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In this paper, the boundary value inverse problem related to the generalized Burgers–Fisher and generalized Burgers–Huxley
equations is solved numerically based on a spline approximation tool. B-splines with quasilinearization and Tikhonov
regularization methods are used to obtain new numerical solutions to this problem. First, a quasilinearization method is used to
linearize the equation in a specific time step. Then, a linear combination of B-splines is used to approximate the largest order of
derivatives in the equation. By integrating from this linear combination, some approximations have been obtained for each of
the functions and derivatives with respect to time and space. The boundary and additional conditions of the problem are also
applied in these approximations. The Tikhonov regularization method is used to solve the system of linear equations using
noisy data. Several numerical examples are provided to illustrate the accuracy and efficiency of the method.

1. Introduction

Most of the physical problems arising in various fields of
physical science and engineering are modeled by nonlinear
partial differential equations (NLPDEs) [1]. Two of the most
famous NLPDEs are the generalized Burgers–Huxley and
generalized Burgers–Fisher equations [2]. These equations
describe the interaction between diffusion, convection, and
reaction [3].

The generalized Burgers–Huxley and generalized Bur-
gers–Fisher equations are of the form

ut = εuxx − αuδux + βu 1 − uδ
� �

ηuδ − γ
� �

, a < x < b, t > 0,

ð1Þ

with the initial condition

u x, 0ð Þ = f xð Þ, a ≤ x ≤ b, ð2Þ

and Dirichlet boundary conditions

u a, tð Þ = q tð Þ, t ≥ 0, ð3Þ

u b, tð Þ = g tð Þ, t ≥ 0: ð4Þ
Also, in order to determine q, we consider an additional

condition given at the interior point, x = l of the region

u l, tð Þ = p tð Þ, a < l < b, t ≥ 0, ð5Þ

where ε, α, β, γ, δ, and η are constants such that 0 < ε ≤ 1, β
≥ 0, δ > 0, γ ∈ ð0, 1Þ, and η = 0, 1, and g and f are considered
known functions, while q and u are unknown functions.

If η = 1, (1) describes the generalized Burgers–Huxley
equation, and in the case that η = γ = 0, (1) describes the gen-
eralized Burgers–Fisher equation.

In some cases, the exact solitary wave solutions of equa-
tion (1) are obtained using the relevant nonlinear transfor-
mations [4]. In the case that η = 1 and ε = 1, the exact
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solution of the generalized Burgers–Huxley equation (1) is
taken from [2], given by

u x, tð Þ = γ

2 + γ

2 tanh w1 x −w2tð Þð Þ
� �1/δ

, ð6Þ

where

w1 =
vγδ

4 1 + δð Þ ,

w2 =
αγ

1 + δ
−
v 1 + δ − γð Þ
2 1 + δð Þ , ð7Þ

and v = −α +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + 4βð1 + δÞp

.
Note that, in here, to get the exact solution, we first

assume that u =w1/δ. Then, by assuming wðx, tÞ =wðx − ctÞ
=wðζÞ, the equation transforms into an ordinary differential
equation as the form d2w/dζ2 = a2ð2w − γÞwðw − γÞ, which
can be easily solvable.

If η = 0, ε = 1, and γ = −1, the exact solution of the gener-
alized Burgers–Fisher equation (1) is taken from [2], given by

u x, tð Þ = 1
2 + 1

2 tanh θ1 x − θ2tð Þð Þ
� �1/δ

, ð8Þ

where

θ1 =
−αδ

2 1 + δð Þ ,

θ2 =
α

1 + δ
+ β 1 + δð Þ

α
: ð9Þ

The boundary conditions are taken from the exact solution.
Burgers’ equation was first introduced by Bateman [5] when he

mentioned it as worthy of study and gave its steady solutions. Later
on, Burgers [6] treated it as a mathematical model for turbulence
and after whom such an equation is widely referred to as Burgers’
equation. The study of Burgers’ equation is important since it arises
in the approximate theory of flow through a shockwave propagating
in a viscous fluid and in themodeling of turbulence [7]. The general-
ized Burgers–Huxley equation describes a wide class of physical non-
linear phenomena, for instance, a prototypemodel for describing the
interaction between reactionmechanisms, convection effects, and dif-
fusion transports [8]. It has found its applications inmany fields such
as biology, metallurgy, chemistry, combustion, mathematics, and
engineering [8, 9]. The generalized Burgers–Fisher equation has been
found in many applications in fields such as gas dynamics, number
theory, heat conduction, and elasticity [10]. The following are some
works on these equations. Yadav and Jiwari [11] developed a finite
element analysis and approximation of the Burgers–Fisher equation.
Jiwrai and Mittal [12] presented a high-order numerical scheme for
the singularly perturbed Burgers–Huxley equation. Also, they have
a numerical study of the Burgers–Huxley equation by the differential
quadraturemethod [13]. TheLie symmetry analysis and explicit solu-
tions for the time fractional generalized Burgers–Huxley equation

were studied by Inc et al. [14]. Korpinar et al. [15] studied the exact
special solutions for the stochastic regularized long wave–Burgers
equation. Dhawan et al. have a contemporary review of techniques
for the solution of the nonlinear Burgers equation [16] (also, see
[17, 18]).

In this article, for the first time, a boundary value inverse
problem for the generalized Burgers–Huxley and generalized
Burgers–Fisher equations will be studied. For this purpose,
first, a quasilinearization method is used to linearize the equa-
tion in a specific time step. Then, a linear combination of B-
splines is used to approximate the largest order of derivatives
in the equation. By integrating from this linear combination,
some new approximations have been obtained for each of the
functions and derivatives with respect to time and space. In this
new method, the boundary and additional conditions of the
problem are also applied in these approximations. Then, the
Tikhonov regularization method is used to solve the system
of linear equations using noisy data. In the end, several numer-
ical examples are provided and 2D and 3D graphical illustra-
tions are reported to show the accuracy and efficiency of the
method.

