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The transverse momentum spectra of J/y, y(2S), and Y(nS,n=1,2,3) produced in proton-proton (p + p), proton-antiproton
(p +p), proton-lead (p + Pb), gold-gold (Au + Au), and lead-lead (Pb + Pb) collisions over a wide energy range are analyzed
by the (two-component) Erlang distribution, the Hagedorn function (the inverse power-law), and the Tsallis-Levy function.
The initial temperature is obtained from the color string percolation model from the fit by the (two-component) Erlang
distribution in the framework of a multisource thermal model. The excitation functions of several parameters such as the
mean transverse momentum and initial temperature increase from 39 GeV to 13 TeV, which is considered in this work.
The mean transverse momentum and initial temperature decrease (increase slightly or do not change significantly) with
the increase of rapidity (centrality). Meanwhile, the mean transverse momentum of Y(nS,n=1,2,3) is larger than that of
Jiy and y(2S), and the initial temperature for Y (nS,n=1,2,3) emission is higher than that for J/w and y(2S) emission,

which shows a mass-dependent behavior.

1. Introduction

The excitation functions of some physical quantities are
significative to help us to understand the nuclear reaction
mechanism and the system evolution characteristic. For
instance, the higher the mean transverse momentum ({p,))
is, the higher excitation state the emission source stays at.
Meanwhile, the higher the initial temperature (T;) [1-5] is,
the more violent the collisions are. By the analysis of the exci-
tation functions of (p;) and T, we can learn more about the
process in high energy collisions in which the excitation
functions of several parameters such as (p,) and T; can be
obtained from the p; spectra of produced particles.

In a data-driven reanalysis, to obtain (p;) and T, at the
first place, we need the p;. spectra of particles in experiments.
At the second place, we should choose appropriate functions
such as the Erlang distribution [6-8], the Hagedorn function
or the inverse power-law [9, 10], and the Tsallis-Levy func-

tion [11, 12]. At the last place, we use the chosen functions
to fit the experiential data on particle spectra. By describing
the p, spectra, the parameters from the selected functions
can be extracted. By comparing the parameters obtained
from the experiential data at different energies, centralities,
and rapidities, we can find out the dependences of parame-
ters on these quantities. These dependences are related to
excitation and expansion degrees of emission source, which
is beneficial for us to understand the mechanism and charac-
teristic of nuclear reactions and system evolution.

Besides the two derived parameters (p;) and T, we can
obtain other related parameters by using the method which
is similar to extract (p;) and T;. For example, using the
Hagedorn function or the inverse power-law [9, 10] and the
Tsallis-Levy function [11, 12] to fit p; spectra, some free
parameters such as p, 1y, T, and # in the mentioned func-
tions which will be discussed in Section 2 can be extracted.
These free parameters are also useful to understand particle
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FiGure 1: Continued.
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FIGURE 1: Transverse momentum spectra, (a—c) (1/27tp;)d°N/dp,dy, (d, e) (1/2np;)d*aldp dy, (f) d*o/dp,dy, and (g) d*Y/dpdy of 1y in
different decay or production modes in (a-c) Au + Au, (d, e) p+p, (f) p+p, and (g) Pb + Pb collisions at energies (a) 39, (b) 62.4, (c) 200, (d)
500, and (e) 510 GeV, as well as (f) 1.8 and 1.96, and (g) 2.76 TeV. The experimental data represented by the symbols are measured by the
(a—e) STAR [13, 14], (f) CDF [15, 16], and (g) ALICE Collaborations [18] with different centrality classes such as (a-c) 0-20%, 20-40%,
40-60%, and 0-60%, and (g) 0-20%, 20-40%, and 40-90%, as well as with different cross sections, e.g., (d, e) full and fiducial cross sections.
Some data points are scaled by different amounts marked in the panels. The data points are fitted by the (two-component) Erlang
distribution (Eq. (3), the solid curve), the Hagedorn function (Eq. (4), the dashed curve), and the Tsallis-Levy function (Eq. (6), the dotted

curve), respectively.

productions and system evolution. Not only the excitation
functions of derived parameters (p;) and T; but also the
trends of free parameters p,, 1y, T', and # can be studied from
the fit to p, spectra.

In this work, the (two-component) Erlang distribution
[6-8], Hagedorn function (the inverse power-law) [9, 10],
and Tsallis-Levy function [11, 12] are introduced firstly in
Section 2. Then, in Section 3, the three distributions or func-
tions are used to preliminarily fit the p; spectra of heavy
flavor quarkonia (charmonia and bottomonia) produced in
high energy collisions. The function results are compared
with the spectra of J/y, y(2S), and Y(nS,n=1,2,3) mea-
sured by the STAR [13, 14], CDF [15-17], ALICE [18], LHCb
[19-27], ATLAS [28-30], and CMS Collaborations [31-34]
over a wide energy range. Finally, in Section 4, we give our
summary and conclusions.

2. Formalism and Method

2.1. The (Two-Component) Erlang Distribution. According to
the multisource thermal model [6-8], a given particle is pro-
duced in the collision process where a few partons or quarks
have taken part in. Each (the i-th) parton is assumed to con-
tribute to an exponential function [f;(p,)] of transverse
momentum (p,) distribution. Let (p,) denotes the mean
transverse momentum contributed by the i-th parton, we
have the probability density function of p, to be

(0= gy e ({;ﬁ) 1)

which is normalized to 1. The probability density function of

pr contributed by all N partons which have taken part in the

collision process is the convolution of N exponential func-

tions [6-8]. We have the p;. distribution f(p;) (the proba-

bility density function of p;) of final state particles to be the
P

Erlang distribution
PT)
S J s Y
(N=1D)lp)" ( (1)

which is naturally normalized to 1. The mean p; is

{pr) =N{p,).

In the two-component Erlang distribution, we have

o (45)

where k; denotes the contribution fraction of the first
component, N; (N,) denotes the number of partons in
the first (second) component, and (p,),({p,),) denotes
the mean transverse momentum contributed by each
parton in the first (second) component. The mean p, is
(pr) =kgN (p,), + (1 = kg)N,(p,),, where N| =1-3 in this
work and N, =2 if 1 -k, #0.

Jelpr) =

LHilpr) =
(3)

2.2. The (Two-Component) Hagedorn Function. The Hage-
dorn function is an inverse power-law which is suitable to
describe wide p; spectra of particles produced in the hard



4 Advances in High Energy Physics

TaBLE 1

(a) Values of (p,),» (p,),» Ny, kg, (p7)> T;» and x*/ndof corresponding to the solid curves in Figures 1 and 2. In all cases, N, = 2, which is not

