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Abstract 

 
In this study, we sought to model the time to the first birth interval from marriage for women in Nigeria, and 

identify the various factors affecting this timing. The study was also set to determine the average/median 

survival time for marriage to first birth interval among Nigerian women, to provide enlightenment in such 

areas and possibly reduce anxiety levels of women who have little or no knowledge of the median survival 

time to first birth who might be vulnerable to the exploitations of illicit religious and medical practitioners. 

Data obtained from the Nigerian Demographic Health Survey (NDHS) 2018 was used for the purpose of this 

research. Information on the following variables was obtained: Time to first birth from marriage, Age 

Women's education, Wealth index, Place of residence, Employment, Contraceptive, Religion, and Region. 

The Kaplan-Meier estimator was used to estimate the median survival time, while the log-rank test was used 

to test the significance of the categories of the covariates used. The Density, Quantile, Survival and 

Probability plots were used to study candidate distributions that appropriately describe the data, and the 

Akaike Information Criterion (AIC) was used to select the best distribution for the Accelerated Failure Time 

Model. 

The study found that the median Survival time of marriage to the first birth interval was 20 months. Level of 

education, religion, region, use of contraceptives and Wealth Index were found to significantly affect 

marriage to the first birth interval. A log-normal Accelerated Failure Time Model was fit to the data. Women 

with higher education were found to have a shorter time to first birth interval. Also, women from South-

Western Nigeria had shorter marriage to first birth interval than the other regions. 
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meier estimator. 

 

1 Introduction 
 

The first visible outcome of the fertility process is the birth of the first child. The first birth marks a woman’s 

transition into motherhood. It plays a significant role in the future life of each individual woman and has a direct 

relationship with fertility [1]. The number of children a woman bears throughout her reproductive period in the 

absence of any active fertility control, and women who start giving the first birth very early in life tends to have 

a large number of children than those who start late is determined by the timing of the first birth according to 

Gyimah, S. O. [2]. However, one of determinant factors is the age at the start of marriage. Bongaarts, J. [3], 

mentions that early childbearing can interrupt a young women’s education and other activities which women 

need to accomplish.  Clinical outcomes come in a variety of statistical forms, such as continuous systolic blood 

pressure that can easily be analyzed with linear regression. Others, such as mortality or myocardial infarction 

(MI), are distinct events and have forms that are slightly more complex to statistically analyze [4-10].  

 

The growing issue of childlessness and delayed births has made women vulnerable, especially to fake religious 

leaders and quack medical practitioners in search of answers/solutions. Social and cultural pressures for children 

against couples often lead to desperate measures [11-16]. Poor or even total lack of knowledge of the average 

marriage to birth interval (AMBI) increases the level of anxiety amongst couples in the event there is delay in 

child birth especially, the first one. Hence, this paper is to model marriage to first birth interval among women 

so as to provide some confidence to women and marriages experiencing delay since AMBI is a significant 

determinant of fertility [23-28]. 

 

Fertility is one of the factors that influence the fluctuation of the number of populations. One of the indicators of 

fertility rate is the total fertility rate (TFR), which can be defined as the average number of children that would 

be born to a woman over her reproductive age. According to (Islam, 2009), TFR can be reduced by increasing 

the age at marriage [23-28]. However, this strategy is difficult to apply in the developed countries such as 

Indonesia due to the influence of social and cultural factors. Another alternative strategy is by controlling the 

FBI, which is defined as the time interval of a married woman to give birth to her first child since the time of 

first marriage. If the FBI is controlled, the next birth time would automatically be controlled (Islam, 2009). 

 

2 Data Structures and Methodology 
 

The data used for this study was obtained from 2018 Nigeria Demographic Health Survey (NDHS). The 

response variable is time-to-first birth from marriage among women in Nigeria that is measured in months. For 

women who did not give birth (censored), the time was measured till the date of the interview. The Independent 

variables are shown in the table below. The table shows the various covariates used to model the survival time, 

and the categories for each covariate. 

 

Table 1. Variables and categories for covariates used in the model 

 

Variables Description Categories 

Age Age of women at marriage Measured in years 

Women education Women’s level of education 0 = No-education;1 = Primary 

2 = Secondary and 3 = higher 

Wealth index Household wealth index 0 = Poor; 1 = Middle; 2 = Rich 

Place of residence Place of residence 1 = Urban; 2 = Rural 

Employment Employment status 0 = unemployed,1 = Employed 

Contraceptive Use of Contraceptive 0 = Non-User, 1 = User 

Religion Religion of respondents 0 = Christian, 1 = Muslim,2 = Other 

Region Region of residence 1=North Central, 2=North East, 3=North West, 

4= South East, 5= South-South, 6= South West 
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2.1 Kaplan-meier estimator 
 

Let           denote the actual times of the occurrence of the event of interest of n individuals. Let 

          denote the number of event occurrences at each of these times, and let            be the 

corresponding number of subjects yet to experience the event of interest. 

