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Abstract 

 
In this study, a new generalization of the normal distribution called the unit half logistic normal (UHLN) 

distribution has been proposed by introducing a shape parameter into the normal distribution to make it more 

flexible. Several statistical properties of the new distribution which include; the cumulative hazard function, 

reversed hazard function, hazard rate average function, quantile function, moments, moment generating 

function and order statistics has been derived. Estimators such as the maximum likelihood, ordinary least 

squares, weighted least squares and Cramér-von Mises were developed for the new model. The performances 

of the estimators were investigated via Monte Carlo simulation using six different sample sizes and replicated 

5000 times. The maximum likelihood was observed to be the most consistent and the best technique, hence 

was used to estimate the parameters of the new distribution. The applications of the UHLN distribution was 

demonstrated using three different datasets and compared with the normal, transmuted normal, beta normal, 

McDonal normal and logistic distributions. The results revealed that the UHLN distribution performs better 

for the given datasets. 
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1 Introduction 
 

Researchers in the field of statistical distribution continue to develop new parametric distributions or generalize 

the existing ones in the quest to obtain more flexible distributions or improve upon the performances of the 

existing ones in modeling datasets. This has become necessary because most of the existing statistical 

distributions always fail to give best fit to the new forms of data evolving randomly on daily basis with varied 

characteristics. In statistical data analysis, the choice of an appropriate model for the analysis is done based on 

which of them provides the best fit for a given dataset.  

 

The normal distribution is the most popular classical distribution with wider applications in several fields. 

However it is only best at modeling symmetric data and fails to provide best fit to asymmetric and heavy tailed 

datasets. As a result several researchers have proposed the generalization of the normal distribution to improve 

upon its flexibility in modeling real data sets with varying degrees of skewness and kurtosis. These include the 

lognormal [1], folded normal [2], skew normal [3], beta normal [4], the generalized normal [5], McDonald 

normal [6], gamma normal [7], odd-log logistic normal [8] and transmuted normal [9] distributions among 

others. This study therefore proposes another generalization of the normal distribution called the unit half 

logistic normal (UHLN) using the unit half logistic generated (UHL-G) family of distribution proposed by [10] 

by introducing a shape parameter into the normal distribution. 

 

The remaining part of the article is organized as follows: Section 2 presents the UHLN distribution. Section 3 

presents the statistical properties of the UHLN distribution. Section 4 presents the estimation methods for the 

parameters of the new distribution. Section 5 presents a simulation experiment to assess the performance of the 

estimators of the UHLN distribution. Empirical applications of the UHLN using three different datasets are 

presented in section 6. Section 7 presents the conclusion of the study.  

 

2 UHLN Distribution 
 

For any random variable Y that follows the half logistic distribution, [10] proposed that, a random variable 

YT e  follows the unit half logistic distribution with its PDF given as 
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applied the  T - X transformation technique proposed by [11], to transform the PDF of the unit half logistic 

distribution to obtain the unit half logistic-generated  UHL -G family with CDF given as 
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The CDF, PDF  and 

Hazard rate function of the random variable Y that follow the UHLN distribution, using [10] UHL-G family of 

distribution are respectively given by 

 



 

 
 

 

Kobilla and Nasiru; AJPAS, 18(4): 1-21, 2022; Article no.AJPAS.89640 
 

 

 
3 

 

 
2

; , , ,

1

y

F y y
y








 





   
  
   

   
   

  

                                                                                (1) 

 

 

12

2

1
2 exp

2
; , , , ,

2 1

y y

f y y

y





 


 
  


 




       
      

       
    
    

    

                                     (2) 

 

         

12

2

1
2 exp

2
; , , , ,

2 1

y y

y y
y





 


 
   


 




       
      

          
    
    

    

                   (3)          

 

where,   is the location parameter, 0  is the scale parameter and 0  is the shape parameter. 

Henceforth, we represent a random variable Y that follows the UHLN distribution as Y UHLN  , , .  
 

 

 
 

 

Fig. 1. (a) PDF and (b) Hazard plot of the UHLN distribution 

 

Fig. 1 gives the plot of the PDF and hazard rate functions respectively for different parameter values. From Fig. 

1, it can be observed that the density of the UHLN distribution exhibits different shapes such as right skewed, 

left skewed and nearly symmetric with varying degrees of kurtosis measures. The hazard rate function also 

exhibits different monotonically increasing shapes for different combination of parameter values.  
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3 Statistical Properties of the UHLN Distribution 
 

3.1 Mixture Representation  
 

The mixture representation of the density of the UHLN distribution is very helpful in deriving the properties of 

the UHLN distribution. The mixture representation is presented in this subsection.  

 

Lemma 1. The PDF of the UHLN distribution can be expressed in a mixture form as  
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 is the PDF of the normal distribution.  
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Substituting equation (5) into the PDF of the UHLN distribution stated in equation (2), we get  
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This completes the proof of lemma 1. 