« »

listed in the table. In the case of ndof <0, we use “~” to mention

Figure Main selection (Ps); (GeVl/c) (P1), (GeVl/c) N, kg (pr) (GeV/e) T, (GeV) x%/ndof
0-20% 0.88 +0.05 — 240 1 1.760 +0.100  1.520 +0.070 1.87/-
20-40% 0.86 +£0.05 — 2+0 1 1.720 £ 0.100 1.490 + 0.070 1.67/-
1) 40-60% 0.85+0.10 — 240 1 1.700 + 0.200  1.472 +0.140 0.38/-
0-60% 0.86 +£0.05 — 2+0 1 1.720+£0.100  1.490 £ 0.070 1.34/-
0-20% 0.91 £0.05 — 2+0 1 1.820 £ 0.100 1.576 £ 0.070 2.10/-
20-40% 0.89 £0.05 — 1 1.780 £ 0.100 1.542 +0.070 1.05/-
1b) 40-60% 0.88+0.05 — 1 1.760+0.100  1.524 +0.070 2.64/-
0-60% 0.89+£0.01 — 2+ 1 1.780 + 0.200 1.542 +0.140 2.81/-
0-20% 0.92 +0.05 — 1 1.840 +0.100 1.593 +0.070 0.66/2
20-40% 0.91+£0.05 — 1 1.820+0.100 1.576 £ 0.070 2.47/2
1©) 40-60% 0.90 £ 0.05 — 1 1.800 + 0.100 1.559 £ 0.070 2.65/2
0-60% 0.91+£0.05 — + 1 1.820 £ 0.100 1.576 +0.070 1.99/2
Full cross-section 0.91+0.02 2.20+0.05 2+0 0.99+0.01 1.846 +0.034 1.663 +0.037 13.40/14
1d) Fiducial cross-section 0.95+0.01 2.50+0.05 + 0.99+0.01 1.931+0.030 1.709+0.040  54.91/14
Full cross-section 0.98 £0.02 — 2+0 1 1.960 £0.040  1.697 £0.030 5.50/2
1e) Fiducial cross-section 1.02 £0.02 — + 1 2.040 +0.040 1.767 £ 0.030 14.50/2
1.8 TeV 0.98 £0.05 2.30+£0.10 2+0 0.98 £0.01 2.013 +£0.056 1.743 +0.040 6.54/6
10 1.96 TeV 1.02 +0.05 2.41+£0.10 + 0.98 £0.01 2.096 £ 0.057 1.815+0.041 17.34/19
0-20% 0.72+0.02 — 3+0 1 2.160 + 0.060 1.764 + 0.040 25.90/10
1(g) 20-40% 0.71£0.02 — 1 2.130 £ 0.060 1.739 £ 0.040 20.90/10
40-90% 0.70 £0.02 — + 1 2.100 +0.060 1.715 +0.040 30.75/10
1.5<y<2.0 1.44 +£0.05 — 1 2.880+0.100  2.494+0.035 4.00/5
20<y<25 1.39+0.05 — 1 2.780+0.100  2.408 +0.035 4.40/5
2(a) 2.5<y<3.0 1.37+£0.05 — 1 2.740 £ 0.100 2.373+0.035 3.95/5
3.0<y<35 1.32+0.05 — 1 2.640+0.100  2.286 +0.035 3.96/5
3.5<y<4.0 1.25+0.05 — + 1 2.500+0.100  2.165+0.035 4.84/5
1.5<y<2.0 1.65 £ 0.05 — 2+0 1 3.300£0.100 2.858 £0.035 3.01/5
20<y<25 1.60 + 0.05 — 240 1 3.200£0.100  2.771 +£0.035 5.99/5
2(b) 25<y<3.0 1.55+0.05 — 1 3.100£0.100  2.685+0.035 8.89/5
3.0<y<35 1.50 £ 0.05 — 1 3.000£0.100  2.598 +£0.035 11.77/5
3.5<y<4.0 1.40 £ 0.05 — + 1 2.800+0.100  2.425+0.035 13.44/5
20<y<25 1.40 £0.02 — 240 1 2.800+£0.040  2.425+0.014  10.37/11
25<y<3.0 1.38+0.02 — 1 2.760+0.040  2.390+0.014  10.43/11
2(c) 3.0<y<35 1.36 £0.02 — 1 2.720 £ 0.040 2.356+0.014 10.12/11
3.5<y<4.0 1.26 £0.02 — 2+0 1 2.520 £ 0.040 2.182+0.014 7.96/10
4.0<y<4.5 1.15+0.02 — 2+0 1 2.300 +0.040 1.992 +0.014 5.97/8
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TasLE 1: Continued.
Figure Main selection (Ps); (GeV/ie)  (p,), (GeV/c) N, kg (pr) (GeV/e) T; (GeV) x*/ndof
20<y<25 1.62 £0.02 — 20 1 3.240+£0.040 2.806+0.014 7.49/11
2.5<y<3.0 1.60 £ 0.02 — 2+0 1 3.200+£0.040 2.771+0.014 7.18/11
2(d) 3.0<y<35 1.56 £0.02 — 2+0 1 3.120+0.040  2.702+0.014 8.82/11
35<y<4.0 1.42£0.02 — 2+0 1 2.840£0.040  2.460+0.014 5.13/10
4.0<y<4.5 1.34 £ 0.02 — 2£0 1 2.680+0.040  2.321+£0.014 6.36/8
20<y<25 1.42+£0.02 — 2+0 1 2.840+£0.040  2.460+0.014 9.57/11
25<y<3.0 1.39+£0.02 — 1 2.780+£0.040  2.408 £0.014 7.10/11
2(e) 30<y<35 1.37 £ 0.02 — 1 2.740£0.040  2.373+£0.014 9.77/11
3.5<y<4.0 1.32+£0.02 — 2+0 1 2.640 £0.040  2.286£0.014 9.62/11
4.0<y<45 1.20 £0.02 — + 1 2.400+£0.040 2.078+0.014 7.60/11
20<y<25 1.72+£0.02 — 2+ 1 3.440+0.040 2.979%0.014 8.11/11
2.5<y<3.0 1.70 £0.02 — 1 3.400+0.040 2.944+0.014 8.99/11
2(f) 3.0<y<35 1.60 £ 0.02 — 1 3.200+£0.040 2.771£0.014 9.57/11
3.5<y<4.0 1.55+£0.02 — 1 3.100+0.040  2.685+0.014 9.89/11
4.0<y<4.5 1.40 £ 0.02 — + 1 2.800+£0.040  2.425+0.014 7.99/11
20<y<25 1.46 +0.02 - 240 1 2920+0.040 2529+0.014  879/11
25<y<3.0 1.43 +0.02 — 1 2.860+0.040 2.477+0.014  9.08/11
2(g) 3.0<y<35 1.40 £0.02 — 1 2.800£0.040  2.425+0.014 9.44/11
35<y<4.0 1.35+0.02 — 2 1 2.700+£0.040  2.338+£0.014 9.93/11
4.0<y<45 1.32+£0.02 — 2+ 1 2.640£0.040  2.286+£0.014 14.04/11
20<y<25 1.80 +0.02 — 20 1 3.600+0.040 3.118+0.014  10.58/11
2.5<y<3.0 1.77 +0.02 — 1 3.540£0.040  3.066+0.014  9.08/11
2(h) 3.0<y<35 1.73 +0.02 — 1 3.460+0.040  2.996+0.014  9.17/11
35<y<4.0 1.60 +0.02 - 1 3.200+0.040 2.771+0.014  9.47/11
40<y<4s5 1.50 +0.02 — + 1 3.000+0.040 2.598+0.014  12.09/11

