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ABSTRACT 
 

In this research work, the Riemannian Laplacian operator for a spherical system which varies      
with time, radial distance and time was obtained using the great metric tensors and a               
varying gravitational scalar potential. Furthermore the obtained Laplacian operator was used to 
obtain the generalized quantum mechanical wave equation for particles within this field. The 
Laplacian operator obtained in this work reduces to the well known Laplacian operator in the    limit 

of 
0c , and it contained post Euclid or pure Riemannian correction terms of all orders of 

2c . Also 

the generalized quantum mechanical wave equation obtained, in the limit of 
0c reduces to the well 

known Schrodinger mechanical wave equation, and in the limit of 
2c  contained additional 

correction terms not found in the well known Schrodinger wave equation. Hence the results in this 
work satisfy the Principle of Equivalence in Physics. 
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1. INTRODUCTION 
 

Einstein’s contribution to relativity was initially an 
intuitive approach based on a basic elimination of 
simultaneousity and a mathematical 
reformulation using the Lorentz transformation. In 
this respect Einstein just added some more 
physics to what Poincaré and Lorentz has done 
much earlier. However, it was Minkowski who 
introduced the geometrical ideas and the use of 
a four-dimensional space with time as the fourth 
dimension. Einstein took over Minkowski’s idea 
and initiated what we may call the program of 
geometrizing physics, starting with gravity. Later 
on Einstein and Hilbert attempted the unification 
of electro-magnetism and gravity while Kaluza 
and Klein tried the same using an extra fifth 
dimension. This may have been the beginning of 
the higher dimensional space-time theories 
culminating in super strings, super gravity and 
the Cantorian space-time theory [1-2]. 
 
By replacing Euclidean geometry by curved 
Riemannian one, Einstein was the first to give 
gravity a geometrical interpretation as a 
curvature of space-time due to matter. Einstein 
neither fixed the topology of his theory nor did he 
use or was aware of the existence of 
nonclassical geometry which was in any case in 
its infancy [1-4]. The possibly only encounter of 
Einstein with M. S. El Naschie’s Cantorian like 
transfinite geometry was when K. Menger 
presented a paper in a conference held in his 
honour [1-16]. 
 
Quantum mechanics is undergoing a revolution. 
Not that its substance is changing, but major 
developments are placing it in the focus of 
renewed attention, both within the physics 
community and among the scientifically 
interested public. First, wonderfully clever table-
top experiments involving the manipulation of 
single photons, atomic particles and molecules 
are revealing in an ever-more convincing manner 
theoretically predicted facts about the 
counterintuitive and sometimes “spooky” 
behavior of quantum systems and have led to a 
renewed interest in the formulation of a strictly 
physics-based (non-philosophical) foundation of 
quantum mechanics [5]. 

 
The interest in studying the Schrödinger equation 
with position-dependent mass (PDM) has been 
growing in the last fifty years due to its use in 
describing some physical phenomena as, e.g., 

the behaviour of the charge carriers in 
semiconductor heterostructures, nuclear many 
body problems, and quantum dots physics, 
among some others. The PDM concept is, by 
itself, a fundamental problem which is far from 
being completely understood. Some 
contributions have been developed from a 
theoretical point of view and other approaches to 
find solutions or to generate exactly solvable 
problems have been also carried out [6]. A 
Riemannian laplacian operator in spherical polar 
coordinate using our recent variable gravitational 
scalar potential has not been constructed   
before, therefore in this research work we 
construct the Riemannian laplacian operator and 
then test for its sound using Schrodinger wave 
equation. 
 

2. THEORETICAL FRAMEWORK 
 
The great covariant metric tensors for this 
distribution of mass or pressure in spherical polar 

coordinates ( , , )f t r   constructed by [17-19] 

are given as  
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(2.3) 

 

2 2
33 sin .g r  

              
(2.4) 

 

0g  , otherwise            (2.5) 

 

The great contravarient metric tensors for this 
field were obtained using Quotient Theorem [17-
19] are given as  
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33

2 2

1
.

sin
g

r 
                (2.9) 

 

0g  , otherwise         (2.10) 

 

The Riemannian Laplacian operator [18,20] is 
given as 
 

 
2 1
R gg

x xg
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   
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     (2.11) 

 

Explicitly, using the great metric tensors for this field, (2.11) is given as 
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(2.12) 

 

In our recent article [21], the gravitational scalar potential for this field is given as 
 

 , , exp
k r

f t r t
r c




 
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(2.13)

 
 

Where 
 

k GM  
 

Simplifying (2.13) to the order of 
2c gives 
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Differentiating (2.14) with respect to r and simplifying to the order of 
2c gives 
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Substituting (2.14) and (2.15) into (2.12) gives  
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Simplifying (2.16) to the order of 
2c gives 
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Equation (2.17) is the Riemannian Laplacian operator for this field. 
 
The generalize quantum mechanical wave equation based upon the great metric tensor [22,20] is 
given as 
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t
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Where, 

the Hamiltonian RH


 is given [20] as 
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Where, 
 
2
R  the Riemannian Laplacian operator 

 is the reduced Plank’s constant 

 , ,ng
H

H
V r t P


 is the general non-gravitational potential energy (based upon Riemannian Geometry), 

0m  non-zero rest mass and c  is the speed of light in vacuum. 