 

3.2 Cumulative Hazard Function 
 

Cumulative hazard function (CHF) is the accumulated probability of failures up till time .t  The CHF is very 

useful in survival and reliability data analysis in the field of biology and engineering. By definition, the CHF is 

given by  
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Hence the CHF  H ; , ,y    of the UHLN distribution is given by 
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3.3 Hazard Rate Average Function 
 

Hazard rate average function (HRAF) is a function that is used to determine the average rate of increase or 

decrease of the hazard rate. By definition the HRAF is given by  
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where,  H y is the CHF. Therefore the HRAF of the UHLN distribution is given by  
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3.4 Reversed Hazard Function 
 

Reversed hazard rate function (RHRF) also known in literature as the retro hazard is very crucial in survival 

data analysis. It is used in the estimation of survival function and the analysis of censored data. The reversed 

hazard rate function is the ratio of the PDF to the corresponding CDF. Let  ; , ,r y    denote the reversed 

hazard rate function of the UHLN distribution. By definition, the retro hazard is given by  
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Therefore the HRAF of the UHLN distribution is given by 
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3.5 Quantile Function 
 

The quantile function is the inverse of the CDF and it is very useful in generating random numbers for a given 

probability distribution. It is also useful in describing some properties of a given distribution such as the median, 

quartiles, skewness and kurtosis [12]. Let the quantile function of UHLN distribution be denoted as  .yQ u

The quantile function of the UHLN distribution is given by 
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where  1erf    is the inverse of the error function.  

 

The mean is usually overlooked for the median as the most appropriate measure of central tendency required for 

data that contain outliers or extreme values [12]. The median of UHLN distribution  0.5yQ is obtained by 

substituting 0.5u  into the quantile function expressed in equation (9).  

 

Therefore the median of the UHLN distribution is given by  

 

   
1

10.5 2 2 3 1 .yQ erf  
  

   
 

                                                                                (10) 
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measures of shapes of a distribution and are respectively calculated using the quantiles as follows; 
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Table 1 shows the lower quartile, median, upper quartile, inter quartile range, quartile deviation, coefficient of 

quartile deviation, Bowley’s coefficient of skewness and Moor’s coefficient of kurtosis for some chosen 

parameter values of the UHLN distribution. From Table 1, it can be observed that the Bowley’s coefficient of 

skewness shows that the quantile of the UHLN distribution can be left skewed, right skewed or approximately 

symmetric and the Moor’s coefficient of kurtosis shows the quantile of the UHLN distribution can only be 

leptokurtic. 

 



 

 
 

 

Kobilla and Nasiru; AJPAS, 18(4): 1-21, 2022; Article no.AJPAS.89640 
 

 

 
7 

 

Table 1. Quantiles and quantile measures of shapes 
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-10 5 0.200 -29.2409 -23.2123 -17.1015 12.1394 6.0697 -0.2620  0.0068 1.2276 

 0.500 -20.2270 -16.1032 -11.7923   8.4347 4.2173 -0.2634  0.0221 1.2369 

 0.100 -38.9451 -30.7288 -22.5471 16.3980 8.1990 -0.2667 -0.0021 1.2217 

 0.600 -18.8097 -14.9672 -10.9223   7.8874 3.9437 -0.2653  0.0256 1.2389 

12.5 15 1.585   4.3288 12.5003 21.4435 17.1147 8.5573 0.6641 0.0451 1.2492 

 1.000  -3.5136   6.0391 16.3002 19.8138 9.9069 1.5496 0.0358 1.2443 

 2.600 11.4882 18.4982 26.3236 14.8354 7.4177 0.3923 0.0550 1.2542 

10.500 26.8620 31.7796 37.5461 10.6841 5.3420 0.1659 0.0794 1.2666 

0 27 5.000 12.4478 22.9893 35.0498 22.6020 11.301 0.4759 0.0672 1.2604 

 14.000 30.4424 38.7775 48.6344 18.1920 9.0960 0.2301 0.0837 1.2688 

 28.000 40.4314 47.7535 56.5693 16.1379 8.0690 0.1664 0.0926 1.2736 

 9.000 23.2650 32.4220 43.1081 19.8432 9.9216 0.2990 0.0771 1.2654 

 

3.6 Moments 
 

Moments are very useful in statistical data analysis. They are used to obtain the measures of central tendencies, 

measures of dispersion and measures of shapes. The following proposition gives the 
thr non-central moment of 

the UHLN distribution. 

 

Proposition 1. The 
thr non-central moment of the UHLN distribution is given by  
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Proof. By definition  

 

 .r

r y dF y





   

Substituting the mixture form of the PDF from Lemma 1, into the definition and letting
y

z




 
  
 

, then 

y z   , which also implies 
dy

dz
 or dy dz . 

Thus  

 

         
 1 1'

0

2 1 1 .
r

ii

r

i

i z z z dz


    
   




                                                       (12) 

 

Simplifying using binomial expansion and further evaluating the integral in equation (12) thus 

 

    
 

 
 

         
 1 1

1 1

0 0
0

1 1
1 1 1 1 .

k i
i k jj j j

k

i
z z z dz z z z dz z z z dz

k


      




   
                    

 
    (13) 

 

Combining equations (12) and (13) we have  
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     
 

   
'

, , 1 1
0 0 0

1 1
2 1 1 1 1 .

j
r

i k jr

r j k j i
i j k

r i
i I I

j k



  



 

 
  

      
         

      
    

 

This completes the proof of proposition 1. 

 

Table 2 shows the first six moments, standard deviation (SD), coefficient of variation (CV), coefficient of 

skewness (CS) and coefficient of kurtosis (CK) for I 5, 40 and 34  :    

II : 27, 16.3 and 0.5 III : 3, 20 and 33          
 

 

and IV: 25, 24 and 20        parameter values of the UHLN distribution. The SD, CV, CS and CK 

values are calculated using; 

 

2

2SD ,  
   

2

2
CV =  = 1,



 





     
3

2

3

3 2

2

2

3 2
CS = ,

  

 

 



 


and 

 

2 4

4 3 2

2
2

2

4 6 3
CK = ,

    

 

  



  


respectively. 

 

From Table 2, the CS values show that the UHLN distribution can be left skewed, right skewed or nearly 

symmetric. Also, the values of the CK show that the UHLN distribution can be leptokurtic, platykurtic and 

closely mesokurtic. This implies the UHLN distribution can model heavy or light tailed data as well as left, right 

or symmetric datasets. These characteristics of the UHLN distribution signify it is highly flexible. 