(b) Values of (p,},, (p,),» N1, kg, (p7)» T;» and x*/ndof corresponding to the solid curves in Figures 3 and 4. In all cases, N, = 2, which is not

listed in the table. In the case of ndof <0, we use “—” to mention
Figure Main selection (p,), (GeVic)  (p,), (GeV/c) N, kg (pr) (GeV/c) T; (GeV) x*/ndof
1.8 TeV 1.00 £ 0.05 2.70+£0.20 2+0 0.98 £0.01 2.068 +0.060 1.791 £ 0.045 3.80/-
3(a
(@) 1.96 TeV 1.30 +£0.05 3.30+0.10 2+ 0.99 +£0.01 2.640 +0.064 2.286 +0.055 11.16/20
Inclusive y/(2S) 1.58 +0.10 — 2+ 1 3.160 £ 0.200 2.737 £0.071 13.01/2
3(b) Prompt 1//(25) 1.61 £0.05 — + 1 3.220+0.100 2.789 £0.035 5.49/2
1//(23) from b 1.65+0.10 — 2+ 1 3.300 £0.200 2.858 £0.071 8.51/2
0.00 < |y | <0.75 1.18+0.03 3.75+0.20 3+0 0.98 £0.01 3.619 £0.069 2.962 +£0.074 2.39/-
3(c) 0.75< |y | <1.50 1.14 £ 0.02 3.65+0.05 0.98 +£0.01 3.498 +0.056 2.863 +£0.070 3.50/-
1.50 < |y | <2.00 1.12+0.01 3.60 £0.05 + 0.98 £0.01 3.437 +£0.046 2.813+£0.069 4.25/-
0.00 < |y | <0.75 1.20+0.03 3.80+0.10 3+0 0.97 £0.01 3.720 £0.068 3.049+£0.074 3.23/-
3(d) 0.75< |y | <1.50 1.16 £0.03 3.70+£0.10 0.97 £0.01 3.598 £ 0.067 2.948 £0.072 7.64/-
1.50 < |y | <2.00 1.14+0.03 3.65+0.10 +0 0.97 +£0.01 3.536 +£0.049 2.898 £0.071 2.33/-
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TasLE 1: Continued.
Figure Main selection (P); (GeVie)  (p,), (GeV/c) N, kg (pr) (GeV/c) T; (GeV) x*/ndof
0<|yl<0.9 3.50£0.10 — 1£0 1 3.500£0.100  3.031+0.035 1.45/-
09<ly|<1.5 3.30+0.10 — 1£0 1 3.300+0.100  2.858 £0.035 1.81/-
3(e
(©) 1.5<|y|<1.93 3.10+0.10 — 1£0 1 3.100+£0.100  2.685+0.035 2.75/-
1.93<|y|<2.4 3.00£0.10 — 1+£0 1 3.000£0.100  2.598 +0.035 3.50/-
lyl<1.2 2.10+0.20 — 240 1 4200+0.040 3.637+0.141  451/6
3(f) 1.2<|y|<l.6 1.90 £ 0.20 — 1 3.800+£0.040  3.291+£0.141 6.30/4
1.6<|yl<2.4 1.70+£0.20 — + 1 3.400+£0.040  2.944+0.141 5.71/4
lyl<1.2 2.60£0.20 — 2+0 1 5.200£0.040  4.503+0.141 4.19/6
3(g) 1.2<|yl<1l.6 2.10+0.20 — 1 4.200£0.040  3.637+0.141 6.61/4
16<|y|<2.4 1.90 £ 0.20 — 2£0 1 3.800+£0.040  3.291+£0.141 5.58/4
ly]<0.75 4.90+0.20 — 1+0 1 4.900 £0.200  4.900 +0.141 16.68/7
4(a) 0.75 < ly| <1.5 4.85+0.20 — 1 1 4.850+0.200 4.850+0.141  12.64/7
1.5<|y|<2.0 4.60+0.20 — + 1 4.600 £0.200  4.600 +0.141 14.92/7
ly]<0.75 5.70+£0.20 — 1£0 1 5.700+£0.200  5.700 £ 0.141 9.50/7
4(b) 0.75<[y|<1.5 5.60£0.20 — 1 5.600 £0.200  5.600 +0.141 12.60/7
1.5<|y|<2.0 4.90+0.20 — + 1 4.900£0.200  4.900 +0.141 23.39/7
Prompt y/(2S) 4.50+£0.50 — 1£0 1 4.500 £0.500  4.500 +0.354 31.00/2
4(c
(© Non-prompt y/(2S) 5.00 £0.50 — 1£0 1 5.000+£0.500  5.000 +0.354 24.00/2
0.0<y|<0.3 6.00 £0.20 — 1 £ 05 1 6.000 +£0.200  6.000 £0.141 78.14/6
g 0.3<y|<0.6 5.90 £ 0.20 — 1+0 1 5.900+0.200  5.900 £0.141 149.64/6
4
@ 0.6 <|y|<0.9 5.80+0.20 — 1£0 1 5.800+0.200  5.800 £ 0.141 191.75/6
09<y|<1.2 5.70+£0.20 — 1+0 1 5.700+£0.200  5.700 £ 0.141 444.14/6

(c) Values of (p,), (p;),» N1» kg, (p1)> T;» and x*/ndof corresponding to the solid curves in Figures 5 and 6. In all cases, N, =2, which is not