 

Note:                    
 

Then for any time          we have  

 

                                                         
 

for any time           we have         
  

  
 

 

Similarly, for any time          we have 

 

         
  

  
    

  

  
         (1) 

 

Hence in general for any time            we have 

 

         
  

  
    

  

  
     

  

  
      

  

  
 

 
       (2) 

 

This is the Kaplan - Meier estimator of the survivor function     . 

 

The Kaplan-Meier estimator      can be regarded as a point estimate of the survival function      at any time t. 

 

2.2 Cox proportional hazards models 
 

Proportional hazards models are a class of survival models in statistics. Survival models relate the time that 

passes, before some event occurs, to one or more covariates that may be associated with that quantity of time. In 

a proportional hazards model, the unique effect of a unit increase in a covariate is multiplicative with respect to 

the hazard rate [29-33]. For example, taking a drug may halve one's hazard rate for a stroke occurring, or, 

changing the material from which a manufactured component is constructed may double its hazard rate for 

failure. Other types of survival models such as accelerated failure time models do not exhibit proportional 

hazard. 

 

The purpose of the model is to evaluate simultaneously the effect of several factors on survival. In other words, 

it allows us to examine how specified factors influence the rate of a particular event happening (e.g., infection, 

death) at a particular point in time. This rate is commonly referred as the hazard rate. Predictor variables (or 

factors) are usually termed covariates in the survival-analysis literature. 

 

The Cox model is expressed by the hazard function denoted by      . Briefly, the hazard function can be 

interpreted as the risk of dying at time t. It can be estimated as follow: 

 

                                         (3) 

 

Where, 

 

   represents the survival time 

     is the hazard function determined by a set of p covariates              

 The coefficients              measure the impact (i.e., the effect size) of covariates. 

 The term    is called the baseline hazard. It corresponds to the value of the hazard if all the    are equal 

to zero (the quantity exp (0) equals 1). The   in      reminds us that the hazard may vary over time. 
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The Cox model can be written as a multiple linear regression of the logarithm of the hazard on the variables   , 

with the baseline hazard being an ‘intercept’ term that varies with time. The quantities          are called 

hazard ratios (HR). A value of    greater than zero, or equivalently a hazard ratio greater than one, indicates that 

as the value of the     covariate increases, the event hazard increases and thus the length of survival decreases. 

In other words, a hazard ratio above 1 indicates a covariate that is positively associated with the event 

probability, and thus negatively associated with the length of survival.  

 

A key assumption of the Cox model is that the hazard curves for the groups of observations (or patients) should 

be proportional and cannot cross. 

 

The hazard ratio for two subjects, k and k’ with respective hazard functions  

 

            
    

             (4) 

 

             
     

            (5) 

 

 is given as: 

 

     

      
 

      
    
   

      
     
   

 
 
    
   

 
     
   

         (6) 

 

This hazard ratio is independent of time. The proportional hazard assumption however implies that the hazard of 

the event in any group is a constant multiple of the hazard in any other. In other words, if an individual has a 

risk of death at some initial time point that is twice as high as that of another individual, then at all later times 

the risk of death remains twice as high. It gives the effect size of covariates. 

 

2.3 Accelerated Failure Time (AFT) model 
 

Let       and       be the survival functions of two populations. The AFT models says that there is a constant c 

> 0 such that  

 

                                                (7) 

 

This model implies that the survival time of population 1 is c times as much as that of population 2. 

 

Let    be the mean survival time for population   and let    be the population quantiles such that 

 

   (t)(   ) = µ for some        .  

 

Then 

 

            

 

 

 

          

 

 

        

          

 

 

 

                        (8) 

 

And 

 

                         (9) 
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Assume that        is a strictly decreasing function. Then we have 

 

                 (10) 

 

This shows that under the accelerated failure time model, the expected survival time, median survival time of 

population 2 all are c times as much as those of population 1.   is sometimes called the acceleration factor. 

 

Let    be the event time for individual  , and let                 
 

be a fixed covariate vector that allows a 

possibly non-null intercept. The AFT model can be represented by 

 

                                (11) 

 

where    are independent and identically distributed random errors with a distributeon with support in the whole 

real line and that does not depend on   .  

 

The vector               
 
and σ are unknown parameters. 