 

Table 2. First six moments, SD, CV, CS and CK 

 


r
  

I  II  III  IV  

1

  

5.116436  7.204978  

13.861621 10  

11.952992 10  

2

  

22.793911 10  

24.472179 10  

31.607290 10  

31.055911 10  

3

  

41.536615 10  

38.924934 10  

46.933251 10  

45.749423 10  

4

  

58.503834 10  

55.628270 10  

63.091270 10  

63.150428 10  

5

  

74.731781 10  

71.619216 10  

81.420577 10  

81.736130 10  

6

  

92.645545 10  

91.043645 10  

96.709021 10  

99.616622 10  

SD  

11.591267 10  

11.988231 10  

11.077397 10  

12.597101 10  

CV  

3.110109  2.759524  

12.790011 10  

1.329806  

CS  

2.815767  

48.135320 10  

1.359280  

16.009370 10  

CK  

9.010588  2.795356  6.794911  1.404617  
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3.7 Moment Generating Function 

 
MGF is an alternative representation of the PDF of a random variable. If the MGF of a random variable exist, it 

can be used to obtain all the moments of the random variable. The MGF of the UHLN distribution is given by 

the following proposition. 

 

Proposition 2. The MGF of the UHLN distribution is given by 

 

 

       
 

   , , 1 1
0 0 0 0

1 1
M 2 1 1 1 1 .

!

jrr
i k jr

Y j k j i
r i j k

r it
t i I I

jr k



 



  

 
   

      
          

     
        (14) 

 

Proof. By definition, the MGF is given by  

 

     M E .tY ty

Y t e e dF y



  

 
 

Using the Taylors series, 

 

  '

0

M .
!

r

Y r

r

t
t

r







 

 
Hence 

 

       
 

   , , 1 1
0 0 0 0

1 1
M 2 1 1 1 1 .

!

jrr
i k jr

Y j k j i
r i j k

r it
t i I I

jr k



 



  

 
   

      
         

     
 

  

 

This completes the proof of proposition 2.  

 

3.8 Order Statistics 
 

Order statistics is an elementary tool but vital in non-parametric statistics and statistical inference. It helps in 

computing the minimum and maximum values as well as the range of a sampled random variable. It is also 

useful in estimating the sample median and other quantiles. Suppose that 1 2, ,..., nY Y Y is an independent 

identically distributed random sample from the UHLN distribution, that is  ~ UHLN , ,Y    , where, 
's

iY  

are sorted in increasing order of magnitude with
1

'... , 1,2,... ., ,i i n

s

iYY iY nY     The PDF of the 
thp

order statistics of the UHLN distribution for 1,2,...,p n is given by 

 

 
 

     
1

:

1
1 ,

, 1

p n p

p nf y f y F y F y
B p n p

 

        
            (15) 

 

where,  f y and  F y are the PDF and the CDF of the UHLN distribution respectively, and  ,B   is the 

beta function. Since  0 1F y  for y  . Using binomial series to expand and evaluate the CDF in 

equation (15) the PDF of the
thp order statistics of the UHLN distribution in equation (15) becomes 
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 
 

     
1

:

0

1
1 .

, 1

p jn p
j

p n

j

n p
f y f y F y

jB p n p

 



 
         

                                            (16) 

 

Further substituting the PDF and the CDF of the UHLN distribution into equation (16), yields the PDF of the 
thp order statistics of the UHLN distribution. 

 

 
 

   
 

1

1 1

:

0 0

2
2

1 1 , .
, 1

1

p j

in p
i j

p n

j i

y

n p y y
f y i y

jB p n p y









  

  



 

  


 

    
                                            

    
    


          (17)  

 

4 Parameter Estimation  
 

This section presents the parameter estimation methods for the UHLN distribution. Four estimation methods are 

used to estimate the parameters. These include: Maximum likelihood estimation (MLE), ordinary least squares 

(OLS), weighted least squares (WLS) and Cramér-von Mises (CVM). 

 

4.1 Maximum Likelihood Estimation  
 

Supposed that 1 2, ,..., ny y y are independent identically distributed random observations of size n obtained 

from  UHLN ; , ,y    . If  , ,     is the vector of parameters, then total log-likelihood function is 

given by 
 

       
2

0 0

1

1 1
; log 2 log 2 1 log 1 erf

2 2 2

1
              2 log 1 1 erf

2 2

n n
i i

i i

n
i

i

y y
y n n

y


 
   

 





 



                                    

           
       

 



 (18) 

 

The maximum likelihood estimates of the parameters can be obtained by maximizing directly the total log-

likelihood function in equation (18). Alternatively, the score functions can be equated to zero and solving the 

system of equations to obtain the maximum likelihood estimates. The score functions are obtained by 

differentiating equation (18) with respect to each of the parameters. The score functions are: 
 

 
 

   

 

12 2

2
1 1 1

2 1 1
exp 1 erf exp

2 22; 21
1 2 ,

2
1 erf 2 1 2 1 erf

2 2

i i i

n n n
i

i i ii
i

y y y

y y

y y








  


   


    
 



  


          
           

                
                       

            (19) 

 

 
 

   

   

12 2

1 12
2

2 1 1
exp exp 1 erf

2 2 2; 1 2
1 2

2
1 erf 2 1 2 1 erf

2 2

i i i
i i

n n
i

i i ii
i

y y y
y y

y yn

y y








  
  

    


      
 



 


           
              

                        
                        

 
2

1

,
n



 (20) 

and  
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 

1 1

2
2 1 erf log

2
1 erf

; 21
log 1 erf 2 .