The rest of the article is organized as follows. In the first
subsection of Section 2, the B-spline functions and their first-
and second-order integrals are introduced. In the continua-
tion of this section, the quasilinearization method is pre-
sented. The solution method is presented to solve the
inverse problem (1), (2), (4), and (5) in Section 3. Some
numerical experiments are given with graphical and tabular
illustrations in Section 4. The conclusion of the presented
method is given at the end of the paper in Section 5.

2. Preliminaries

In this section, first, the spline approximation, used in this
article, is introduced and then the quasilinearization approx-
imation will be obtained.

2.1. Cubic B-Spline. In this approach, the space derivatives are
approximated using the cubic B-splinemethod. AmeshΩ, which
is equally divided by knots xi into M subintervals ½xi, xi+1�, i =
0, 1,⋯,M − 1, such that Ω : a = x0 < x1 <⋯<xM = b, is used.
Also, let S4ðΩÞ be the space of cubic splines on Ω. The corre-
sponding set of cubic B-splines fB−1, B0,⋯, BM+1g, which is a
basis for S4ðΩÞ, is defined using the recursive relation [19]:

bj,p xð Þ = x − xj
xj+p − xj

bj,p−1 xð Þ + xj+p+1 − x

xj+p+1 − xj+1
bj+1,p−1 xð Þ, ð10Þ

starting from

bj,0 xð Þ =
1, xj ≤ x < xj+1,
0, otherwise,

(
ð11Þ

where j = −3, −2,⋯,M − 1, x−3 = x−2 = x−1 = a, xM+1 = xM+2
= xM+3 = b, p = 1, 2,⋯, and BkðxÞ = bk−2,3ðxÞ, k = −1, 0,⋯,
M + 1, under the convention that fractions with zero denomi-
nators have the value zero. With the above definition, all the
B-splines take the value zero at the endpoint b. Therefore, in
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order to avoid asymmetry over the interval ½a, b�, it is common
to assume the B-splines to be left continuous at b.Wewill follow
suit.

Using induction on recurrence relation (10), we deduce
immediately the following basic properties of a B-spline [20]:

(i) A B-spline is right continuous; i.e., the value at a
point x is obtained by taking the limit from the right

(ii) A B-spline is locally supported on the interval given by
the extreme knots used in its definition. More precisely,

Bj xð Þ = 0, x ∉ xj, xj+4
� �

: ð12Þ

(iii) A B-spline is nonnegative everywhere and positive
inside its support, i.e.,

Bj xð Þ ≥ 0, x ∈ℝ,

Bj xð Þ > 0, x ∈ xj, xj+4
	 �

:
ð13Þ

(iv) From recurrence relation (10), one can find that the
following formula for cubic B-splines:

Bj xð Þ =

x − xj
	 �3

xj+1 − xj
	 �

xj+2 − xj
	 �

xj+3 − xj
	 � , x ∈ xj, xj+1

��
,

x − xj
	 �2 xj+2 − x

	 �
xj+2 − xj
	 �

xj+2 − xj+1
	 �

xj+3 − xj
	 �

+
x − xj
	 �

xj+3 − x
	 �

x − xj+1
	 �

xj+3 − xj
	 �

xj+3 − xj+1
	 �

xj+2 − xj+1
	 �

+
xj+4 − x
	 �

x − xj+1
	 �2

xj+2 − xj+1
	 �

xj+3 − xj+1
	 �

xj+4 − xj+1
	 � , x ∈ xj+1, xj+2

��
,

x − xj
	 �

xj+3 − x
	 �2

xj+3 − xj
	 �

xj+3 − xj+1
	 �

xj+3 − xj+2
	 �

+
x − xj+1
	 �

xj+3 − x
	 �

xj+4 − x
	 �

xj+3 − xj+1
	 �

xj+3 − xj+2
	 �

xj+4 − xj+1
	 �

+
xj+4 − x
	 �2 x − xj+2

	 �
xj+4 − xj+1
	 �

xj+4 − xj+2
	 �

xj+3 − xj+2
	 � , x ∈ xj+2, xj+3

��
,

xj+4 − x
	 �3

xj+4 − xj+1
	 �

xj+4 − xj+2
	 �

xj+4 − xj+3
	 � , x ∈ xj+3, xj+4

��
,

0, o:w:,

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð14Þ

for j = −3, −2,⋯,M − 1.
Many other properties can be found in [19, 20] and refer-

ences therein.

2.2. Spline Approximation. Now, let f ∈ C½a, b�; we consider a
linear combination of B-splines SMð f ÞðxÞ, as an approxima-
tion of f ðxÞ, as follows:

SM fð Þ xð Þ = 〠
M+1

k=−1
ckBk xð Þ = CT

MΠM xð Þ, ð15Þ

where CM = ðc−1, c0,⋯, cM+1ÞT and ΠMðxÞ =
ðB−1ðxÞ, B0ðxÞ,⋯, BM+1ðxÞÞT . Furthermore, in order to
achieve a square system in numerical computations, the set
of the nodes Ω∗ = ðξiÞM+1

i=−1 is used, where

ξ−1 = x0, ξ0 = x0 +
h
2 ,

ξ1 = x1, ξ2 = x2,⋯, ξM−2 = xM−2,

ξM−1 = xM−1, ξM = xM −
h
2 , ξM+1 = xM ,

0
BBBBB@ ð16Þ

where h = ðb − qÞ/M.