listed in the table. In the case of ndof <0, we use “~” to mention
Figure Main selection (Ps); (GeVl/c) (Ps), (GeVl/c) N, kg (pr) (GeV/e) T; (GeV) x*/ndof
Y(IS) 2.35+0.10 — 2+0 1 4.700 +£0.200 4.070 £0.071 14.28/11
5(a) Y(ZS) 2.65+0.10 — 2+0 1 5.300 £ 0.200 4.590 +0.071 11.50/6
Y(3S) 2.70+0.10 — 2+0 1 5.400 £ 0.200 4.677 +0.071 7.99/6
Y(IS) 2.35+0.10 — 2+0 1 4.700 £ 0.200 4.070 +£0.071 7.79/3
5(b) Y(2S) 2.65+0.10 — 2+0 1 5.300 £ 0.200 4.590 +0.071 4.25/3
Y (3S) 2.75+0.10 — 2+0 1 5.500 £ 0.200 4.763 +0.071 2.36/3
Y(IS) 2.75+0.10 — 2+ 1 5.500 £ 0.200 4.763 +0.071 13.89/3
5(c) Y(2S) 3.04+0.10 — 2+0 1 6.080 +0.200 5.265+0.071 11.00/-
Y(3S) 3.28+0.10 — 2+ 1 6.540 + 0.200 5.681 £0.071 12.00/-
20<y<25 2.87+0.10 — 2+0 1 5.740 £ 0.200 4.971+0.071 10.30/21
2.5<y<3.0 2.74+0.10 — 1 5.480 + 0.200 4.746 +0.071 12.57/21
5(d) 30<y<3.5 2.66+0.10 - 1 532020200  4.607£0.071  13.98/21
3.5<y<4.0 2.30+0.10 — 2+0 1 4.600 +0.200 3.984 +£0.071 11.90/18
4.0<y<45 2.15+0.10 — + 1 4.300 +£0.200 3.724 +£0.071 8.28/12
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TasLE 1: Continued.
Figure Main selection (Pr); (GeV/c) (Ps), (GeVl/c) N, kg (pr) (GeV/c) T; (GeV) x*/ndof
20<y<25 3.24+0.10 — 20 1 6.480 = 0.200 5.612£0.071 14.04/21
2.5<y<3.0 3.07+0.10 — 2+0 1 6.140 £ 0.200 5.317+£0.071 11.76/21
5(e) 3.0<y<35 2.98+0.10 — 2x0 1 5.960 +0.200 5.162 £0.071 10.98/21
35<y<4.0 2.60£0.10 — 20 1 5.200 £ 0.200 4.503 £ 0.071 9.67/18
4.0<y<4.5 2.30+0.10 — 2x0 1 4.600 £ 0.200 3.984 £ 0.071 9.78/12
20<y<25 3.58+0.10 — 2+0 1 7.160 +0.200 6.201 £0.071 10.56/21
2.5<y<3.0 3.36+0.10 — 1 6.720 £ 0.200 5.820+£0.071 8.31/21
5(f) 3.0<y<35 3.15+0.10 — 1 6.300 £ 0.200 5.456 £ 0.071 10.95/21
35<y<4.0 2.80+0.10 — 2+0 1 5.600 + 0.200 4.850 £0.071 10.59/18
4.0<y<45 2.50£0.10 — + 1 5.000 £0.200 4.330 £ 0.071 9.28/12
20<y<25 2.93+0.10 — 2+ 1 5.860 £ 0.200 5.075+0.071 13.98/21
25<y<3.0 2.80+0.10 — 1 5.600 +0.200 4.850 £ 0.071 17.21/21
6(a) 30<y<35 2.71£0.10 — 1 5.420 £0.200 4.694 + 0.071 15.08/21
3.5<y<4.0 2.50+0.10 — 1 5.000 +0.200 4.330£0.071 7.56/18
4.0<y<45 2.18+0.10 — + 1 4.360 £ 0.200 3.776 £ 0.071 8.70/12
20<y<25 3.25+0.10 — 2+0 1 6.500 £ 0.200 5.629 £ 0.071 13.31/21
25<y<3.0 3.18+0.10 — 1 6.360 = 0.200 5.508 +£0.071 15.28/21
6(b) 3.0<y<35 3.00+0.10 — 2+0 1 6.000 £ 0.200 5.196 £0.071 12.05/21
3.5<y<4.0 2.80+0.10 — 2 1 5.600 £0.200 4.850 £0.071 10.23/18
4.0<y<45 2.40+0.10 — + 1 4.800 £ 0.200 4.157 £0.071 9.45/12
20<y<25 3.65+0.10 — 2+0 1 7.300 +0.200 6.322£0.071 10.23/21
2.5<y<3.0 3.47+£0.10 — 1 6.940 = 0.200 6.010 £0.071 12.87/21
6(c) 3.0<y<35 3.30+0.10 — 1 6.600 = 0.200 5.716 £0.071 9.25/21
3.5<y<4.0 3.00+0.10 — 1 6.000 £ 0.200 5.196 £ 0.071 7.25/18
4.0<y<45 2.60£0.10 — + 1 5.200 £ 0.200 4.503 +0.071 9.06/12
1.5<y<2.0 3.00+0.10 — 2+0 1 6.000 +£0.200 5.196 £ 0.071 4.47/4
20<y<25 2.95+0.10 — 2£0 1 5.900 +0.200 5.110 £ 0.083 2.43/4
6(d) 2.5<y<3.0 2.85+0.10 — 1 5.700 £0.200 4.936 +£0.082 3.25/4
3.0<y<35 2.75+0.10 — 1 5.500 +0.200 4.763 £0.081 3.64/4
35<y<4.0 2.60£0.10 — + 1 5.200 £ 0.200 4.503 £ 0.071 4.52/3
20<y<25 3.25+0.10 — 2+0 1 6.500 £ 0.200 5.629 £ 0.071 18.79/21
25<y<3.0 3.00+0.10 — 1 6.000 £ 0.200 5.196 £ 0.071 17.87/122
6(e) 30<y<35 2.80+0.10 — 1 5.600 + 0.200 4.850 £0.071 18.85/21
35<y<4.0 2.75+0.10 — 1 5.500 £ 0.200 4.763 £ 0.071 16.42/19
4.0<y<4.5 2.70+0.10 — 2+0 1 5.400 +0.200 4.677 £0.071 11.03/13
20<y<2.5 3.35+0.10 — 2+0 1 6.700 £ 0.200 5.802 £0.071 17.71/21
2.5<y<3.0 3.30+0.10 — 1 6.600 £ 0.200 5.716 £ 0.071 23.75/22
6(f) 3.0<y<35 3.20+£0.10 — 2 1 6.400 = 0.200 5.543£0.071 16.94/21
35<y<4.0 3.10+0.10 — 1 6.200 £ 0.200 5.369 £ 0.071 20.21/19
4.0<y<4.5 3.00+0.10 — + 1 6.000 +0.200 5.196 £ 0.071 10.58/13
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TasLE 1: Continued.
Figure Main selection (Pr); (GeV/c) (Ps), (GeVl/c) N, kg (pr) (GeV/c) T; (GeV) x*/ndof
20<y<25 3.80£0.10 — 20 1 7.600 £0.200 6.582£0.071 13.87/21
2.5<y<3.0 3.60+0.10 — 2+0 1 7.200 +0.200 6.235+0.071 14.69/22
6(g) 3.0<y<35 3.50+0.10 — 2x0 1 7.000 +0.200 6.062 £ 0.071 12.10/21
35<y<4.0 3.30£0.10 — 20 1 6.600 = 0.200 5.716 £0.071 16.61/19
4.0<y<4.5 3.20+0.10 — 2x0 1 6.400 £0.200 5.543£0.071 11.17/13

scattering process. In refs. [9, 10], the Hagedorn function or
the inverse power-law shows the probability density function
of p, to be

Futpr)=apr(1+22) 7, (4)

0

where p, and n; are the free parameters and A is the
normalization constant which is related to p, and n, and
results in [(° f;(py)dpy = 1. Equation (6) is an empirical
formula inspired by quantum chromodynamics (QCD).
We call Eq. (4) the Hagedorn function or the inverse
power-law [9, 10].

In the case of using two-component Hagedorn function,
we have

f2(pr) =kyApr <1 + 11:—T> + (1 - ky)Aypr (1 + }I:_T) ,

()

where kj; denotes the contribution fraction of the first com-
ponent, A, (A,) is the normalization constant which results
in the first (second) component to be normalized to 1, and
Po1 (o) and ny; (ny,) are free parameters related to the first
(second) component. To combine the free parameters of
the two components, we have p, =kyp,, + (1 —ky)p,, and
1o = kg + (1= kg )ngy.

Generally, Eq. (4) is possible to describe the spectra in
both the low- and high-p, regions. In fact, the spectra in
the low- and high-p, regions represent similar trend in some
cases. This is caused due to the similarity [35-45] which is
widely existent in high energy collisions, where the similarity
means the common or universality laws existed in different
processes or collisions. In addition, one can revise Eq. (4)
if needed in different ways [46-52] which suppress in the
spectrum itself in low- or high-p; region according to the
experimental spectra. To discuss various revisions of the
Hagedorn function or the inverse power-law [9, 10] is
beyond the focus of this paper. We shall not discuss any-
more on this issue. For a very wide p; spectrum, Eq. (5)
is possibly needed.

2.3. The (Two-Component) Tsallis-Levy Function. The Tsallis
statistics [11] has wide applications in high energy collisions.

There are various forms of the Tsallis distribution or func-
tion. In this work, we use the Tsallis-Levy function [12].

fL(PT):CpT<1+ m>_ > (6)

nT

where T and n are free parameters, \/p% +mj=my is the
transverse mass, m, is the rest mass of the considered
particle, and C is the normalized constant which is related
to T, n, and my and results in [(° f; (pr)dpy = 1.

We notice that f;(py) is related to particle mass my,
which is not the case of f.(p;) and f,(py) presented in
Egs. (2) and (4), respectively. Although f, (p;) is related to
my, this relation is not strong due to m, appearing only in

/P53 +mi—my. The fact that the Tsallis distribution
depends on m, shows that this takes simple kinematics into
account, as it is well known that m or m; — m, (something
like transverse kinetic energy) is a better “scaling variable” for
the spectra than p;.