2 2
1 2 1 erf

2

i

i

n n
i

i i
i

y

y

y yn

y





















  





  

  
           
                       








   

        
   

  

            (21) 

 

The score functions are then solved simultaneously by equating equations (19), (20) and (21) to zero to obtain 

the maximum likelihood estimates of each parameter. That is, 
 ;

0,
y



 



 

 ;
0

y



 



and 

 ;
0.

y



 



However the score functions do not have closed form, therefore the resulting system of 

equations are solved numerically to obtain the parameter estimates ,  and .  
 

 

4.2 Least Squares Estimation 
 

[15] developed the least squares estimation method for estimating the parameters of a distribution which 

comprise of the ordinary least squares (OLS) and the weighted least squares (WLS). Supposed that 

     1 2
, ,...,

n
y y y are independent identically distributed random observations of size n obtained from

 UHLN ; , ,y    , where, 
 
's

i
y  are sorted in order statistics. If  , ,     is the vector of parameters, 

then the OLS parameter estimates ,  and OLS OLSOLS   of the UHLN distribution are obtained by minimizing 

the function: 

 

    
2

1

; ,
1

;
n

i
i

i
L y F y

n

 
   




                                                                                           (22) 

 

with respect to the parameters ,  and    . Similarly, the WLS estimates ,  and WLS WLSWLS    are 

obtained by minimizing the function  

 

 
   

    
2 2

1

1 2
; ,

1 1
;

n

i
i

n n i
WL y F y

i n i n

   
     


 

                                                             (23) 

 

with respect to the parameters ,  and    to obtain the following equations. 

 

4.3 Cramér-von Mises Estimation 
 

The CVM approach is an alternative parameter estimation technique that is based on the minimum distance 

estimation methods and observed to have the least bias relative to the other minimum distance estimation 

techniques. For independent identically distributed random observations,      1 2
, ,...,

n
y y y of size n sorted in 

order statistics obtained from  UHLN ; , , .y    If  , ,     is the vector of parameters, then CVM 

parameter estimates ,  and .CVM CVMCVM   of the UHLN distribution are obtained by minimizing the 

function: 
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    
2

1

1 2 1
CVM ; ; ,

12 2

n

i
i

i
y F y

n n

 
     

 
                                                                         (24) 

 

with respect to the parameters ,  and .  
 

 

5 Simulation Study 
 

A simulation experiment was carried out with three different sets of parameter values:
 

I ,      :      ΙΙ ,    :      and  III 0.3, 14.5 6.6  :    
 

using six different sample sizes: 25,50,75,100,125,150n   and the process was replicated N 5000.  

The average absolute bias (AB) and root mean square error (RMSE) of the estimators of the parameters are 

computed and compared to identify the best estimation techniques for the parameters. The outcome of the 

simulation experiments are presented in Tables 3, 4 and 5. The AB and RMSE of the parameters are calculated 

using,  

 

 
N

1

1
AB ,

N i

  and  
N 2

1

1
RMSE ,

N i

  respectively, where,   .  


 From  

 

Tables 3, 4 and 5 it can be seen that, the MLE is the most efficient and the only consistent estimator of the 

UHLN distribution since it has the least AB and RMSE values and its AB and RMSE values reduces as the 

sample sizes increases. This implies that the MLE has clearly shown dominance over all the other proposed 

estimators and hence it is considered the best techniques to estimate the parameters of the UHLN distribution. 

 

Table 3. Monte Carlo simulation results for and        
 

 

Parameter n  AB  RMSE 

MLE OLS WLS CVM MLE OLS WLS CVM 

4.4   25 3.1556  3.1404  2.9104  3.4385  5.2935  5.2847  5.0927  5.5667  

50 2.3897  2.3966  2.3940  2.8500  4.6202  4.6506  4.5758  4.9582  

75 2.2459  2.5698  2.4143  2.7920  4.4389  4.6463  4.1180  4.8767  

100 1.8392  1.9023  1.7993  2.0502  4.1478  4.2082  4.1085  4.4132  

125 1.7267  2.2199  1.7790  2.1378  4.0080  4.3804  4.0568  4.3929  

150 1.2970  1.9545  1.8018  2.0307  3.6721 4.1623  4.5434  4.2575  

  

9.5   25 0.4495  0.7372  0.7968  0.2435  2.0452  2.1297  2.0611 2.2416  

50 0.4768  0.8414  0.8850  0.6318  1.8849  2.0355  1.9713  2.0124  

75 0.5401  0.9046  0.8503  0.7325  1.7429  1.8695  1.8112  1.8806  

100 0.4622  0.7919  0.6873  0.6372  1.6949  1.7890  1.7302  1.7867  

125 0.4236  0.8266  0.6655  0.6420  1.6015  1.7644  1.6582  1.7443  

150 0.3000  0.7869  0.6778  0.6705  1.4984  1.7090  1.6358  1.6916  

  

0.5   25 0.2128  0.2069  0.2044  0.2078  0.3541  0.3351  0.3296  0.3542  

50 0.1716  0.1814  0.1835  0.1958  0.3231  0.3162  0.3146  0.3338  

75 0.1637  0.1935 0.1873  0.2003  0.3131  0.3181  0.3165  0.3324  

100 0.1348  0.1526  0.1439  0.1547  0.2929  0.2900  0.2884  0.3005  

125 0.1258  0.1723  0.1432  0.1607  0.2817  0.3051 0.2868  0.3043  

150 0.0983  0.1603  0.1454  0.1601  0.2598  0.2958  0.2867  0.3014  
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Table 4. Monte Carlo simulation results for and       
 