 

The above framework describes a general class of models: depending on the distribution we specify for   that 

we will obtain a different model, but all will have the same general structure. Accelerated failure time models 

allow a wide range of parametric forms for the density function. For each distribution of   , there is a 

corresponding distribution for T. The members of the AFT model class include the exponential AFT model, 

Weibull AFT model, log-logistic AFT model, log-normal AFT model, and gamma AFT model. The table below 

gives a brief summary of Parametric AFT models. 

 

Table 2. Summary of Popular Parametric AFT Models 

 

Distribution of   Distribution of T 

Extreme value (1 parameters) Exponential 

Extreme value (2 parameters) Weibull 

Logistic Log-logistic 

Normal  Log-normal 

Log-Gamma Gamma 

 

Given the values of the covariates x, the density function has the following form  

 

              
            

 
          (12) 

 

Where   is the scale parameter, and      is some function of covariates; A popular  

 

choice for      is                       (13) 

 

AFT models assume a survivor function of the following form, 

 

               
   

 

    
 

 

 
         (14) 

 

where   
  is baseline survivor function. 

 

The Weibull, lognormal, and log-logistic distributions for lifetime correspond to extreme value, normal, and 

logistic distributions for log of the lifetime, and the survivor function is given by 

 

        
            

 
          (15) 
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           (16) 

 

Table 3. The       functions for some common distributions 

 

Distribution Survivor Function       

Normal        
Extreme value           

Logistic          

 

2.4 Parameter estimation using maximum likelihood estimation 
 

Survival times may be subject to right censoring. Here, the censoring times are represented by the independent 

random variables                   , which are assumed to be independent of            The censoring 

mechanism is assumed to be non-informative, that is, the distribution of the     does not depend on unknown 

parameters. Let     , if the observation for individual i is a failure time, and    , if it is a censoring time. 

The observations can be represented by the pairs of random variables       , where                    , and 

the covariate vectors   ,                  
 

The likelihood function for the unknown parameters is given by 

 

       
 

 
  

       

 
  

  
   

       

 
 
    

  
          (17) 

 

where    is the observed value of   ,             denote the density and survival functions of   , respectively, 

and           is the vector of unknown parameters 

 

Using   
       

 
  the log likelihood assumes the form 

 

                                              
 
        (18) 

 

The components of the score vector is given by 

 

       
     

   
 

 

 
                       

          (19) 

 

      
 

      
     

  
 

 

 
         

 
           (20) 

 

where        
         

   
       

         

   
        (21) 

 

In matrix form, the score vector can be written as 

 

      
     

     
   

      
            

          (22) 

 

where            
                 matrix of covariates, and            

  , 

                     
                 

  are n dimensional column vectors. 

 

Table 4 gives the expression for    in equation (21) for AFT models frequently used in survival data 

applications. The expression for   for the exponential distribution equals the corresponding    for the Weibull 

distribution with   . Maximum likelihood estimates (MLEs) for β and  are obtained by solving the system of 
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equations       , which requires a numerical nonlinear optimization algorithm (such as Newton-Raphson 

and Fisher’s scoring). 

 

Table 4. Expression for    in equation 21 for some common models 

 

Model Error Distribution    

Weibull Standard extreme value            
Log-Normal Standard Normal 

      
    

       
 
      

   
 

Logistic Standard Logistic         

          
          

Note:     is the standard normal cumulative distribution function. 

 

The observed information matrix is 

 

       

   

   

   

    

   

     

   

   

                      (23) 

 

Other methods used in this study include: Newton Raphson Iteration while hypotheses were tested based on 

standard criteria such as the Likelihood Ratio and Wald tests. The Goodness of fit of the model were assessed 

using Akaike Information Criterion (AIC), R
2
, Cox-Snell Residual. Cox-Snell residuals are calculated by using 

cumulative hazard          function and standardized residual as:  

 

    
                 

  
          (24) 

 

Where                are maximum likelihood estimates of                           
 

3 Result and Discussion 
 

The data obtained for the study were analyzed and interpreted in this section. The general median survival time 

was ascertained as well as those of the subcategories of various covariates. An appropriate survival model was 

built to model the first birth interval. 

 

 
 

Fig. 1. Kaplan-Meier Plot of First Birth Interval 
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The Kaplan Meier Plot above shows the probability of survival as the survival time increased. That is, the 

probability of not having a first child (i.e., not experiencing the event of interest) as the survival time increases. 
 

Table 5. General Median Survival Time 
 

n events median 0.95LCL 0.95UCL 

22798 21514 20 20 20 
 

Calculations from the Kaplan-Meier and its plot shows that the median survival time for the marriage to first 

birth interval for Nigerian women stood at 20 months using the NDHS 2018 datasets. 
 