Definition 1. Assume that B, I1B, and I2B are ðM + 3Þ-square
matrices defined by

Bð Þi,j = Bi ξj
	 �

,

I1Bð Þi,j =
ðξ j
a
Bi yð Þdy,

I2Bð Þi,j =
ðξ j
a

ðz
a
Bi yð Þdydz, ð17Þ

where i, j = −1, 0,⋯,M + 1. According to the definition of Bk
, we have

B =

1 1
8
19
32

1
4

25
96

7
12

1
6

1
48

1
6

2
3

1
6

1
6

2
3

1
6

⋱ ⋱ ⋱
1
6

2
3

1
6

1
6

2
3

1
6

1
48

1
6

7
12

25
96

1
4

19
32
1
8 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ð18Þ

The matrices I1B and I2B are listed in the appendix.
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Thus, we can write

ðξ j
a
SM fð Þ yð Þdy = CT

n I
j
1, ð19Þ

ðξ j
ya

ðz
a
SM fð Þ yð Þdydz = CT

n I
j
2, ð20Þ

where I jν is the jth column of matrix IνB, ν = 1, 2.

2.3. The Quasilinearization Method. In equation (1), we have
three nonlinear terms such as uδux, u

δu, and u2δu. In this sec-
tion, a quasilinearization method is presented to linearize
these terms. The quasilinearization technique is an applica-
tion of the Newton–Raphson–Kantorovich approximation
in function space [21–24].

Let 0 ≤ t ≤ T and tn = nΔt, n = 0, 1,⋯,N , are the equal
parts of ½0, T�, where Δt = T/N . Also, assume that t ∈ ½tn,
tn+1�, u, v ∈ C½a, b� × C½0, T�, and hðu, vÞ = uζv. Using two-
variable Taylor series for h in some open neighborhood
around ðu, vÞ = ðun, vnÞ, there is c = ðc1, c2Þ, where c1, c2 ∈ C½
a, b� × C½0, T�, so that

h xð Þ = h að Þ + x − að Þ · ∇h að Þ + x − að Þ ·H cð Þ · x − að Þ, ð21Þ

where x = ðu, vÞ, a = ðun, vnÞ, un = uðx, tnÞ, vn = vðx, tnÞ, and
H is the Hessian matrix:

H cð Þ =
hc1c1 cð Þ hc1c2 cð Þ
hc1c2 cð Þ hc2c2 cð Þ

 !
: ð22Þ

Upon ignoring two-order terms, equation (21) becomes

h xð Þ ≈ h að Þ + x − að Þ · ∇h að Þ: ð23Þ

Therefore,

h u, vð Þ ≈ uζ
� �n

vn + u − un, v − vnð Þ · ζ uζ−1
� �n

vn, uζ
� �n� �

= ζ uζ−1
� �n

vnu − ζ uζ
� �n

vn + uζ
� �n

v:

ð24Þ

By placing ðζ, vÞ = ðδ, uxÞ, ðζ, vÞ = ðδ, uÞ, and ðζ, vÞ = ð2
δ, uÞ in (24), we obtain linear approximations for uδux, u

δu,
and u2δu, respectively, as follows:

uδux ≈ δ uδ−1
� �n

uxð Þnu − δ uδ
� �n

uxð Þn + uδ
� �n

ux, ð25Þ

uδu ≈ δ uδ
� �n

u − δ uδ+1
� �n

+ uδ
� �n

u, ð26Þ

u2δu ≈ 2δ u2δ
� �n

u − 2δ u2δ+1
� �n

+ u2δ
� �n

u: ð27Þ

3. Solution Method for the Burgers–Huxley and
Burgers–Fisher Equations

In this section, the inverse problem (1)–(5) is solved using SM
as an approximation tool. Assume that in (16), l = ξυ, υ ∈ f
−1, 0,⋯,M + 1g.

To discretize (1), the method of [25, 26] is used. We
assume that utxxðx, tÞ can be expanded in terms of linear
combination of cubic B-splines (15) as follows:

utxx x, tð Þ = 〠
M+1

k=−1
cnkBk xð Þ = CT

MΠM xð Þ, ð28Þ

where t ∈ ½tn, tn+1�, and the row vector CT
M is assumed con-

stant in the subinterval ½tn, tn+1�. By integrating (28) with
respect to t from tn to t, we obtain

uxx x, tð Þ = uxx x, tnð Þ + t − tnð ÞCT
MΠM xð Þ: ð29Þ

Also, by integrating (28) with respect to x from l to x, we
have

utx x, tð Þ = utx l, tð Þ + 〠
M+1

k=−1
cnk

ðx
l
Bk yð Þdy: ð30Þ

Integrating (30) with respect to x from l to x gives

ux x, tð Þ = ux x, tnð Þ + ux l, tð Þ − ux l, tnð Þ

+ t − tnð Þ 〠
M+1

k=−1
cnk

ðx
l
Bk yð Þdy:

ð31Þ

Again, by integrating (31) with respect to x from l to x, we
gain

u x, tð Þ = u x, tnð Þ + p tð Þ − p tnð Þ + x − lð Þ ux l, tð Þ − ux l, tnð Þ½ �

+ t − tnð Þ 〠
M+1

k=−1
cnk

ðx
l

ðz
l
Bk yð Þdydz:

ð32Þ

Putting x = b in (32), we get

ux l, tð Þ − ux l, tnð Þ = 1
b − l

g tð Þ − g tnð Þ − p tð Þ + p tnð Þ½

− t − tnð Þ 〠
M+1

k=−1
cnk

ðb
l

ðz
l
Bk yð Þdydz�:

ð33Þ
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Substituting equation (33) into (31) and (32) and using
(4) and (5) held

ux x, tð Þ = ux x, tnð Þ + 1
b − l

g tð Þ − g tnð Þ − p tð Þ + p tnð Þ½ �

+ t − tnð Þ 〠
M+1

k=−1
cnk

�
ðx
l
Bk yð Þdy − 1

b − l

ðb
l

ðz
l
Bk yð Þdydz

� �
,

ð34Þ

u x, tð Þ = u x, tnð Þ + p tð Þ − p tnð Þ + x − l
b − l

� g tð Þ − g tnð Þ − p tð Þ + p tnð Þ½ �

+ t − tnð Þ 〠
M+1

k=−1
cnk

�
ðx
l

ðz
l
Bk yð Þdydz −

ðb
l

ðz
l
Bk yð Þdydz

� �
:

ð35Þ

By integrating (28) twice with respect to x from l to x and
using (5), we obtain

ut x, tð Þ = _p tð Þ + x − lð Þutx l, tð Þ + 〠
M+1

k=−1
cnk

ðx
l

ðz
l
Bk yð Þdydz,

ð36Þ

where  denotes the differentiation with respect to t. By
substituting x = b in equation (36) and using (4), we get

utx l, tð Þ = 1
b − l

_g tð Þ − _p tð Þ − 〠
M+1

k=−1
cnk

ðb
l

ðz
l
Bk yð Þdydz

" #
:

ð37Þ

Substituting equation (37) into (36) held

ut x, tð Þ = _p tð Þ + x − l
b − l

_g tð Þ − _p tð Þ½ � + 〠
M+1

k=−1
cnk

�
ðx
l

ðz
l
Bk yð Þdydz − x − l

b − l

ðb
l

ðz
l
Bk yð Þdydz

� �
:

ð38Þ

Since

ðx
l

ðz
l
Bk yð Þdydz =

ðx
a

ðz
a
Bk yð Þdydz − x − lð Þ

ðl
a
Bk yð Þdy

−
ðl
a

ðz
a
Bk yð Þdydz,

ð39Þ

from (34), (35), and (38), we obtain

ux x, tð Þ = ux x, tnð Þ + 1
b − l

� g tð Þ − g tnð Þ − p tð Þ + p tnð Þ½ �

+ t − tnð Þ 〠
M+1

k=−1
cnkI ,

ð40Þ

u x, tð Þ = u x, tnð Þ + p tð Þ − p tnð Þ + x − l
b − l

� g tð Þ − g tnð Þ − p tð Þ + p tnð Þ½ �

+ t − tnð Þ 〠
M+1

k=−1
cnkJ ,

ð41Þ

ut x, tð Þ = _p tð Þ + x − l
b − l

_g tð Þ − _p tð Þ½ � + 〠
M+1

k=−1
cnkJ , ð42Þ

where

I =
ðx
a
Bk yð Þdy − 1

b − l

ðb
a

ðz
a
Bk yð Þdydz −

ð l
a

ðz
a
Bk yð Þdydz

� �
,

J =
ðx
a

ðz
a
Bk yð Þdydz + x − b

b − l

ðl
a

ðz
a
Bk yð Þdydz

−
x − l
b − l

ðb
a

ðz
a
Bk yð Þdydz:

ð43Þ

Further, by discretizing (29), (40), (41), and (42), assum-
ing x→ ξj and t→ tn+1, and using (19) and (20), we get

uxxð Þn+1i = uxxð Þni + ΔtCT
MΠM ξið Þ, ð44Þ

uxð Þn+1i = uxð Þni +
1

b − l
φn + ΔtCT

ML
i, ð45Þ

utð Þn+1i = _p tn+1ð Þ + di _g tn+1ð Þ − _p tn+1ð Þ½ � + CT
MS

i, ð46Þ
un+1i = uni + p tn+1ð Þ − p tnð Þ + diφn + ΔtCT

MS
i, ð47Þ

where

Si = Ii2 + viI
υ
2 − diI

M+1
2 ,

Li = Ii1 −
1

b − l
IM+1
2 − Iυ2

	 �
,

vi =
ξi − b
b − l

,

di =
ξi − l
b − l

,

φn = g tn+1ð Þ − g tnð Þ − p tn+1ð Þ + p tnð Þ,

uxxð Þn+1i = uxx xi, tn+1ð Þ,

uxð Þn+1i = ux xi, tn+1ð Þ,
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utð Þn+1i = ut xi, tn+1ð Þ,

uð Þn+1i = u xi, tn+1ð Þ: ð48Þ

By substituting quasilinearization formulas (25)–(27) in
(1), we get

ut = εuxx − α δ unð Þδ−1 uxð Þnu + unð Þδux
� �

+ β η + γð Þ δ + 1ð Þ unð Þδ − η 2δ + 1ð Þ unð Þ2δ − γ
h i

u

+ αδ unð Þδ uxð Þn + β 2ηδ unð Þ2δ+1 − η + γð Þδ unð Þδ+1
h i

:

ð49Þ

Finally, substituting the approximation formulas
(44)–(47) into (49) yields

CT
MZ

n
i = σni , ð50Þ

where

Zn
i = Δt α unið ÞδLi − εΠM ξið Þ

� �
+ 1 − Δtwn

ið ÞSi,

σn
i = rni + ε uxxð Þni − _p tn+1ð Þ

− di _g tn+1ð Þ − _p tn+1ð Þð Þ
− α unið Þδ uxð Þni +

1
b − l

φn

� �
+wn

i uni + p tn+1ð Þð
− p tnð Þ + diφnÞ,

rni = αδ unið Þδ uxð Þni + β

� 2ηδ unið Þ2δ+1 − η + γð Þδ unið Þδ+1
h i

,

wn
i = β η + γð Þ δ + 1ð Þ unið Þδ

h
− η 2δ + 1ð Þ unið Þ2δ − γ

i
− αδ unið Þδ−1 uxð Þni :

ð51Þ

By organizing (50) with respect to i = −1, 0,⋯,M + 1, we
obtain

ZnCM = Rn, ð52Þ

where

Zn = Zn
−1, Zn

0 ,⋯, Zn
M+1ð ÞT ,

Rn = σn−1, σn0 ,⋯, σn
M+1ð ÞT :

ð53Þ

Note that for n = 0, we use equation (2) as uxxðxi, t0Þ =
f ′′ðxiÞ, uxðxi, t0Þ = f ′ðxiÞ, and uðxi, t0Þ = f ðxiÞ; otherwise,
uxxðxi, tnÞ, uxðxi, tnÞ, and uðxi, tnÞ, are updated using (44),
(45), and (47), respectively.