 

Parameter 

  

n  AB  RMSE 

MLE OLS WLS CVM MLE OLS WLS CVM 

5   25 2.6338  3.0224  3.1895  2.8604  8.5629  8.7407  8.8564  8.7900  

50 2.6297  2.9503  3.0833  3.0112  8.4652  8.9002  8.8170  8.9713  

75 2.3788  2.3827  2.2474  2.5721 8.2035  8.6286  8.3631 8.6837  

100 2.6922  2.8917  2.5788  3.2448  8.1241 8.6692  8.3836  8.9348  

125 2.7140  3.0816  2.8845  3.0943  8.0561 8.8038  8.4965  8.9503  

150 2.2135  2.6031 2.4478  2.6544  7.4250  8.2325  7.9472  8.5210  

12.4   25 1.5032  0.9033  1.0070  1.5416  3.4348  3.3142  3.3091 3.6513  

50 1.2299  1.0242  1.1010  1.3690  3.1738  3.2232  3.2390  3.3825  

75 1.1087  0.9298  0.8792  1.2200  2.9478  3.0840  2.9856  3.1994  

100 1.1518  1.0398  0.9743  1.3168  2.8993  3.0985  2.9224  3.2046  

125 1.1436  1.1689  1.1357  1.3236  2.8791 3.1288  3.0296  3.2389  

150 0.8929  0.9927  0.9274  1.1411 2.5722  2.9056  2.7628  3.0372  

.9    25 0.0043  0.2018  0.2065  0.0812  1.8137  1.7131  1.7364  1.8050  

50 0.0912  0.1852  0.2149  0.1516  1.7460  1.7328  1.7384  1.7893  

75 0.0462  0.0434  0.0282  0.0535  1.7211 1.7417  1.7143  1.7737  

100 0.1735  0.2155  0.1508  0.2623  1.6718  1.7023  1.6721 1.7463  

125 0.1905  0.2340  0.2053  0.2006  1.6655  1.7333  1.7030  1.7785  

150 0.1341  0.1605  0.1496  0.1255  1.5606  1.6662  1.6323  1.7217  
 

Table 5. Monte Carlo simulation results for and       
 

 

Parameter 

  

n  AB  RMSE 

MLE OLS WLS CVM MLE OLS WLS CVM 

0.3   25 0.4355  0.4911  0.4765  0.4533  1.0367  1.0577  1.0540  1.0406  

50 0.4581  0.5516  0.4946  0.5364  1.0565  1.0767  1.0644  1.0770  

75 0.4530  0.4719  0.4734  0.4871  1.0598  1.0621 1.0696  1.0762  

100 0.3636  0.4208  0.3668  0.4429  1.0444  1.0536  1.0346  1.0624  

125 0.3403  0.4351  0.3659  0.4441  1.0354  1.0546  1.0444  1.0610  

150 0.2842  0.4156  0.3026  0.4189  1.0212  1.0577  1.0174  1.0562   

14.5   25 0.4821  0.4220  0.3451  0.7723  1.5395  1.5392  1.4975  1.7488  

50 0.1492  0.0296  0.0235  0.2637  1.1624  1.1438  1.1520  1.2175  

75 0.0453  0.0255  0.0035  0.1962  0.9529  1.0274  0.9746  1.0876  

100 0.0046  0.0690  0.0757  0.0286  0.8673  0.9325  0.8963  0.9566  

125 0.0237  0.0697  0.0501 0.0578  0.7831  0.8743  0.8238  0.8852  

150 0.0167  0.1080  0.0686  0.0064  0.7423  0.8318  0.7697  0.8539  

6.6   25 0.9231  0.7344  0.6581  1.1059  1.8265  1.7940  1.7389  2.0037  

50 0.6323  0.4751  0.4790  0.6832  1.3837  1.3310  1.2846  1.4275  

75 0.5022  0.3610  0.4274  0.5635  1.1869  1.1543  1.1693  1.2920  

100 0.3432  0.2809  0.2563  0.3935  1.0191 1.0125  0.9549  1.0728  

125 0.3332  0.3038  0.2830  0.4105  0.9599  0.9858  0.9346  1.0347  

150 0.2759  0.2865  0.2322  0.3837  0.8477  0.9184  0.8414  0.9702  

 

  



 

 
 

 

Kobilla and Nasiru; AJPAS, 18(4): 1-21, 2022; Article no.AJPAS.89640 
 

 

 
14 

 

6 Applications 
 

This section presents the application of the UHLN distribution using three empirical datasets. The flexibility of 

the UHLN distribution is also demonstrated in this section and compared with normal (N), transmuted normal 

(TN) [9], beta-normal (BN) [4], McDonald normal (McDN) [6] and logistic (L) distribution based on their log-

likelihood   ,  Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICc) and 

Bayesian Information Criterion (BIC) selection criteria and also on Anderson-Darling (A-D) and Cramér-von 

Mises (CVM) goodness-of-fit tests. When comparing candidate statistical distributions for any given data, the 

distribution with the highest log-likelihood   ,  whiles having the least AIC, AICc, BIC, A-D and CVM is 

considered the best for that data. 
 

6.1 Dataset I: Deep Groove Ball Bearings 
 

Table 6 presents the descriptive statistics of the number of million revolutions before failure of ball bearings. It 

can be seen from Table 6 that the minimum number of million revolutions before failure of ball bearings is 

17.88 million and the maximum is 173.4 million. Also, the median number of million revolutions before failure 

is 67.8 million. The mean and standard deviation are 72.2296 million and 37.4804 million respectively. From 

Table 6, it is observed that the coefficient of skewness is 0.8812 and the excess kurtosis is 0.1921 which 

indicates that the data is right skewed and leptokurtic. The deep groove ball bearings data is a life test involving 

23 balls, it is found in [16] and it was used previously by [17]. 
 