Table 6. Median survival Time by Level of Education 
 

 n   events median 0.95LCL 0.95UCL 

edu=0 10780 10171 23 23 23 

edu=1 3790 3651 18 18 19 

edu=2 6291 5922 17 17 18 

edu=3 1937 1770 16 16 17 
 

The result shows that median survival times for Nigerian women with no education (edu=0) is 23 months, 18 

months for those with primary education (edu=1), 17 months for those with secondary education (edu=2)  

and 16 months for respondents with higher educational qualification (edu=3). It is observed that the median  

survival time dropped with increasing educational qualification. 
 

Table 7. Median survival Time by Place of Residence 
 

 n events median 0.95LCL 0.95UCL 

por=1 7958 7564 18 18 18 

por=2 14840 13950             21     21 21 
 

The result on type of place of residence shows that respondents who lived in urban areas (por=1) had a  median 

survival time of 18 months while their rural counterparts had a median survival time of 21 months. 
 

Table 8. Median survival Time by Working Status 
 

 n events median 0.95LCL 0.95UCL 

work=0 7061     6457 21 21 22 

work=1        15737 15057 19 19 20 
 

The result on working status of the respondents shows that those who were not working had a median survival 

time of 21 months while those that worked had a 19 months median survival time. 
 

Table 9. Median survival Time by Religion 
 

 n events median 0.95LCL 0.95UCL 

religion=0 8927 8462 17 17 17 

religion=1 13711 12899 22 22 22 

religion=2 160 153 21 19 25 
 

The results further reveal that the median survival time for Christians (religion=0) were 17 months, while the 

Muslims (religion=1) had a median survival time of 22 months and those of other religions (religion=2) had a 

median survival time of 21 months.  
 

Table 10. Median survival Time by Use of Contraceptive 
 

 n events median 0.95LCL  0.95UCL 

contr=0  19600 18345 21 20 21 

contr=1 3198 3169 16 16 17 
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Respondents who did not use contraceptives (contr=0) had a median survival time of 21 months while those 

who used contraceptives (contr=1) had a median survival time of 16 months. 

 

Table 11. Median survival Time by Wealth Index 

 

  n events median 0 .95LCL 0.95UCL 

WI=1  10593 9968 22 22 22 

WI=2 4540 4342 19 19 20 

WI=3  7665 7204 17 17 18 

 

The results on wealth index showed that respondents who were poor (WI=1) had a median survival time of  22 

months, those of the middle class (WI=1) had a median survival time of 19 months whereas the rich had a 

median survival time of 17 months. 

 

3.1 KM plots for covariates 
 

The following plots are the Kaplan Meier plots for all covariates. 

 

 
 

Fig. 2. KM plot for level of education 

 

According to the plots in Figure 2 above, there is an observed difference between survival times for the different 

levels of education. The curve for no education was consistently above those of the other levels of education, 

which implies that Nigerian women with no education had a higher probability of not having their first baby 

relative to those with some form of education. On the other hand, Women with higher educational qualification 

had a lower probability of not having their first baby compared to the other women; in other words, women with 

higher education had a greater probability of having their first baby than the other women with lower 

educational qualifications.  

 

 
 

Fig. 3. KM plot for Place of Residence 
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The Kaplan-Meier plot of the Place of residence above suggests there is difference in the survival of those who 

lived in urban residents and rural residents. The women who resided in rural areas as indicated by the red curve 

have a higher probability of not having their first baby compared to their counterparts who lived in urban areas. 

This can alternately be put as, women who lived in urban areas have a higher probability of having their first 

babies than those who resided in rural areas. 

 

 
 

Fig. 4. KM plot for Work Status 

 

The Kaplan Meier plot of the work status suggests a difference in the survival time of respondents who worked 

and those who did not work, albeit very slight as the curves are quite close to each other. This implies that 

women who did not work have a slightly higher probability of not having their first babies than those who 

worked. Simply put women who worked have a higher probability of having their first baby. 

 

 
 

Fig. 5. KM plot for Religion 

 

The Kaplan-Meier plot for religion shows some differences in the survival time for the various religions. The 

survival times for Christians were consistently below those of Muslim and other religions. This means that 

Christian women have a lower probability of not having their first child when compared to Muslim women and 

women of other religions. The survival curve for Muslim didn’t differ significantly from each other as they were 

very close to each other with some intersections. 