In the case of using two-component Tsallis-Levy func-
tion, we have

pr+mi—m o
f3(pr) =k .Cipr (1 + M)

n, T,
(7)

+(1-k)Copy <1+ T,

—-n
V) 7 2
\V P+ 1y _mo>
METT ™o~ ™o ,

where k; denotes the contribution fraction of the first
component, C; (C,) is the normalization constant which
results in the first (second) component to be normalized
to 1, and T, (T,) and n; (n,) are free parameters. To
combine the free parameters of the two components, we
have T=k, T, + (1 -k, )T, and n=k;n, + (1 -k, )n,.

The temperature parameter in the Tsallis-Levy function
is an effective temperature at the final state (the stage of
kinetic freeze-out). This effective temperature is not a “real”
temperature because it includes not only the contribution
of random thermal motion but also the contribution of flow
effect. In the case of the first (second) component having
T, (T,) with the fraction of k; (1 — k), the common effective
temperature T of the two components is extracted from the
assumed common equilibrium state of the two components.
That is T=k; T, + (1 —k; )T, which has the same form as
the parameter n.
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TABLE 2

(a) Values of p,, ny, and y*/ndof corresponding to the dashed curves in Figures 1 and 2, as well as values of T, , and y*/ndof corresponding to
the dotted curves in Figures 1 and 2

Figure Main selection Po (GeV/c) ng x*/ndof T (GeV) n x*/ndof
0-20% 6.20 +0.50 7.80 £0.50 1.07/- 0.39+0.02 5.70£1.00 0.80/-
20-40% 6.10+0.50 7.90 £0.50 2.11/- 0.37+0.02 6.00 = 1.00 1.01/-
1) 40-60% 5.95+0.50 8.05+0.50 0.23/- 0.36 £ 0.02 6.20 +1.00 1.11/-
0-60% 6.00+0.50 8.00 £ 0.50 0.59/- 0.37 £ 0.02 6.00 £ 1.00 0.44/-
0-20% 6.60 £ 0.50 8.00 £ 0.50 3.00/- 0.41 £0.02 5.90 £1.00 1.40/-
20-40% 6.50 £0.50 8.10 £ 0.50 1.73/- 0.39+£0.02 6.20 £ 1.00 1.07/-
1(b) 40-60% 6.35+0.50 8.25 +0.50 2.16/- 0.38+0.02 6.30+1.00 0.78/-
0-60% 6.40 £ 0.30 8.20+0.30 2.94/- 0.39+0.02 6.20 £ 1.00 1.37/-
0-20% 7.00 +0.50 9.30 +0.50 2.36/2 0.43 +0.02 6.10 +1.00 0.84/2
20-40% 6.80+0.20 9.50 +0.20 4.43/2 0.40 +0.02 6.30 % 1.00 1.86/2
1@ 40-60% 6.70 +0.50 9.60 + 0.50 3.85/2 0.39 +0.02 6.40 +1.00 1.46/2
0-60% 6.80 +0.50 9.50 +0.50 3.86/2 0.40 +0.02 6.30 +1.00 0.41/2
Full cross-section 6.80+0.30 11.50+0.30 35.57/16 0.44 +0.02 8.00£0.20 24.30/16
) Fiducial cross-section 7.00+0.30 11.00 + 0.30 70.35/16 0.47 +0.01 7.50+0.20 54.75/16
Full cross-section 7.50 £ 0.50 11.70 + 1.00 11.89/2 0.45+0.02 8.10+1.00 22272
He) Fiducial cross-section 8.00£0.30 11.20 £ 0.50 4.31/2 0.50+0.03 7.60 +1.00 10.25/2
1.8 TeV 8.10+£0.30 11.80+0.30 4.87/8 0.55+0.02 8.50 £0.20 4.20/8
u 1.96 TeV 8.20+0.30 12.00 £ 0.50 26.09/21 0.57+£0.03 8.90 £0.50 21.40/21
0-20% 12.40 +0.50 11.50£0.50  217.00/10  0.53£0.05 11.50 + 2.00 11.31/10
1(g) 20-40% 12.20 £ 0.50 11.80 £ 0.50 90.75/10 0.52+0.05 11.60 +2.00 10.92/10
40-90% 12.00 £ 0.50 12.00 £ 0.50 41.80/10 0.52+0.05 11.65+2.00 15.71/10
1.5<y<2.0 13.004050  12.50+0.50 8.97/5 0.85+0.05 10.00 + 2.00 2.16/5
20<y<25 1290£0.50  12.60+0.50 8.52/5 0.84+0.05  10.50+2.00 2.66/5
2(a) 25<y<3.0 12.60+0.50  12.90+0.50 5.91/5 0.83+0.05  11.00+2.00 2.46/5
3.0<y<35 1240£050  13.10+0.50 5.91/5 0.82+0.05 11.50 + 2.00 3.10/5
35<y<4.0 1210£0.50  13.50+0.50 5.85/5 0.80 +0.05 12.50 + 2.00 3.61/5
1.5<y<2.0 14.50 £ 0.50 12.00 £ 0.50 3.10/5 1.00+£0.10 9.50 £ 2.00 3.65/5
20<y<25 14.40 + 0.50 12.10 £ 0.50 3.75/5 0.98 +0.05 9.70 £ 2.00 3.62/5
2(b) 2.5<y<3.0 14.30 + 0.50 12.20 £ 0.50 6.39/5 0.95+0.05 10.00 + 2.00 4.60/5
30<y<35 14.10 £ 0.50 12.40 £0.50 6.75/5 0.93+0.05 10.20 £2.00 6.60/5
3.5<y<4.0 13.50 + 0.50 13.00 £ 0.50 11.66/5 0.87+£0.05 11.00 +2.00 5.21/5
20<y<25 13.50 + 0.50 14.00 + 0.50 8.91/11 0.85+0.05 12.50 +2.00 7.93/11
25<y<3.0 1330+0.50  14.20 +0.50 8.66/11 0.84+0.05  13.00+2.00 9.52/11
2(c) 3.0<y<3.5 13.00 + 0.50 14.40 + 0.50 8.41/11 0.82+0.05 14.00 +2.00 9.55/11
35<y<4.0 12.60+0.50  14.80 +0.50 8.30/10 0.80+0.05  15.00+2.00 8.99/10