Table 6. Descriptive statistics for dataset I 
 

Min. Max. Median Mean Std. Skewness Kurtosis 

17.8800 173.4000 67.8000 72.2296 37.4804 0.8812 0.1921 
 

Table 7 presents the maximum likelihood estimates of the parameters of fitted distributions with their 

corresponding standard errors and p-values both in brackets using dataset I. The significance of the parameter 

estimates were tested using their p-values. From Table 7, it is observed that the UHLN, N and L distributions 

have all their parameters to be significant at 5% level. One each of the parameters of TN and McDN are 

observed not to be significant at 5% level. Table 7 also indicated that all the four parameters of the BN are not 

significant at 5% level. 
 

Table 7. Maximum likelihood estimates of parameters for data set I 
 

Model 
a  b  c  

      

UHLN    -405.0937 127.3305 10000 

SE    (77.0664) (21.6921) (0.4853) 

p-value    (<0.0001) (<0.0001) (<0.0001) 

N    72.2343 36.6585  

SE    (7.6438) (5.4054)  

p-value    (<0.0001) (<0.0001)  

TN    82.4460 37.6004 0.5226 

SE    (12.5428) (6.2907) (0.4786) 

p-value    (<0.0001) (<0.0001) (0.2744) 

BN 4.1288 0.1792  8.2819 22.6891  

SE (2.1855) (0.1993)  (3.4488) (12.5002)  

p-value 0.0589) (0.3687)  (0.0163) (0.0695)  

McDN 139.7333 364.2013 2.1053 -13.3090 783.9879  

SE (21.4472) (47.9309) (0.0572) (18.4637) (54.1208)  

p-value (<0.0001) (<0.0001) (<0.0001) (0.471) (<0.0001)  

L    68.3494 20.4664  

SE    (7.4551) (3.5584)  

   p-value    (<0.0001) (<0.0001)  
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Table 8 presents the log-likelihood, model selection criteria and goodness-of-fit test for all the six distributions 

under consideration using dataset I. From Table 8, it is observed that all the six distributions have passed the 

goodness-of-fit test for dataset I. Even though the goodness-of-fit test indicated that data follows all the 

distributions under consideration, but the UHLN distribution has the least chances of committing type I error. 

Results from Table 8 shows that UHLN distribution has the highest value of and the least values of AIC, 

AICc, BIC, A-D, and CVM which indicate that it has shown absolute dominance since the model with the 

highest values of 
 
and the least values of AIC, AICc, BIC, A-D, and CVM is the best. Therefore the UHLN 

distribution is the best model for dataset I. 

 

Table 8. Log-likelihood and goodness-of-fit statistics for dataset I 

 

Model 
 

AIC AICc BIC A-D CVM 

UHLN 

p-value 

-113.18 232.3556 233.6187 235.7620 0.2296 0.0403 

    (0.9801) (0.9357) 

N -115.47 234.9445 235.5445 237.2155 0.6122 0.1070 

p-value     (0.6347) (0.5552) 

TN -115.05 236.1054 237.3685 239.5119 1.8969 0.3970 

p-value     (0.1052) (0.0728) 

BN -113.38 234.7671 236.9893 239.3091 0.3615 0.0704 

p-value     (0.8848) (0.7537) 

McDN -115.51 241.0101 244.5395 246.6875 0.6166 0.1077 

p-value     (0.6305) (0.552) 

L -115.35 234.6992 235.2992 239.3091 0.5122 0.0752 

p-value     (0.7326) (0.7246) 

 

The probability probability plot gives the display of the goodness-of-fit tests of the fitted distributions in 

describing dataset II. From Fig. 2, it can be seen that the UHLN distribution fit the data better than the others 

since it matches the diagonal line closely.  

 

 
 

Fig. 2. Probability probability plot of the fitted distributions for dataset I 

 

6.2 Datasets II: Counts of White Blood Cell  
 

Table 9 presents the descriptive statistics of white blood cell counts per litre of Australian Sports Athletes. From 

Table 9, the minimum count of white blood cell is 3.3 and the maximum is 14.3. The median count is 6.85 and 

the average and standard deviation of the counts of white cell are 7.1089 and 1.8003 respectively. It is also 

observed that the coefficient of skewness and excess kurtosis of the data are 0.8290 and 1.4055 respectively. 

This means that the data is skewed to the right and heavy tailed. Data II is the counts of white blood cell per litre 

of 202 Australian sports athletes and it is found in [18]. 
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Table 9. Descriptive statistics for dataset II 

 

Min. Max. Median Mean Std. Skewness Kurtosis 

3.3000 14.3000 6.8500 7.1089 1.8003 0.8290 1.4055 

 

Table 10 presents the maximum likelihood estimates of the parameters of fitted distributions with their 

corresponding standard errors and p-values both in brackets using dataset II. From Table 10, it is observed that 

all the parameters of the UHLN and the other five distributions under consideration are significant except a  of 

BN distribution. 