 

The plot on use of contraceptives suggests a difference in the survival times of Users and Non-Users of 

contraceptives, with the non-user curve above that of users. This implies that women who did not use 

contraceptives have a higher probability of not having their first babies than those who used contraceptives. That 

is to say, that women who did not use contraceptives have a lower probability of having their first babies. 
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Fig. 6. KM Plot for Use of Contraceptive 

 

 
 

Fig. 7. KM plot for Wealth Index 

 

The Kaplan-Meier plot in figure 7 above suggests a difference in the survival of time across different economic 

class. The curve for poor women was higher than those of the rich most of the time. This means that the poor 

women had a higher probability of not having their first baby than the richer women. In other, they poor women 

had a lower probability of having their first babies than the richer ones. On the other hand, the curve for the rich 

women was consistently lower, implying that the rich women have lower probability of not having their first 

babies that is they have a higher probability of having their first babies when compared to the poorer women. 

 

 
 

Fig. 8. KM plot for Region 



 

 
 

 

Oyamakin and Emenike; AJPAS, 18(3): 38-57, 2022; Article no.AJPAS.88181 
 

 

 
49 

 

The plot above suggests a difference in the survival time for the different regions. The survival curve for North 

West is observed to above all other curves, which means that women from the North West region of the country 

have a higher probability of not having their first babies than those from the other region; their probability of 

having their first baby is thus lower than those from the other region. while that of South West was consistently 

below those of the other regions, which means that women from the South West region (pink curve) of the 

country have lower probability of not having their first baby than women from the other regions. It can be put 

simply as women from the South West region have a higher probability of having their first babies than the 

women from the other region. In the same vein, albeit slightly, women from South (indicated by the blue curve) 

have a higher probability of experiencing their first babies than women from the North Central (black curve), 

and the women from the North Central than those from the North East (Red curve), and those of the North East 

than those of the South-South (blue curve), and lastly those of the South-South than those of the North west 

(green curve). 

 

3.2 Accelerated Failure Time (AFT) results 
 

 In this section we investigated possible/suitable distributions that describe the event of interest, which in this 

study is the time to first birth for married couples. Several distributions were already considered for describing 

the First birth interval (too many to be included is single plot), but upon a prior visualization the ones shown 

below were the closest to describing the event of interest. 

 

 
 

Fig. 9. Density Plot of First Birth Interval 

 

Probability density curves of all the distributions under investigation plotted with the histogram plot of the data 

on ‘First Birth Interval’ are displayed in figure 9. This is visualizing how well each of the distributions describes 

the data. With the distributions distinguishable with the different colors as shown in the plot above, we observe 

that the Weibull distribution does not appropriately describe the First Birth Interval, as it does poorly in 

covering the peak as well as the tail. This is an indication that the Weibull distribution may not very well 

describe our data. On the other hand, the other two distributions Log-logistic and Log-Normal distributions do 

better, with Log-Logistic describing the peak better while the Log-Normal describes the tail better. 

 

Quantile plot is another graphical method for determining whether sample data conform to a distribution. The 

plot shows a wider deviation of the Weibull distribution at the beginning with intersections at the middle and 

towards the end. The Log-Normal and Log-Logistic lay more consistently to the curve for the First Birth 

Interval with slight deviations toward the end. 

 

Fig. 11 displays the survival curves of all the distributions overlaid on the First Birth Interval curve. The plot 

measures how appropriately the distribution describe our data by how close the curve for each distribution is to 

the curve of the actual data.  For most part, the curve for the Weibull distribution was further apart from the 

curve for the first birth interval, whereas, the log-normal and log-logistic curves were closer to the curve for the 

first birth interval. This is an indication that these two might describe the first birth interval better than the 

Weibull distribution. 
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Fig. 10. Quantile Plot of First Birth Interval 

 

 
 

Fig. 11. Survivor Plot of First Birth Interval 

 

 
 

Fig. 12. Probability Plot of First Birth Interval 
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The probability plot once again shows how the Weibull distribution did not adequately mimic the path described 

by the data. The curve for the Log Normal and Log Logistics shows how closely the respective distributions 

follow the path shown by the data, with slight deviations towards the end. After the visualizations, further test 

was carried out using the AIC to determine the best distribution from amongst the three initially considered 

based on their strengths in describing the data via the plots. 

 

Table 12. Akaike Information Criterion (AIC) from the distributions 

 

Distribution AIC 

Log-Normal 170731.5 

Log-logistic 170949.0 

Weibull 177957.0 

 

The above result shows the Log-Normal Distribution as a better fit to describing the event as it has the smallest 

AIC, and hence was used to obtain the following results. This means that for the most part and as the survival 

time increases, the Log-Normal distribution would still model the first birth interval better than the Log-Logistic 

and Weibull distribution. The table below contains the estimates of the Accelerated Failure time  

Model 

 

Table 13. Estimates of the Accelerated Failure Time Model (Log-Normal Distribution) 

 