4.0<y<45 12.20 £ 0.50 15.00 £0.50 7.80/8 0.74£0.05 16.00 £2.00 4.91/8
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TaBLE 2: Continued.
Figure Main selection P, (GeV/c) n, x%/ndof T (GeV) n x%/ndof
20<y<25 15.00 £ 0.50 13.00 £ 0.50 3.19/11 1.02 +£0.05 11.00 +2.00 5.85/11
2.5<y<3.0 14.80 + 0.50 13.20 £ 0.50 4.93/11 1.00 £ 0.05 11.50 + 2.00 6.44/11
2(d) 3.0<y<35 14.30 £ 0.50 13.50 £ 0.50 5.32/11 0.98 £ 0.05 12.00 +2.00 5.98/11
3.5<y<4.0 14.10 + 0.50 14.00 + 0.50 8.86/10 0.93+£0.05 13.00 +£2.00 6.55/10
4.0<y<45 14.00 + 0.50 14.20 £ 0.50 9.91/8 0.90 £ 0.05 13.50 + 2.00 5.26/8
20<y<25 13.70 £ 0.50 14.20 £ 0.50 10.12/11 0.88 £ 0.05 13.00 £2.00 7.17/11
2.5<y<3.0 13.50 + 0.50 14.40 + 0.50 5.75/11 0.87£0.05 13.50 £ 2.00 8.75/11
2(e) 3.0<y<35 13.30+0.50 14.60 £ 0.50 5.78/11 0.86 £ 0.05 14.00 + 2.00 8.16/11
3.5<y<4.0 13.10+0.50 14.80 + 0.50 8.76/11 0.84 £0.05 15.00 +2.00 10.56/11
40<y<45 12.50 + 0.50 15.20 £ 0.50 9.92/11 0.77 £0.05 16.50 + 2.00 7.25/11
20<y<25 1560+0.50  13.10+0.50 5.45/11 1.07+0.05  11.50+2.00 5.17/11
25<y<3.0 1540 £0.50  13.30+0.50 8.64/11 1.05+0.05  12.00 +2.00 6.79/11
2(f) 3.0<y<35 15.00 + 0.50 13.70 +£ 0.50 5.17/11 1.02 +£0.05 12.50 +2.00 7.16/11
35<y<4.0 14.70 £ 0.50 14.10 £ 0.50 11.56/11 0.98 £ 0.05 13.50 +2.00 7.07/11
4.0<y<4.5 14.20 + 0.50 14.40 + 0.50 9.57/11 0.93 £0.05 14.00 +2.00 5.81/11
20<y<25 1530+0.50  14.80+0.50 9.38/11 0.93+0.05  14.00+2.00 6.16/11
25<y<3.0 15.20 + 0.50 14.90 + 0.50 8.95/11 0.91 +£0.05 14.50 + 2.00 8.12/11
2(g) 3.0<y<35 15.00 £ 0.50 15.00 £ 0.50 7.32/11 0.89 £0.05 14.80 +2.00 9.17/11
3.5<y<4.0 14.40 + 0.50 15.30 £ 0.50 11.22/11 0.86 +0.05 15.30 +2.00 9.72/11
4.0<y<4.5 14.20 £ 0.50 15.40 £ 0.50 8.86/11 0.84 +£0.05 16.80 + 2.00 13.48/11
20<y<25 18.00+0.50  13.80+0.50 10.77/11 120+0.10  12.00 +2.00 8.03/11
25<y<3.0 17.80+0.50  13.90+0.50 5.92/11 1154010 12.50 +2.00 8.62/11
2(h) 3.0<y<35 17.60+050  14.00+0.50 8.20/11 112£0.10 12804200  10.17/11
3.5<y<4.0 16.50+0.50  14.40+0.50 9.56/11 1.0540.10  14.20 +2.00 8.75/11
40<y<45 15504050  14.60+0.50 13.83/11 1.004£0.05  1470£2.00  10.58/11

(b) Values of p,, 1, and x?/ndof corresponding to the dashed curves in Figures 3 and 4, as well as values of T', n, and y*/ndof corresponding to
the dotted curves in Figures 3 and 4. The parameter values in the first (second) row in each panel for Figure 4(d) is for the first (second)
component, where * denotes k; and ** denotes k;. In other cases, only the single component is used

Figure Main selection P, (GeVlc) 1y x*/ndof T (GeV) n x*/ndof
1.8 TeV 9.00 +0.50 12.10 £ 0.50 4.00/2 0.65+0.05 9.00 +£1.00 5.50/2
3(a

(® 1.96 TeV 10.30 £ 0.50 12.20 £ 0.50 17.50/22 0.75+£0.05 9.30 +1.00 9.99/22
Inclusive 1//(25) 14.10 £ 0.50 13.10+0.50 19.96/2 1.07+0.10 12.30 £2.00 4.51/2

3(b) Prompt 1[/(25) 14.20 £ 0.50 13.00 £ 0.50 10.43/2 1.10+0.10 12.00 +£1.00 2.36/2
1;/(28) from b 14.30 £ 0.50 12.80 £ 0.50 15.75/2 1.13+0.10 11.70 +£2.00 7.59/2

0.00 < |y| <0.75 14.50 £ 0.50 13.50 £ 0.50 7.75/2 1.16 £0.10 12.80 £ 1.00 7.00/2

3(c) 0.75< |y| <1.50 14.30 £ 0.50 13.60 £ 0.50 5.14/2 1.14+0.10 13.00 £ 1.00 3.22/2
1.50 < |y|<2.00 14.10 £ 0.50 13.70 £ 0.50 3.14/2 1.12+0.10 13.20+1.00 3.14/2

0.00 < Iy | <0.75 16.00 +£0.50 13.00 £ 0.50 6.25/2 1.32+£0.10 12.50 £ 1.00 4.33/2

3(d) 0.75< |y| <1.50 15.90 £ 0.50 13.10 £ 0.50 9.89/2 1.31+£0.10 12.60 +£1.00 7.39/2
1.50< |y | <2.00 15.80 £ 0.50 13.20 £ 0.50 11.25/2 1.30+0.10 12.70 £ 1.00 10.25/2
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TaBLE 2: Continued.
Figure Main selection P, (GeVic) 1y x*/ndof T (GeV) n x*/ndof
0<|yl<0.9 15.50 £ 0.50 11.20 £ 0.50 2.00/- 1.50 £0.05 12.00 £ 1.00 2.21/-
09<|y|<1.5 15.30 £ 0.50 11.30 £ 0.50 1.85/- 1.48 +0.05 12.20 £ 1.00 2.69/-
3(e
(e) 1.5<|y|<1.93 15.10 £ 0.50 11.40 £0.50 2.75/- 1.45+0.05 12.50 £ 1.00 3.50/-
1.93<|y|<2.4 14.90 +£0.50 11.50 £ 0.50 3.50/- 1.42+0.05 12.70 £1.00 4.84/-
ly]<1.2 16.00 £ 0.50 14.50 = 0.50 2.39/6 1.50 +0.10 14.50 £ 1.00 3.39/6
3(f) 1.2< |y| <1.6 15.50 £ 0.50 14.80 £ 0.50 3.80/4 1.38+0.10 15.00 £ 1.00 6.67/4
1.6<|yl<2.4 15.00 £ 0.50 15.10 £ 0.50 2.10/4 1.28 +£0.10 15.50 +£1.00 3.64/4
[y]<1.2 18.00 +£0.50 13.00 £ 0.50 4.17/6 1.65+0.05 14.00 £ 1.00 3.98/6
3(g) 12<|yl<l.6 17.00 £ 0.50 13.50 £ 0.50 4.23/4 1.57 £0.05 14.50 + 1.00 4.86/4
1.6<|yl<2.4 16.00 +£0.50 14.00 £ 0.50 3.49/4 1.50 +0.05 15.00 £ 1.00 2.89/4
[y]<0.75 25.00 £ 0.50 14.00 £ 0.50 6.84/7 1.85+0.05 14.00 £ 1.00 7.88/7
4(a) 0.75<|y|<1.5 24.60 £ 0.50 14.20 £ 0.50 6.81/7 1.82+0.05 14.30 £ 1.00 7.69/7
1.5<|y|<2.0 24.20 £ 0.50 14.40 £ 0.50 6.64/7 1.79+0.10 14.60 £ 1.00 6.67/7
[y]<0.75 25.50 £ 0.50 12.50 £ 0.50 7.7817 2.20+0.10 13.00 £1.00 8.7717
4(b) 0.75< |y|<1.5 25.30+£0.50 12.60 £ 0.50 5.70/7 2.10+0.10 13.20 £ 1.00 8.45/7
1.5<|yl<2.0 24.50 +£0.50 13.00 £ 0.50 8.56/7 2.00+£0.10 13.40 +1.00 7.03/7
( Prompt q/(ZS) 26.00 +£0.50 14.60 £ 0.50 16.25/2 1.90 £ 0.05 14.50 £ 1.00 17.27/2
4(c
) Non-prompt l//(ZS) 26.50 £0.50 13.00 £ 0.50 9.40/2 2.30+0.10 13.50 £ 1.00 8.59/2
0.0<[y]<0.3 35.00 £ 1.00 18.00 £ 1.00 0.80 +0.05" 2.35+0.20 18.00 +2.00 0.75+0.05% =
20.00 +£1.00 9.00 +0.50 3.94/3 2.35+0.10 8.40 +£0.50 4.17/3
0.3<|y|<0.6 34.50 +1.00 18.50 £ 1.00 0.80 +0.05* 2.30+0.20 18.50 +£2.00 0.75+0.05% =
d 20.00 £ 1.00 9.00 £0.20 4.08/3 2.30+0.10 8.20 £ 0.50 4.47/3
4
@ 0.6<|y|<0.9 34.00 £ 1.00 19.00+1.00 0.80 +0.05" 2.25+0.20 19.00 £2.00 0.75+0.05% %
20.00 £ 1.00 9.00 £0.20 7.50/3 2.25+0.10 8.00 +£0.50 6.95/3
09<|y|<1.2 33.50+1.00 19.50+1.00 0.80 +0.05" 2.20+0.20 19.50 +£2.00 0.75+0.05% %
20.00 +£1.00 9.00 +0.20 9.81/3 2.20+0.10 7.80 +0.30 6.12/3