 

Table 10. Maximum likelihood estimates of parameters for data set II 

 

Model 
a  b  c  

      

UHLN    -5.7348 4.9556 198.2556 

SE    (0.6449) (0.2705) (0.0110) 

p-value    (<0.0001) (<0.0001) (<0.0001) 

N    7.1089 1.7959  

SE    (0.1264) (0.0893)  

p-value    (<0.0001) (<0.0001)  

TN    7.8249 1.9154 0.6865 

SE    (0.2409) (0.1228) (0.1747) 

p-value    (<0.0001) (<0.0001) (<0.0001) 

BN 224.1906 1195.3563  52.1533 44.8738  

SE (218.7320) (3.9220)  (11.6640) (12.7910)  

p-value (0.3053) (<0.0001)  (<0.0001) (0.0004)  

McDN 276.1720 611.5821 12.8034 -101.2062 79.7462  

SE (0.0693) (0.1007) (1.1734) (0.3869) (2.5425)  

p-value (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)  

L    6.9965 0.9905  

SE    (0.1212) (0.05802)  

p-value    (<0.0001) (<0.0001)   

 

Table 11 presents the log-likelihood, model selection criteria and goodness-of-fit test for all the six distributions 

under consideration using dataset II. The results of the goodness-of-fit tests contained in Table 11 shows that 

dataset II follows all the distributions under consideration except TN distribution. It is also observed that UHLN 

distribution has the least values of AIC, AICc, BIC, A-D and CVM and the highest of . This simply means that 

UHLN distribution is the best model for dataset II. 

 

Table 11. Log-likelihood and goodness-of-fit statistics for dataset II 

 

Model 
 

AIC AICc BIC A-D CVM 

UHLN 

p-value 

-395.75 797.5013 797.6225 807.4261 0.3635 0.047182 

    (0.8838) (0.8937) 

N 

p-value 

-404.90 813.7902 813.8505 820.4067 1.3570 0.22581 

    (0.2146) (0.2226) 

TN 

p-value 

-401.47 808.9469 809.0681 818.8717 19.161 3.9836 

    (<0.0001) (<0.0001) 

BN 

p-value 

-405.49 818.9858 819.1888 832.2188 1.4285 0.23737 

    (0.1945) (0.2054) 

McDN 

p-value 

-404.66 819.3199 819.626 835.8612 1.3236 0.22049 

    (0.2248) (0.2311) 

L 

p-value 

-401.58 807.1620 807.2223 813.7786 0.8736 0.10902 

    (0.4307) (0.5429) 
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Fig. 3 gives the probability probability plot of the fitted distributions using dataset II. The probability probability 

plot is used to check how well the fitted distributions respectively describe dataset II. Fig. 3 shows clearly the 

UHLN distribution gives the best fit than the other five fitted distributions. 

 

 
 

Fig. 3. Probability probability plot of the fitted distributions for dataset II 

 

6.3 Dataset III: Weight of Pregnant Women 
 

Table 12 presents the descriptive statistics of the weights of the 311 pregnant women at War Memorial Hospital-

Navrongo. Table 12 shows that the minimum weight of the pregnant women is 46kg and the maximum weight is 

101kg. Also, the average weight of the pregnant women is 73.49587kg. The median and standard deviation are 

75kg and 13.5459kg respectively. From Table 12, it is observed that the coefficient of skewness is -0.1598 and 

the excess kurtosis is -0.8602 which indicates that the data is skewed to the left and less peaked relative to the 

kurtosis of the normal distribution. Data III is the weights in kilograms of 311 pregnant women during their last 

antenatal visit to the Navrongo War Memorial Hospital before delivery and it was sourced from the Navrongo 

War Memorial Hospital in January, 2022. The data on the weights of pregnant women obtained from the 

Navrongo War Memorial Hospital is presented in Appendix. 

 

Table 12. Descriptive statistics for dataset III 

 

Min. Max. Median Mean Std. Skewness Kurtosis 

46 101 75 73.4958 13.5459 -0.1598 -0.8602 

 

Table 13 presents the maximum likelihood estimates of the parameters of fitted distributions with their 

corresponding standard errors and p-values both in brackets using dataset III. The significance of the parameter 

estimates were tested using their p-values. From Table 13, it is observed that all the parameters of the UHLN, N, 

and L distributions are significant at 5% level. Two parameters,  and  for both BN and TN are significant at 

5% level but the parameters a , b and  for BN,  for TN and all the parameters of the McDN distribution are 

not significant at 5% level. 

 

Table 14 presents the log-likelihood, information selection criteria and goodness of fit statistics for the six 

distributions under consideration using dataset III. The A-D test in Table 14 fail to reject the hypotheses that 

dataset III follows the UHLN, N BN and McDN distributions. The CVM fail to reject that dataset III follows 

UHLN, N, BN, McDN and L distributions. The results contained in Table 14 indicate that the UHLN 

distribution is the best model for the data. The superiority of the UHLN distribution over the other models is 

very obvious since it has the highest value of the log-likehood and the least values of AIC, BIC, AICc, A-D and 

CVM as shown in Table 14. 
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Table 13. Maximum likelihood estimates of parameters for data set III 

 

Model 
a  b  c  

      

UHLN    101.0219 2.2149 0.0138 

SE    (0.4514) (0.5284) (0.0061) 

p-value    (<0.0001) (<0.0001) (0.0247) 

N    73.4958 13.5242  

SE    (0.7669) (0.5423)  

p-value    (<0.0001) (<0.0001)  

TN    72.4902 13.5558 -0.1375 

SE    (1.6582) (0.5578) (0.1996) 

p-value    (<0.0001) (<0.0001) (0.4909) 

BN 2.2940 21.2789  123.9667 36.5054  

SE (3.0513) (48.9181)  (60.9410) (30.4714)  

p-value (0.4522) (0.6636)  (0.0419) (0.2309)  

McDN 1.3768 36.4615 13.0726 19.8469 76.4386  

SE (1.6966) (158.0893) (59.0268) (346.7416) (198.4442)  

p-value (0.4171) (0.8176) (0.8247) (0.9544) (0.7001)  