4. Numerical Examples

All examples in this section are solved once with the exact
values of the right-hand metallurgy side vector R0 and again
by adding noise to it. We add the noise to the vector Rn in the
form Rn

ε = Rn + ϑ × randnðM + 3Þ, where ϑ is an absolute
noise level and randnðM + 3Þ is a normal distribution vector
with zero mean and unit standard deviation, and it is realized
using the MATLAB function randn. In this article, we con-
sider four noise levels ϑ = 0:0001, 0:001, 0:01, and 0:1.

In the case that noise is added to the system (52), we will
use the Tikhonov regularization method [27] to solve the sys-
tem. By this technique, we have a minimization problem as
follows:

min
x∈ℝM+3

ZnCM − Rn
ϑk k22 + λ CMk k22, ð54Þ

where λ > 0 is the regularization parameter, which controls
the trade-off between fidelity to the data and smoothness of
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Figure 1: The exact solution (left) and the absolute error (right) of Example 1 with Δt = 0:001 and h = 0:01, without noise.
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Figure 2: The absolute errors j~uða, tÞ − uða, tÞj, with the exact and regularization methods and different values of noises for Example 1 using
Δt = 0:001 and h = 0:05.
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Table 1: L∞ errors of Example 1 for different values of Δt and ϑ with h = 0:05.

ϑ Method Δt = 1
10 Δt = 1

100 Δt = 1
500 Δt = 1

1000
0 Exact 2:814715e − 05 2:583762e − 06 6:155098e − 07 3:141230e − 07
0:0001 Exact 3:621854e − 05 1:145132e − 05 1:462985e − 05 3:314704e − 05
0:0001 Regularization 4:802055e − 05 1:106724e − 05 4:894096e − 03 5:889474e − 03
0:001 Exact 1:049879e − 04 1:147022e − 04 1:588327e − 04 3:328792e − 04
0:001 Regularization 1:198265e − 04 1:262147e − 04 4:903954e − 03 6:321994e − 03
0:01 Exact 7:991674e − 04 1:013317e − 03 1:543202e − 03 3:522300e − 03
0:01 Regularization 6:676744e − 04 1:020415e − 03 5:201666e − 03 6:770758e − 03
0:1 Exact 1:134644e − 02 1:124839e − 02 1:672706e − 02 3:645521e − 02
0:1 Regularization 8:608509e − 03 8:209530e − 03 1:927866e − 02 2:575360e − 02
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Figure 3: The exact solution (left) and the absolute error (right) of Example 2 with Δt = 0:001 and h = 0:01, without noise.

Table 2: L∞ errors of Example 2 for different values of Δt and ϑ with h = 0:05.

ϑ Method Δt = 1
10 Δt = 1

100 Δt = 1
500 Δt = 1

1000
0 Exact 3:612476e − 05 2:959095e − 06 6:619158e − 07 3:353989e − 07
0:0001 Exact 4:699528e − 05 1:248949e − 05 2:062944e − 05 3:238930e − 05
0:0001 Regularization 2:624024e − 05 1:202468e − 05 2:387568e − 04 2:749732e − 04
0:001 Exact 1:183073e − 04 1:362642e − 04 1:925736e − 04 4:107127e − 04
0:001 Regularization 1:363059e − 04 8:611165e − 05 2:450763e − 04 3:206762e − 04
0:01 Exact 1:525685e − 03 1:297835e − 03 1:956289e − 03 3:485143e − 03
0:01 Regularization 7:281806e − 04 6:885447e − 04 7:839071e − 04 2:761185e − 03
0:1 Exact 7:399248e − 03 1:083570e − 02 2:062804e − 02 3:805156e − 02
0:1 Regularization 9:402128e − 03 9:843907e − 03 1:193822e − 02 2:510321e − 02
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Figure 4: The absolute errors j~uða, tÞ − uða, tÞj, with the exact and regularization methods and different values of noises for Example 2 using
Δt = 0:001 and h = 0:05.

9Advances in Mathematical Physics



the solution. In this word, the generalized cross-validation
(GCV) method [28] is used to determine the regularization
parameter λ. In our computations, we will use the MATLAB
codes developed by Hansen [29] for solving the ill-
conditioned systems.

In numerical examples, we suppose that ~uðx, tÞ denotes
the exact solution and uðx, tÞ denotes the estimated solution.

The versatility and accuracy of the methods are measured
using the maximum absolute error norm L∞, defined by [30]:

L∞ = max
0≤n≤N

~u a, tnð Þ − u a, tnð Þj j: ð55Þ

In all examples and for all different values of n and h, the
conditional numbers of the coefficient matrices Zn are less
than 1000 but their smallest singular values are about 10−5
and relatively small. For this reason, we expect the ill-
posedness of the systems to increase with increasing ϑ.

In all examples, solving the system by the decomposition
method (Cholesky et al.) is called the “exact method” and
solving the system using the Tikhonov regularization method
is called the “regularization method.”