(c) Values of p,, 1, and y*/ndof corresponding to the dashed curves in Figures 5 and 6, as well as values of T, #, and x*/ndof corresponding to

the dotted curves in Figures 5 and 6

Figure Main selection P, (GeV/c) 1y x*/mdof T (GeV) n x*/mdof
Y(1S) 24.00 £ 1.00 12.50 £ 1.00 56.89/11 1.60 £0.10 9.50 +2.00 21.67/11
5(a) Y (2S) 26.00 +2.00 12.70 £ 1.00 9.75/6 1.75+0.10 9.70 £ 2.00 7.50/6
Y (3S) 28.00 +2.00 12.90 £ 1.00 14.97/6 1.85+0.10 10.50 £ 2.00 7.43/6
Y(1S) 27.00 +£2.00 12.70 £ 1.00 39.17/3 1.65+0.10 11.00 + 2.00 9.54/3
5(b) Y(2S) 28.00+2.00 12.80 £1.00 4.76/3 1.90+£0.10 11.50 £2.00 4.53/3
Y(3S) 29.00 £2.00 12.90 £ 1.00 2.73/3 2.00+0.10 12.00 £2.00 2.90/3
Y(1S) 29.00 +2.00 12.90 £ 1.00 6.60/3 2.20+0.20 16.00 £ 2.00 5.39/3
5(c) Y(2S) 33.00+2.00 13.00 £ 1.00 6.64/- 2.50£0.20 16.30 £2.00 6.69/-
Y(3S) 34.00 +2.00 13.20 £ 1.00 11.25/- 2.60+0.20 16.50 £2.00 11.50/-
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Figure Main selection P, (GeV/c) 1y x%/ndof T (GeV) n x*/ndof
20<y<2.5 31.00 +£2.00 15.00 £ 1.00 11.65/21 2.30+0.20 19.00 + 2.00 7.17121
2.5<y<3.0 30.50 +£2.00 15.50 + 1.00 9.45/21 2.20+0.20 20.00 +2.00 9.48/21
5(d) 30<y<35 30.00 +2.00 16.00 + 1.00 7.89/21 2.10+£0.20 21.00 +2.00 6.39/21
35<y<4.0 29.50 +2.00 16.50 + 1.00 10.06/18 1.95+0.20 23.00 +2.00 8.07/18
4.0<y<45 28.50 +2.00 17.50 £ 1.00 9.64/12 1.80+0.20 25.00 +2.00 7.98/12
20<y<25 36.00 +2.00 15.20 +1.00 15.98/21 2.60+0.20 20.00 +2.00 13.23/21
2.5<y<3.0 35.50 +2.00 15.70 + 1.00 8.34/21 2.50+0.20 21.00 +2.00 10.26/21
5(e) 3.0<y<35 35.20 +£2.00 16.20 £ 1.00 12.84/21 2.40+0.20 22.00 +2.00 9.34/21
3.5<y<4.0 34.30+1.00 17.00 £ 0.50 10.64/18 2.10+£0.20 24.00 +2.00 8.31/18
4.0<y<45 31.00+1.00 17.50 + 0.50 14.06/12 1.90 £0.20 26.00 +2.00 11.34/12
20<y<25 40.00 +2.00 15.50 + 1.00 14.73/21 2.70+0.20 21.00 +2.00 15.45/21
2.5<y<3.0 39.50 +2.00 16.00 + 1.00 10.85/21 2.60+0.20 22.00+£2.00 7.95/21
5(f) 30<y<35 39.00 +2.00 16.50 + 1.00 12.37/21 2.50+0.20 23.00 +2.00 6.78/21
3.5<y<4.0 38.50 +2.00 17.80 £ 1.00 14.56/18 2.30+£0.20 25.00 +2.00 8.31/18
4.0<y<4.5 37.00 +£2.00 18.30 +1.00 11.37/12 2.10+£0.20 26.50 +2.00 7.53/12
20<y<2.5 32.00 +2.00 15.50 + 1.00 14.23/21 2.35+0.20 22.00 +2.00 9.12/21
2.5<y<3.0 31.50+2.00 16.00 £ 1.00 7.53/21 2.25+0.20 23.00 +2.00 14.76/21
6(a) 30<y<35 31.00 +£2.00 16.50 + 1.00 12.33/21 2.15+0.10 24.00 +2.00 7.44/21
35<y<4.0 30.50 +2.00 17.00 + 1.00 8.72/18 2.05+0.10 25.00 +2.00 9.75/18
4.0<y<4.5 29.00 +2.00 17.50 £ 0.50 13.73/12 1.85+0.10 27.00 +2.00 12.03/12
20<y<2.5 38.00 +2.00 16.00 + 1.00 16.54/21 2.70£0.20 24.00 +£2.00 10.98/21
25<y<3.0 37.50 £ 2.00 16.50 + 1.00 7.14/21 2.60+0.10 25.00 +2.00 12.54/21
6(b) 3.0<y<35 37.00 +2.00 17.00 £ 1.00 11.25/21 2.50+0.10 26.00 +2.00 8.34/21
3.5<y<4.0 36.50 £ 2.00 17.20 £ 0.50 10.31/18 2.30+£0.10 27.50 +2.00 9.51/18
4.0<y<45 35.00 +2.00 17.60 £ 0.50 14.24/12 2.00+£0.10 28.50 +2.00 5.67/12
2.0<y<25 44.00 + 3.00 16.50 + 1.00 15.89/21 2.90+0.10 25.00 +2.00 9.48/21
2.5<y<3.0 43.00 + 3.00 17.00 + 1.00 7.53/21 2.80+£0.20 25.50 +2.00 10.68/21
6(c) 30<y<35 42.00 + 3.00 17.50 + 1.00 13.59/21 2.70+0.10 26.50 +2.00 7.53/21
35<y<4.0 41.00 + 3.00 18.00 £ 1.00 12.42/18 2.50+0.10 28.00 +2.00 7.34/18
4.0<y<4.5 38.00 + 3.00 18.50 + 1.00 13.59/12 2.23+0.10 29.00 +2.00 8.31/12
1.5<y<2.0 34.00 +£2.00 15.20+1.00 5.35/4 2.45+0.10 22.00 +2.00 3.85/4
20<y<25 33.00 +£2.00 15.70 + 1.00 4.79/4 2.35+0.10 23.00 +2.00 2.20/4
6(d) 25<y<3.0 32.50 +£2.00 16.00 + 1.00 4.25/4 2.25+0.10 24.00 +£2.00 2.69/4
3.0<y<35 32.00 +2.00 16.50 + 1.00 6.72/4 2.15+0.10 25.00 +2.00 3.70/4
3.5<y<4.0 31.50 +£2.00 17.00 + 1.00 7.40/3 2.05+0.10 26.00 +£2.00 4.40/3
20<y<25 37.00 + 3.00 16.00 + 1.00 16.58/21 2.60+0.10 26.00 +2.00 19.66/21
25<y<3.0 36.00 + 3.00 16.50 + 1.00 10.31/22 2.50+0.10 27.00 +2.00 14.83/22
6(e) 30<y<35 35.00 +2.00 17.00 £ 0.50 10.28/21 2.40+0.10 28.00 +2.00 13.91/21
3.5<y<4.0 34.50 +2.00 17.50 £ 0.50 13.42/19 2.30+0.10 29.00 +2.00 12.85/19
4.0<y<4.5 34.30+1.00 17.70 £ 0.50 9.64/13 2.25+0.10 29.50 +2.00 8.53/13
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Figure Main selection P, (GeV/c) 1y x%/ndof T (GeV) n x*/ndof
20<y<2.5 41.00 + 3.00 16.50 £ 1.00 20.71/21 2.80+0.10 29.00 £2.00 12.23/21
2.5<y<3.0 40.00 + 2.00 17.00 £ 0.50 18.20/22 2.70+0.10 30.00 +£2.00 24.00/22