 Value Std. Error z p 

(Intercept) 3.050391 0.024601 123.99 < 2e-16 

age -0.000300 0.000490 -0.61 0.54066 

factor(edu)1 -0.094177 0.012550 -7.50 6.2e-14 

factor(edu)2 -0.119160 0.013003 -9.16 < 2e-16 

factor(edu)3 -0.130319 0.018285 -7.13 1.0e-12 

factor(por)2 -0.000884 0.010145 -0.09 0.93056 

factor(work)1 0.018905 0.009258 2.04 0.04115 

factor(religion)1           0.071204 0.012598 5.65 1.6e-08 

factor(religion)2           0.048772 0.047754 1.02 0.30710 

factor(region)2 -0.006056 0.013678 -0.44 0.65792 

factor(region)3 0.140730 0.013374 10.52 < 2e-16 

factor(region)4 0.070983 0.017020 4.17 3.0e-05 

factor(region)5 0.196680 0.017047 11.54 < 2e-16 

factor(region)6 0.010055 0.016321 0.62 0.53783 

factor(contr)1 -0.107340 0.011882 -9.03 < 2e-16 

factor(WI)2 -0.036616               0.011492 -3.19             0.00144 

factor(WI)3 -0.044212                 0.012833 -3.45 0.00057 

Log(scale) -0.527278 0.004846                 -108.81 < 2e-16 
Scale= 0.59 

 

Log Normal distribution 

Loglik(model)= -85347.7   Loglik(intercept only)= -85916.1 

Chisq= 1136.8 on 16 degrees of freedom, p= 5.4e-232  

Number of Newton-Raphson Iterations: 3  

n= 22798  

 

The coefficients (Value)in the table above are logarithms of ratios of survival time, so a positive coefficient 

means longer survival. However, to get a more intuitive interpretation of the time ratio, the time ratios are  

transformed using the exponential function as shown in the table below.   
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Table 14. Time Ratio from the AFT model 

 

Variables Coefficient Time Ratio (TR) 

(Intercept) 3.05039122 21.12360687 

age -0.0002999 0.999700175 

factor(edu)1 -0.0941773 0.910121395 

factor(edu)2 -0.1191601 0.887665655 

factor(edu)3 -0.1303191 0.877815273 

factor(por)2 -0.0008841 0.999116327 

factor(work)1 0.01890452 1.019084338 

factor(religion)1 0.07120418 1.073800448 

factor(religion)2 0.04877201 1.049980941 

factor(region)2 -0.0060564 0.993961907 

factor(region)3 0.14072973 1.15111349 

factor(region)4 0.07098298 1.073562948 

factor(region)5 0.19668029 1.217354775 

factor(region)6 0.0100551 1.01010582 

factor(contr)1 -0.1073402 0.898220072 

factor(WI)2 -0.0366158 0.964046442 

factor(WI)3 -0.0442118 0.956751336 

 

The coefficients for the various factors from the table above are interpreted as follows: 

 

Education: A time ratio of .91 shows that the survival time of respondents with a primary education is about 

91% of the survival time of respondents with no education. In other words, the survival time of respondents with 

primary education is 9% shorter than the survival time of respondents with no education. Similarly, the survival 

time for respondents with a secondary education is about 88% of the survival time of respondents with no 

education. And finally, the survival time of respondents with higher educational qualification is about 87% of 

the survival time of respondents with no education. 

 

Religion:  The time ratio of 1.019 shows that the survival time of Muslim respondents is about a 102% of the 

survival time of Christian respondents. In other words, the survival time of Muslim respondents is about 2% 

longer than the survival time of Christian respondents. Also, the survival time of respondents who practiced 

other religions is about 5% longer than the survival time of the Christian respondents. 

 

Region: The time ratio of 1.15 shows that the survival time of North-Western respondents is 115% of the 

survival time of North-Central respondents. In other words, the survival time of North-Western respondents is 

about 15% longer than the survival time of North-Central respondents. The survival time of the South-Eastern 

respondents were about 7% longer than the survival time of the North-Central respondents. The survival time of 

South-Southern respondents is about 22% longer than the survival time of the respondents from the North-

Central region. There were, however, no significant differences in the survival times of the North-East and 

South-Western respondents. 

 

Contraceptive Use: the result shows that the survival time of respondents using a contraceptive is about 90% of 

the survival time of respondents not using contraceptives. In other words, the survival time of respondents who 

use contraceptives is about 10% shorter than the survival time of respondents who do not use contraceptives. 

 

Wealth Index: the survival time of the middle class and rich respondents are both about 96% of the respondents 

who are poor, that is, to say that the survival times of the middle class and rich respondents are about 5% shorter 

than the survival time of respondents who are poor.  

 

The place of Residence and working status of the respondents were however not very significant. 