It is notable that we perform all of the computations by
MATLAB® R2019a software (V9.6.0.1072779, 64-bit
(win64), License Number: 968398, MathWorks Inc., Natick,
MA) running on a Sony VAIO Laptop (Intel® Core™ i5-

2410M Processor 2.30GHz with Turbo Boost up to
2.90GHz, 8GB of RAM, 64-bit) PC.

Example 1. We consider the problem (1)–(5) in the domain
½0, 1� with ε = 1, l = 0:1, T = 5, η = 1, α = 1, β = 1, γ = 2, and
δ = 1. The exact solution will be obtained using equation (6).

The exact solution and the absolute error using Δt =
0:001 and h = 0:01 are depicted in Figure 1. Also, the absolute
errors j~uða, tÞ − uða, tÞj, by applying the exact and regulariza-
tion methods and different values of ϑ with Δt = 0:001 and
h = 0:05, are shown in Figure 2. In Table 1, the maximum
absolute errors L∞ are tabulated using h = 0:05 and different
values of ϑ and Δt.

Example 2. In this example, we consider the problem (1)–(5)
with ε = 1, l = −0:9, T = 1, η = 0, α = 1, β = 1, γ = −1, and δ = 1
in the domain ½−1, 1�. The exact solution will be obtained
using equation (8).

In Figure 3, the exact solution and the absolute error
using Δt = 0:001 and h = 0:01 are presented. In addition,
the absolute errors j~uða, tÞ − uða, tÞj, using the exact and
regularization methods and different values of ϑ with Δt
= 0:001 and h = 0:05, are displayed in Figure 4. The L∞
are shown using different values of ϑ and Δt and h =
0:05 in Table 2.

Table 3: L∞ errors of Example 3 for different values of Δt and ϑ with h = 0:05.

ϑ Method Δt = 1
10 Δt = 1

100 Δt = 1
500 Δt = 1

1000
0 Exact 4:816528e − 06 4:792704e − 07 9:580090e − 08 4:789637e − 08
0:0001 Exact 2:351403e − 05 2:514832e − 05 4:071947e − 05 7:494035e − 05
0:0001 Regularization 2:801648e − 05 5:715366e − 05 1:121469e − 04 1:220928e − 04
0:001 Exact 1:306283e − 04 2:291344e − 04 3:901340e − 04 7:325559e − 04
0:001 Regularization 7:512398e − 05 1:175376e − 04 1:169995e − 04 2:451920e − 04
0:01 Exact 2:557327e − 03 2:312663e − 03 3:491372e − 03 6:974782e − 03
0:01 Regularization 1:193753e − 03 4:763686e − 04 4:462170e − 04 2:318261e − 03
0:1 Exact 1:812669e − 02 2:584793e − 02 3:202167e − 02 7:193698e − 02
0:1 Regularization 7:477861e − 03 1:372036e − 02 4:073468e − 03 2:030713e − 02
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Figure 5: The exact solution (left) and the absolute error (right) of Example 3 with Δt = 0:001 and h = 0:01, without noise.
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Figure 6: The absolute errors j~uða, tÞ − uða, tÞj, with the exact and regularization methods and different values of noises for Example 3 using
Δt = 0:001 and h = 0:05.
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Figure 7: The absolute errors j~uða, tÞ − uða, tÞj, with the exact and regularization methods and different values of noises for Example 4 using
Δt = 0:001 and h = 0:05.
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Example 3. Let a = −1, b = 5, ε = 1, l = −0:9, T = 1, η = 1, α = 0,
β = 1, and δ = 1, in the problem (1)–(5). The exact solution of
this example is given as [31]

u x, tð Þ = γb1e
1/2ð Þ ffiffi

2
p

γx+γ2tð Þ + b2e
1/2ð Þ ffiffi

2
p

x+tð Þ

b1e
1/2ð Þ ffiffi

2
p

γx+γ2tð Þ + b2e
1/2ð Þ ffiffi

2
p

x+tð Þ + b3eγt
, ð56Þ

where b1, b2, and b3 are arbitrary constants. For the compu-
tation, we take γ = 1/2, b1 = 1, b2 = 1, and b3 = 1.

The error norms L∞ are tabulated using different values
of ϑ and Δt and h = 0:05 in Table 3. The exact solution and
the absolute error using Δt = 0:001 and h = 0:01 are pre-
sented in Figure 5. Moreover, the absolute errors j~uða, tÞ −
uða, tÞj, using the exact and regularization methods and dif-
ferent values of ϑ with Δt = 0:001 and h = 0:05, are shown
in Figure 6.

Example 4. We consider the problem (1)–(5) with ε = 1, l =
0:1, T = 3, η = 0, α = 0, γ = −1, δ = 1, a = 0, and b = 1. The
exact solution is given by [32] as follows:

u x, tð Þ = 1 + e
ffiffiffiffiffi
β/6

p
x− 5β/6ð Þt

� �−2
, ð57Þ

and we assume that β = 6.

In Figure 7, the absolute errors j~uða, tÞ − uða, tÞj, using
the exact and regularization methods and different values of
ϑ with Δt = 0:001 and h = 0:05, are depicted. In Figure 8,
the exact solution and the absolute error using Δt = 0:001
and h = 0:01 are presented. The maximum absolute errors
L∞ are tabulated using h = 0:05 and different values of ϑ
and Δt in Table 4.