L    73.7911 8.0608  

SE    (0.8119) (0.3716)  

   p-value       (<0.0001) (<0.0001)   

 

Table 14. Log-likelihood and goodness-of-fit statistics for dataset III 

 

Model 
 

AIC AICc BIC A-D CVM 

UHLN 

p-value 

-1245.94 2497.884 2497.962 2509.104 1.8348 0.3192 

    (0.1135) (0.1194) 

N -1251.28 2506.564 2506.603 2514.044 2.2035 0.3647 

p-value     (0.0712) (0.0897) 

TN -1251.05 2508.092 2508.171 2519.312 3.3454 0.6075 

p-value     (0.0184) (0.0214) 

BN -1250.47 2508.945 2509.076 2523.904 1.9926 0.3385 

p-value     (0.0927) (0.1056) 

McDN -1250.55 2511.103 2511.300 2529.802 1.9913 0.3397 

p-value     (0.0929) (0.1049) 

L -1261.79 2527.573 2527.612 2535.053 2.7346 0.4258 

p-value     (0.0374) (0.0617) 

 

 
 

Fig. 4. Probability probability plot of the fitted distributions for dataset III 
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Fig. 4 displays the probability probability plot of the fitted distributions using dataset III. The probability 

probability plot is a plot used to assess how well a distribution describes a given dataset. From Fig. 4, the UHLN 

distribution provides the best fit for the data than the other five fitted distributions. 
 

7 Conclusions 
 

This study has developed a new generalization of the normal distribution called the unit half logistic normal 

distribution (UHLN) by introducing a shape parameter   into the normal distribution. The UHLN distribution 

turns out to be very flexible when it was fitted with three empirical datasets and compared to the modeling 

abilities of normal, transmuted normal, beta normal, McDonald normal and logistic distributions. The density 

and quantile functions of the UHLN distribution has shown that the distribution is highly flexible and capable of 

modeling left, right or symmetric datasets as well as leptokurtic, platykurtic or mesokurtic data. The maximum 

likelihood estimation technique was used in estimating the parameters of the UHLN distribution. Finally, three 

datasets were used to demonstrate the flexibility of the UHLN distribution and it was revealed that the new 

distribution provides the best fit for all the three datasets than several other competing models. 
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Appendix 
 

Table A1.1. Dataset I: Weights of 311 pregnant women at War Memorial Hospital-Navrongo 

 

74.0 47.0 65.0 71.0 78.2 82.0 96.0 87.0 89.5 53.7 71.0 89.0 

74.0 86.0 64.0 77.0 95.0 88.0 82.0 76.0 78.0 56.0 70.0 59.0 

91.0 64.0 72.0 99.0 85.0 85.0 83.0 82.0 88.0 62.0 65.0 60.0 

88.5 89.0 94.0 88.0 81.0 93.0 75.0 85.0 68.0 47.0 60.0 85.0 

87.0 89.0 77.0 76.0 88.0 82.0 75.0 74.0 80.0 62.0 46.0 54.0 

97.0 76.0 73.0 87.9 81.0 68.0 79.0 79.3 47.0 57.0 58.0 56.0 

85.0 88.0 76.0 90.4 95.0 80.0 80.0 75.0 80.0 71.0 46.0 67.0 

69.0 82.3 83.2 82.0 95.0 86.3 76.2 89.0 56.0 69.0 60.0 75.0 

90.0 95.0 87.6 79.0 76.0 75.0 85.2 82.0 69.0 62.0 53.7 61.0 

86.7 68.0 88.0 74.0 85.0 96.0 99.0 82.0 68.0 47.0 70.0 53.7 

88.0 83.0 70.0 91.0 86.0 99.0 80.0 48.0 48.0 49.5 57.0 57.0 

84.6 80.0 58.0 79.0 76.2 84.0 80.0 65.0 46.0 58.0 56.0 60.0 

100.5 74.0 84.0 90.0 85.0 86.0 91.0 70.0 69.0 80.0 80.0 61.0 

89.0 84.0 86.0 98.0 101 85.2 83.0 58.0 57.0 47.0 67.0 67.0 

84.0 96.0 73.0 77.0 76.3 84.5 94.0 60.0 78.0 48.0 88.0 88.0 

99.0 85.5 69.0 86.0 85.0 88.5 69.1 89.5 54.0 57.0 71.0 54.0 

81.0 65.2 94.0 76.0 83.0 79.0 67.5 89.0 80.0 48.0 78.0 67.0 

80.0 81.2 76.3 70.1 89.0 92.0 79.0 59.0 89.0 65.0 75.0 80.0 

85.0 99.0 71.3 85.0 90.0 82.0 87.0 58.0 53.7 80.0 46.0 58.0 

86.2 85.0 76.9 80.1 86.0 81.0 79.0 70.0 69.0 56.0 60.0 71.0 

92.0 61.0 77.0 66.0 53.7 66.0 47.0 67.0 66.0 65.0 71.0 60.0 

66.0 58.0 79.0 65.0 68.0 66.0 58.0 70.0 56.0 65.0 60.0 70.0 

68.0 58.0 56.0 69.0 53.7 69.0 62.0 46.0 66.0 65.0 89.0 66.0 

70.0 56.0 65.0 60.0 70.0 88.0 48.0 47.0 65.0 89.5 65.0 48.0 

66.0 66.0 88.0 65.0 58.0 59.0 88.0 68.0 71.0 75.0 67.0 60.0 

61.0 65.0 58.0 68.0 61.0 75.0 57.0 67.0 65.0 66.0 66.0  
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