 

Log Rank Test 

 

A further analysis is carried out to provide backup to the observations from the Kaplan Meier plots above. This 

is done using the log rank test as shown below: 
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Table 15. Log rank test for Level of Education 

 

 N Observed Expected (O-E)^2/E (O-E)^2/V 

edu=0 10780 10171 11534 161 369.5 

edu=1 3790 3651 3384 21 26.5 

edu=2 6291 5922 5109 129 180.2 

edu=3 1937 1770 1487 54       61.5 

Chisq= 389 on 3 degrees of freedom, p= <2e-16 

 

The result of the log-rank test shows that there is a significant difference in the survival time of respondents with 

different levels of education with the p-value less than 0.05. In other words, the time to first birth differed 

significantly for at least two levels of education. 

 

Table 16. Log rank test for Place of Residence 

 

 N Observed Expected (O-E)^2/E (O-E)^2/V 

por=1 7958 7564 6975 49.8 78.1 

por=2 14840 13950 14539 23.9 78.1 
Chisq= 78.1 on 1 degrees of freedom, p= <2e-16 

 

With a p-value less than 0.05 the result shows that there is a significant difference in survival time between the 

urban and rural residents. That is to say that, the time it took women who lived in urban areas to have their first 

babies was indeed different from the time it took the women who lived in rural areas to have theirs. 

 

Table 17. Log rank test for Work Status 

 

 N Observed Expected (O-E)^2/E (O-E)^2/V 

work=0 7061 6457 6814 18.71 29 

work=1 15737     15057 14700 8.67 29 

Chisq= 29 on 1 degrees of freedom, p= 7e-08 

 

A p-value less than 0.05 shows that there is significant difference in the survival time of working and non-

working respondents. This shows that the survival time or the time to first birth from marriage of working 

women differed significantly from those of non-working women. 

 

Table 18. Log rank test for Religion 

 

 N     Observed Expected (O-E)^2/E (O-E)^2/V 

religion=0 8927 8462 7354 167.03 269.93 

religion=1 13711 12899 13983 84.10 255.53 

religion=2 160 153 177 3.21 3.43 

Chisq= 270 on 2 degrees of freedom, p= <2e-16 

 

There is a significant difference in the survival time of respondents for the different religions practiced. It can be 

alternately put as, the survival time or the time to first birth from marriage differed significantly for at least two 

religions. This is however the case, as we observed a significant gap between the survival times of the Christian 

and Muslim Women, although, not much difference was observed for Muslim women and those of other 

religions. 

 

Table 19. Log rank test for Contraceptive Use 

 

 N Observed Expected (O- E)^2/E (O-E)^2/V 

contr=0 19600 18345 19139 33 318 

contr=1 3198 3169 2375 266 318 

Chisq= 318 on 1 degrees of freedom, p= <2e-16 
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The result also reveals that the survival time of respondents using contraceptive is statistically different from 

those who do not contraceptives. This implies that the duration from marriage to first birth for women who used 

contraceptives was indeed different from those who did not use contraceptives. 

 

Table 20. Log rank test for Wealth Index 

 

 N Observed Expected (O-E)^2/E (O-E)^2/V 

WI=1    10593 9968 10944 86.96 188.0 

WI=2 4540 4342 4160 8.01 10.5 

WI=3 7665 7204 6411      98.11 148.4 

Chisq= 205 on 2 degrees of freedom, p= <2e-16 

 

A p-value less than 0.05 shows that there is a significant difference in the survival time of respondents across 

the various wealth categories. This means that the duration from marriage to first birth of at least two categories 

of the wealth index classes were indeed different. 

 

3.3 Cox proportional hazard results 
 

In this section the Cox proportional hazard (a semi-parametric approach) was used to study the effect of the 

various covariates on the marriage to first birth interval. 

 

Table 21. Estimates of Cox Proportional Hazard model 

 

 coef exp(coef) se(coef) z Pr(>|z|)     