5. Conclusions

The boundary value inverse problem related to the general-
ized Burgers–Fisher and generalized Burgers–Huxley equa-
tions was solved numerically. We considered the equation
in a small time interval and then applied quasilinearization
in time. We approximated the largest order of derivatives in
the equation using a linear combination of B-splines. By inte-
grating several times with respect to the time and space var-
iables, we obtain approximations for the function and its
partial derivatives. By substituting quasilinearization and
the obtained approximations in the equation, a desired
numerical scheme was obtained. In numerical examples, we
saw that the obtained linear system from the numerical
scheme has a relatively small condition number. The numer-
ical results show that the solutions are very accurate. By add-
ing large noise levels to the system, it was observed that the
solutions were still appropriate.
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Figure 8: The exact solution (left) and the absolute error (right) of Example 4 with Δt = 0:001 and h = 0:01, without noise.

Table 4: L∞ errors of Example 4 for different values of Δt and ϑ with h = 0:05.

ϑ Method Δt = 1
10 Δt = 1

100 Δt = 1
500 Δt = 1

1000
0 Exact 5:686819e − 03 1:263590e − 04 1:769301e − 05 8:381687e − 06
0:0001 Exact 5:685089e − 03 1:327687e − 04 3:060667e − 05 3:335971e − 05
0:0001 Regularization 5:332308e − 03 1:069778e − 04 5:492670e − 03 6:108492e − 03
0:001 Exact 5:701673e − 03 1:770599e − 04 1:672482e − 04 2:856058e − 04
0:001 Regularization 5:308533e − 03 1:018102e − 04 5:505681e − 03 6:212021e − 03
0:01 Exact 6:142029e − 03 9:728911e − 04 1:744781e − 03 2:566482e − 03
0:01 Regularization 5:132815e − 03 1:078324e − 03 4:795718e − 03 6:132190e − 03
0:1 Exact 1:584424e − 02 1:078511e − 02 1:603969e − 02 3:379878e − 02
0:1 Regularization 7:376052e − 03 7:101563e − 03 1:218363e − 02 3:157183e − 02
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Appendix

The matrices I1B and I2B are listed below.

I1B = h

0 15
64

1
4

1
4

1
4

1
4

1
4 ⋯

1
4

1
4

1
4

0 55
256

7
16

1
2

1
2

1
2

1
2 ⋯

1
2

1
2

1
2

0 37
768

13
48

17
24

3
4

3
4

3
4 ⋯

3
4

3
4

3
4

0 1
384

1
24

1
2

23
24 1 1 ⋯ 1 1 1

1
24

1
2

23
24 1 ⋯ 1 1 1

⋱ ⋱ ⋱ ⋱ 1
1
24

1
2

23
24 1 1 1

1
24

1
2

23
24

383
384 1

1
24

23
48

539
768

3
4

1
16

73
256

1
2

1
64

1
4

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

I2B = h2

0 49
640

4
20

9
20

14
20

19
20

24
20 ⋯

4 + 5 2n� 2ð Þ
20

20n� 7
40

4 + 5 2n� 1ð Þ
20

0 107
2560

17
80

7
10

12
10

17
10

22
10 ⋯

7 + 5 2n� 3ð Þ
10

20n� 11
20

7 + 5 2n� 2ð Þ
10

0 49
7680

19
240

73
120

27
20

42
20

57
20 ⋯

27 + 15 2n� 4ð Þ
20

60n� 51
40

27 + 15 2n� 3ð Þ
20

0 1
3840

1
120

7
30

121
120 2 3 ⋯ 2n� 3 4n� 5

2 2n� 2

1
120

7
30

121
120 2 2n� 4 4n� 7

2 2n� 3

⋱ ⋱ ⋱ ⋱
1
120

7
30

121
120 2 5

2 3

1
120

7
30

121
120

5761
3840 2

1
120

11
48

4081
7680

9
10

1
80

47
512

3
10

1
640

1
20

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ðA:1Þ

14 Advances in Mathematical Physics



Data Availability

All results have been obtained by conducting the numerical
procedure, and the ideas can be shared with the researchers.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] E. Babolian and J. Saeidian, “Analytic approximate solutions to
Burgers, Fisher, Huxley equations and two combined forms of
these equations,” Communications in Nonlinear Science and
Numerical Simulation, vol. 14, no. 5, pp. 1984–1992, 2009.

[2] A. J. Khattak, “A computational meshless method for the gen-
eralized Burgers–Huxley equation,” Applied Mathematical
Modelling, vol. 33, no. 9, pp. 3718–3729, 2009.

[3] D. A. Hammada and M. S. El-Azab, “2N order compact finite
difference scheme with collocationmethod for solving the gener-
alized Burger’s–Huxley and Burger’s–Fisher equations,” Applied
Mathematics and Computation, vol. 258, pp. 296–311, 2015.

[4] X. Y. Wang, Z. S. Zhu, and Y. K. Lu, “Solitary wave solutions of
the generalised Burgers-Huxley equation,” Journal of Physics A:
Mathematical and General, vol. 23, no. 3, pp. 271–274, 1990.

[5] H. Bateman, “Some recent researches on the motion of fluids,”
Monthly Weather Review, vol. 43, no. 4, pp. 163–170, 1915.

[6] J. M. Burgers, “A Mathematical Model Illustrating the Theory
of Turbulence,” in Advances in Applied Mechanics, pp. 171–
199, Academic Press, New York, 1948.

[7] T. S. El-Danaf and A. R. Hadhoud, “Parametric spline func-
tions for the solution of the one time fractional Burgers’ equa-
tion,” Applied Mathematical Modelling, vol. 36, no. 10,
pp. 4557–4564, 2012.

[8] J. Satsuma, M. Ablowitz, B. Fuchssteiner, and M. Kruskal,
Topics in Soliton Theory and Exactly Solvable Nonlinear Equa-
tions, World Scientific, Singapore, 1987.

[9] B. K. Singh and G. Arora, “A numerical scheme for the gener-
alized Burgers–Huxley equation,” Journal of the Egyptian
Mathematical Society, vol. 24, no. 4, pp. 629–637, 2016.

