdu(t) (2.22)

It is easily verified that the function Tf (defined arbitrarily on Z) is measurable. From (2.21) and

(2.22)
/ T1)s)| duts) < [1£I? / [ / K (5, 6) £ (1) Pdpa(t) | du(s)

= [I£1I(15]°
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Hence Tf € L*(X,S,pn) and || Tf|| < [|K||||f|l, i-e, T is a boumded lincar operator on the Hilbert
space L*(X, S, p) with | T|| < || K'||. We shall refer to K as an L* kernel and to T as its associated....
if 9 € L*(X, S, ), then

g = [ /X K. DG Odu(s)dtr) (2.23)

From this, it is easily verified that the adjoint T* is the integral operator associated with the L*
kernel K*(s,t), where K*(s,t) = K(t, s).

We assert that {es : a € A} is an orthonormal base in L*(X,S, ). The functions ¥o on X x X
defined by
Va(s, t) = eals)eus(t)

form an orthonormal system in L*(X x X, S x S, x ). With f = g = ea, it follows that
(Tea, ca) = (K, Wa)

and Bessel’s inequality asserts that

S (Tearea)? = 3K, o) * < ||K%

a€eAN acA

Thus (TWqa, Vo) — 0 as « — 0o (Note the interpretation of this in the Remark following Proposition
2.1). Thus it follows that T is a compact linear operator. Finally, we assert that T = 0 if and only
if K(s,t) =0 a.e. on X x X. The ’if’ part of the statement is an immediate consequence of the
inequality | T|| < ||K||. Now suppose that |T|| = 0. To show that K(s,t) = 0 i.e. on X X X, it
is sufficient to show that K(s,t) =0 i.e. on Xo x Xo where Xo is a measurable subset of X with
1 (Xo) < oo. Let S denote the class of all measurable subsets s of Xo x Xo which satisfy

// K(s,t)du(s)du(t) =0 (2.24)

As a function on Xo x Xo, K is of class L*. and therefore (sines Xo x Xo has finite: measure)
of class L*. If s1,52,53,--- € S and the sequence (Sy) is either increasing or decreasing, it follows
easily from the dominated convergence theorem that lim s, € S(S is monotone class). If A and B
are measurable subsets of Xo, we can take f and g in (2.24) to be the characteristic functions of S
contains the algebra consisting of all finite disjoint unions of such sets A X B. Since S is monotone,
it contains the o-algebra generated by this last algebra; that, is, S contains of all measurable subsets
s of Xox Xo and (2.24) is satisfied for all such s. By taking for s, in turn, the four sets on which the
real and imaginary parts of K(s,t) both have constant sign, it follows from (2.24) that K(s,t) =0
i.e. on Xo X Xo.

3 Conclusion

Spectral properties provide a powerful way to understand linear operators by decomposing the
space on which they act into invariant subspaces. The spectral properties of a compact operator
on a normed linear space resemble those of square matrices. For a compact operator, the spectral
properties can be treated fairly completely in the sense that Fredholm’s famous theory of integral
equations may be extended to linear functional equations with a complex parameter A. In this paper,
the spectral properties of compact operators in Hilbert spaces have been studied and investigated.
Also, it has been observed that on finite dimensional vector space, the spectrum of an operator
consists of all its eigenvalues while on infinite dimensional vector space. The spectrum consists
of the continuous, residual and the point spectrum. Also, it has been shown that the spectral
properties of compact linear operators are relatively simple generalization of the eigenvalues of
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finite matrices. The paper has given a number of corresponding propositions and interesting facts
which are used to prove basic properties of compact operators. The main results of this paper have
been captured in propositions 2.1,2.2,2.3,2.4,2.5,2.6,2.7. The paper also introduced the Fredholm
theory to investigate the solvability of linear integral equations involving compact operators. The
main Fredholm Theorem is captured in proposition 2.13.
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