age 0.0004445 1.0004446 0.0008570 0.519   0.6039     

factor(edu)1 0.1347100 1.1442049 0.0216178 6.231  4.62e-10 *** 

factor(edu)2 0.1776957 1.1944618 0.0226240 7.854  4.02e-15 *** 

factor(edu)3 0.1739136 1.1899528 0.0319060 5.451  5.01e-08 *** 

factor(por)2 0.0067438 1.0067666 0.0175573 0.384   0.7009     

factor(work)1 -0.0153650 0.9847524 0.0160807 -0.955   0.3393     

factor(religion)1  -0.1146443 0.8916833 0.0220516 -5.199 2.00e-07 *** 

factor(religion)2  -0.0738940 0.9287701 0.0823788 -0.897   0.3697     

factor(region)2 0.0156494 1.0157725 0.0238230 0.657   0.5112     

factor(region)3 -0.1819309 0.8336590 0.0232398 -7.828 4.94e-15 *** 

factor(region)4 -0.1327357 0.8756965 0.0294150 -4.513 6.41e-06 *** 

factor(region)5 -0.3259824 0.7218179 0.0296735 -10.986 < 2e-16 *** 

factor(region)6 -0.0242312 0.9760601 0.0282422 -0.858   0.3909     

factor(contr)1 0.2250395 1.2523722 0.0202109 11.135  < 2e-16 *** 

factor(WI)2 0.0476039 1.0487552 0.0199194 2.390   0.0169 *   

factor(WI)3 0.0477812 1.0489411 0.0222617 2.146   0.0318 *   
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Concordance= 0.583  (se = 0.002 ) 

Likelihood ratio test= 833.1  on 16 df,   p=<2e-16 

Wald test            = 855.1  on 16 df,   p=<2e-16 

Score (logrank) test = 864.7  on 16 df,   p=<2e-16 

 

The above result shows the significance level of the different tiers for each covariate on the survival time of  

respondents. The first category of each covariate is used as the reference group for the purpose of  

interpretation and comparison.  The table further shows the hazard ratios for subcategories of each covariate. 

The result hence shows that the respondent’s level of education has a significant impact on the marriage to  

first birth interval. Respondents with primary education have 14 percent higher risk of becoming a mother 

relative to those with no education, similarly respondents with secondary education about 19 percent greater 

chances of becoming mothers compared to those with no education while those of higher education are at 18  

percent greater risk of becoming mothers. The result however shows that the place of residence and working 

status did not significantly affect the marriage to first birth interval. 
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The religion practiced had a significant effect in the marriage to first birth interval, respondents who practiced 

the Islamic religion were found to have 11% fewer chances of becoming mothers relative to their Christian 

counterpart, the sub-category “others” were however not significant. 

 

The geographic regions of the respondents were also found to significantly impart the marriage to first birth 

interval. Respondents from the North-West region of the country have 18 percent lower chances of having their 

first birth after marriage compared to their colleagues from the North-Central, the respondents from the South-

East have 13% fewer chances of becoming mothers relative to those from the North-Central region, similarly 

respondents from the South-South have 32% lower chances of having their first child after marriage relative to 

those from the North-Central part, whereas the sub category North-East and South-West were not significant. 

The use of contraceptive was found to have significant impact on the marriage to first birth interval, as 

respondents who used contraceptives had 25% greater chances of having their first baby relative to the 

respondents who did not. The economic status of the respondents was equally significant in determining the 

marriage to first birth interval, as those of the middle class and the rich have about 5% chances higher of 

becoming mothers relative to the poor class.  

 

Table 22. Result of the Schoenfeuld residual 

 

 chisq df p 

age 49.2 1 2.4e-12 

factor(edu) 404.5 3 < 2e-16 

factor(por) 116.3 1 < 2e-16 

factor(work) 23.7 1 1.1e-06 

factor(religion) 261.3 2 < 2e-16 

factor(region) 465.1 5    < 2e-16 

factor(contr) 30.0 1    4.3e-08 

factor(WI) 250.3 2 < 2e-16 

GLOBAL                                    626.4 16 < 2e-16 
 

The result from the Schoenfeuld residual shows that on more general basis, the covariates listed above have a 

significant effect on the marriage to first birth interval. Specifically, with all the p-values less than 0.05, this 

implies that all the covariates (which includes education, place of residence, work status, religion, region, use of 

contraceptive and Wealth Index) all had a significant effect on the survival time. 
 

4 Conclusions 
 

The study found that the median survival time of First Birth Interval for Nigerian women is 20 months. 

Furthermore, there was a significant difference in the survival time of the covariates, and the covariates 

generally had a significant effect on the survival time of First Birth Interval. The factors that significantly 

impacted the survival time of First Birth Intervals includes Level of education, religion, region, use of 

contraceptive and Wealth Index. A Log-Normal Accelerated Failure Model was fit to the data. Women with 

higher education have a shorter time to first birth interval than women with lower educational attainment. The 

Christian women have the shortest time to first birth interval, followed by the Muslim women and then women 

who practiced other religions. Women from the South-West have shortest time to becoming mothers while 

North-West women have the longest time to becoming mothers. Finally, awareness should be promoted 

throughout the entire public regarding the median survival time to first birth interval in order to reduce anxiety 

among couples who may think they have waited too long for their first baby. Women should be exposed to 

better education, as those with a higher education showed a higher risk to first birth. 
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