[10] C. G. Zhu, “Numerical solution of Burgers–Fisher equation by
cubic B-spline quasi-interpolation,” Applied Mathematics and
Computation, vol. 216, no. 9, pp. 2679–2686, 2010.

[11] O. P. Yadav and R. Jiwari, “Finite element analysis and approx-
imation of Burgers–Fisher equation,” Numerical Methods for
Partial Differential Equations, vol. 33, no. 5, pp. 1652–1677, 2017.

[12] R. Jiwrai and R. C. Mittal, “A higher order numerical scheme
for singularly perturbed Burger–Huxley equation,” Journal of
applied mathematics & informatics, vol. 29, pp. 813–829, 2011.

[13] R. C. Mittal and R. Jiwari, “Numerical study of Burger–Huxley
equation by differential quadrature method,” Journal of Applied
Mathematics and Mechanics, vol. 5, no. 8, pp. 1–9, 2009.

[14] M. Inc, A. Yusuf, A. Isa Aliyu, and D. Baleanu, “Lie symmetry
analysis and explicit solutions for the time fractional general-
ized Burgers–Huxley equation,” Optical and Quantum Elec-
tronics, vol. 50, article 94, 2018.

[15] Z. Korpinar, M. Inc, A. S. Alshomrani, and D. Baleanu, “On
exact special solutions for the stochastic regularized long
wave–Burgers equation,” Advances in Difference Equations,
vol. 2020, no. 1, Article ID 433, 2020.

[16] S. Dhawan, S. Kapoor, S. Kumar, and S. Rawat, “Contempo-
rary review of techniques for the solution of nonlinear Burgers
equation,” Journal of Computational Science, vol. 3, no. 5,
pp. 405–419, 2012.

[17] T. Ak, S. Dhawan, and B. Inan, “Numerical solutions of the
generalized Rosenau–Kawahara–RLW equation arising in
fluid mechanics via B-spline collocation method,” Interna-
tional Journal of Modern Physics C, vol. 29, no. 11, article
1850116, 2018.

[18] S. Dhawan, T. Ak, and G. Apaydin, “Algorithms for numerical
solution of the equal width wave equation using multi-quadric
quasi-interpolation method,” International Journal of Modern
Physics C, vol. 30, no. 11, article 1950087, 2019.

[19] C. De Boor, A Practical Guide to Splines, Revised Edition,
Springer-Verlag New York, Inc, 2001.

[20] A. Kunoth, T. Lyche, G. Sangalli, and S. S. Capizzano, Splines
and PDEs: From Approximation Theory to Numerical Linear
Algebra, Lecture Notes in Mathematics 2219, Springer, Cetraro,
Italy, 2017.

[21] R. Bellman and R. Kalaba, Quasilinearization and Nonlinear
Boundary–Value Problems, Elsevier, 1965.

[22] M. El-Gebeily, “A generalized quasilinearization method for
second-order nonlinear differential equations with nonlinear
boundary conditions,” Journal of Computational and Applied
Mathematics, vol. 192, no. 2, pp. 270–281, 2006.

[23] B. Ahmad, J. Nieto, and N. Shahzad, “Generalized quasilinear-
ization method for mixed boundary value problems,” Applied
Mathematics and Computation, vol. 133, no. 2-3, pp. 423–
429, 2002.

[24] V. Lakshmikantham and A. Vatsala, Generalized Quasilinear-
ization for Nonlinear Problems, MIA, Kluwer, Dordrecht, Bos-
ton, London, 1998.

[25] G. Hariharan and K. Kannan, “Review of wavelet methods for
the solution of reaction-diffusion problems in science and
engineering,” Applied Mathematical Modelling, vol. 38, no. 3,
pp. 799–813, 2014.

[26] R. Jiwari, “A Haar wavelet quasilinearization approach for
numerical simulation of Burgers’ equation,” Computer Physics
Communications, vol. 183, no. 11, pp. 2413–2423, 2012.

[27] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Prob-
lems, Winston and Sons, Washington D.C, 1977.

[28] G. Wahba, A Survey of Some Smoothing Problems and the
Method of the Generalized Cross-Validation for Solving Them,
University of Wisconsin, Department of Statistics, 1976.

[29] P. C. Hansen, “Regularization tools: a MATLAB package for
analysis and solution of discrete ill-posed problems,” Numeri-
cal Algorithms, vol. 6, no. 1, pp. 1–35, 1994.

[30] Z. Balali, J. Rashidinia, and N. Taheri, “Numerical solution of
singular boundary value problems using Green’s function
and Sinc-collocation method,” Journal of King Saud Univer-
sity, vol. 32, no. 7, pp. 2962–2968, 2020.

[31] R. C. Mittal and A. Tripathi, “Numerical solutions of general-
ized Burgers–Fisher and generalized Burgers–Huxley equa-
tions using collocation of cubic B-splines,” International
Journal of Computer Mathematics, vol. 92, no. 5, pp. 1053–
1077, 2014.

[32] A. M. Wazwaz and A. Gorguis, “An analytic study of Fisher's
equation by using Adomian decomposition method,” Applied
Mathematics and Computation, vol. 154, no. 3, pp. 609–620,
2004.

15Advances in Mathematical Physics


	Numerical Study of the Inverse Problem of Generalized Burgers–Fisher and Generalized Burgers–Huxley Equations
	1. Introduction
	2. Preliminaries
	2.1. Cubic B-Spline
	2.2. Spline Approximation
	2.3. The Quasilinearization Method

	3. Solution Method for the Burgers–Huxley and Burgers–Fisher Equations
	4. Numerical Examples
	5. Conclusions
	Appendix
	Data Availability
	Conflicts of Interest