 
Applying binomial expansion and ignoring higher terms 
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The first term on the left hand side of (2.19) is given as 
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Where, 
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The second term on the left hand side of (2.19) is given as 
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Simplifying (2.24) to the order of 
2c  gives 
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To the order of 
2c ,
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Substituting (2.26)-(2.30) into (2.25) gives  
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0

1 1 2 1 1
2 2 2 2 2

R
R

k t k t k t k r
t t t t

r c r m c r c c r

  


             
                                   


 

2 2

3 2 2
0

2
1 1 1

2 2 2 2 2
R

R

k t k t t k t k r
t t t t

r cr m c r c c

   
 



            
                                  


 

 
22 2

2 2 2 2
0

1 1 1 1
2 2 2 2

R
R

k t kr k t k r
t t t t

c c m c r r c c

  




           
                              


 

2

2
1 .

2
R

kr t
t

c


   
     

   
                  (2.31) 

 

Simplifying (2.31) to the order of 
2c gives 

 
11

2 22 222

0 2 2 2 2 2 2
0 0 0

2
1 ( , , ) 1 1 1

2 2 2
R R R

R

k t t
m f r t f t t

c m c m c r r m c r r

 
 

        
                     

  
 

222 2 2
0

2 2 3 2 2 3 2 2 2 2
0 0 0 0

1 1 1
2 2 2 2 2

R R m kk t k t t k k
t t t

m c r m c r m c r c r m c r

 

 

      
               

       

   
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0 0 1 .
2

R R

m k m k r
t

r c c

 
 
  

     
                                         (2.32) 

 
Substituting (2.23) and (2.32) into (2.18) and simplifying gives 
 

RE   

2 2 2 2

2 2 2 2 2 2 3 2
0 0 0 0 0 0 0

2 2 cos
1 1 1

2 2 2 2 2 2 sin
R Rk t k t k t k

t t t
m c r m r m c r m c r m r r m c r m r

  



           
                     

             

        

2 22 2 2
2 0

02 2 3 2 3 2 2 2 2
0 0 0 0 0

1 1 1
2 2 2 2 2 2 2 2

R R R
R R

m kk t k t k t
t t m c t

m c r m c r m c r m r m c t r

  
 

 

          
                  

           

      

 
22

0 0 0

2 3 2 2 2 2
0 0

1 1 , , .
2 2

ng
R R H R

H

m k m k m kt k k r
t t V r t P

r c cm c r m c r c r

 
  



                         

 

 

(2.33) 

  
Let  
 

2
0

k

m c
 


, 0

2

m k

c
  , 

0m
 


, 

2

1
2

t
t    , 1

2

r
t

c


     

 
Substituting into (2.33) gives  
 

2

2 2 3 2

2 2 cos

2 sin 22 2

R R R
RE

r r r r rr r r r

          


 

        
                   

 

2 2
2

03 3 2 2 2 22 2 2 2
R R

Rm c
r r r c t

    




   
           

 3 2 2
, , .ng

R R H R
H

k
c V r t P

r r r

 
    



                          

(2.34) 

For mathematical simplicity, let 2=1,   , k  , 
2

0m c  , c   , 
2c


   , hence 

(2.34) becomes 
 

2

2 2 3 2

cos

sin
R R R

RE
r r r r rr r r r

        
 

 

       
                   

 

 
2 2

3 3 2 2 2 3 2
, , .ngR R

R H R
H

V r t P
r r r t r r

     
   

 

                                     

(2.35) 

 
Where, 
 
   is the orbital angular momentum, the 

other dimensionless parameters serve as 
important elements in finding energy eigenvalue 
and eigenfunctions. 
 

Equation (2.35) is our generalize time 
independent Schrodinger wave equation based 
upon the great metric tensor. 

3. CONCLUSION 
 
Interestingly, the Laplacian operator obtained in 
this work (2.17) reduces to the well known 

Laplacian operator in the limit of 
0c  , it also 

contains post Euclid or pure Riemannian 

correction terms of all orders of 
2c  . 

Instructively, our obtained result satisfies the 
Principle of Equivalence in Physics. 
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The Riemannian Laplacian operator obtained in 
this work could be used in the generalization of 
Maxwell Theory of Electromagnetism in this field 
based upon Riemannian geometry. It could also 
be used in the study of gravitoelectric and 
gravitormagnetic coupling. 
 

Further the result (2.35) is the generalized time 
independed quantum mechanical wave equation 
based upon the great metric tensor, in the limit of 
0c it reduces to the well known Schrodinger 

mechanical wave equation, and the limit of 
2c  

it contains additional correction terms not found 
in the well known Schrodinger wave equation. 
Hence this result also satisfies the Principle of 
Equivalence in Physics. 
 

Our obtained results differ from [23] in the sense 
that, [23] uses golden metric tensors, secondly, 
the gravitational scalar potential used in their 
work was not specified, lastly the Hamiltonian 
used in this work is the first general Hamiltonian 
operator given by [18] which differs from the one 
used in [23]. 
 

The solution to (2.35) will give the Riemannian 
wave function, the energy and other 
thermodynamic properties, which is an open door 
for further research. 
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