6(f) 3.0<y<35 39.50 +£2.00 17.20 £ 0.50 7.92/21 2.65+0.10 30.50 £2.00 8.31/21
35<y<4.0 39.20 £ 1.00 17.40 £ 0.50 16.12/19 2.60+0.10 31.00 +£2.00 14.11/19
4.0<y<45 39.00 £ 1.00 17.80 £ 0.50 14.17/13 2.50+£0.10 32.00 £2.00 10.81/13
20<y<2.5 47.00 +2.00 17.00 £ 1.00 16.98/21 3.20+0.10 30.00 +2.00 12.63/21
25<y<3.0 46.00 + 2.00 17.50 £ 1.00 19.68/22 3.10+£0.10 31.00 +£2.00 10.16/22

6(g) 30<y<35 45.50 + 2.00 17.70 £ 0.50 14.69/21 3.00+0.10 32.00 £2.00 10.40/21
3.5<y<4.0 45.30+2.00 18.50 £ 1.00 15.60/19 2.90+0.10 33.00£2.00 11.71/19
4.0<y<45 45.00 + 2.00 18.80 £ 0.50 14.66/13 2.80+0.10 34.00 +2.00 8.86/13

2.4. The Initial Temperature. According to the color string
percolation model [53-55], the initial temperature of the
emission source is determined by

> (8)
where

(7= | pifiastorider ©
is the square of the root-mean-square of p;. due to [(° f; , 5(

pr)dpy = 1. If the x-component (p,) and y-component (p,)
of the transverse momentum p, are considered, we have

In the source rest-frame and under the assumption of iso-

(10)

. P . . !
tropic emission, if the z-component of momentum is p,’, we
also have

T. =

; <pj>-

Although the source rest-frame is the lab-frame for sym-
metric collisions, we have mentioned the source rest-frame
because asymmetric proton-lead (p+Pb) collisions are also
considered in this work.

It should be noted that we have used a single string in the
cluster for a given particle production because only a projec-
tile participant quark and a target participant quark are
mainly considered in our treatment. The assumption of the
single string results in the color suppression factor F(§) to
be 1 in the color string percolation model [54]. If we consider
more than one strings taking part in the given particle pro-
duction, the minimum F(§) will be nearly 0.6 [54]. Thus,

we shall obtain a higher T; by multiplying a revised factor 1
/+/F(&) in Egs. (8), (10), and (11). In our opinion, although

(11)

more than one strings have influences on the given particle
production, the main role is the single string.

2.5. Discussion on the Functions. We would like to point out
that the three types of functions are mainly just used here
as parametrizations to achieve a good fit to the data, to be
able to extract (p;) and T;, though the Hagedorn and
Tsallis-Levy functions are physically relevant. In fact, in the
two functions, if we let m, =0, p, =nT, ny=n=1/(q- 1),
the two functions are the same. Here, g is an entropy index
that characterizes the excitation degree of the collision sys-
tem [11, 12]. Generally, n, or n is a sizeable quantity, which
results in g to close to 1 and the collision system to close to
an equilibrium state.

We have used the two-component functions in some
cases. The reason for using two-component source, i.e., basi-
cally two temperatures is not just used to achieve a better fit
to the data. Physically, the first component corresponds to
the non-head-on collisions between projectile and target par-
ticipant quarks. The second component corresponds to the
head-on collisions between the two quarks. Generally, the first
component has a large fraction and low (p;) and T). The sec-
ond component has a less fraction and high (p;) and T;.
Because the head-on collisions between the two quarks are
infrequent, single component function is usually applicable.

In principal, no matter what functions are used to fit the
experimental data, (p;) (or T;) obtained from different fits is
approximately the same within a small systematic uncer-
tainty, if different functions fit the data good enough in the
Py region of data available. For example, if simple Maxwell-
Boltzmann or Bose-Einstein statistics can fit the data, we
may obtain similar (p;) (or T;) with other functions. In
the case of multicomponent Maxwell-Boltzmann or Bose-
Einstein statistics being needed, we may also obtain similar
(p) (or T)).

Indeed, the data itself decides (p;) (or T)), and (p;)
(or T;) can be directly obtained from the data itself. The rea-
son why we use functions is to see the tendency where the
data is not available. However, the extrapolation on the ten-
dency should be careful because it is not fully true, as it to
the low- and high p, regions (where there is no data) could
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FIGURE 2: Transverse momentum spectra, d°a/dp,dy, of J/y in different production modes in (a, b) p + Pb and (c-h) p+p collisions at (a, b) 5,
(c,d) 7, (e, f) 8,and (g, h) 13 TeV. The different symbols represent the experimental data measured by the LHCb Collaboration [19-22] in the
rapidity intervals of (a, b) 1.5<y<2.0,2.0<y<2.5,2.5<y<3.0,3.0<y<3.5,and 3.5<y<4.0 and (c-h) 2.0<y<2.5, 2.5<y<3.0,
3.0<y<3.5, 3.5<y<4.0, and 4.0 <y < 4.5, and scaled by different amounts marked in the panels. The solid, dashed, and dotted curves
represent our results fitted by the Erlang distribution (Eq. (3)), the Hagedorn function (Eq. (4)), and the Tsallis-Levy function (Eq. (6)),

respectively.

in principle have a major effect on the tendency (for example
in case of very step exponentials near p; =0, or power-law
tails at large p;.). To reduce the effect, the data should be mea-
sured in a sufficiently large p, interval so that the extrapola-
tion does not spoil as far as possible.

For different components and functions, we do not need
to consider the values of mid-rapidity (mid-y) or mid-
pseudorapidity (mid-#), or the values of mid-y or mid-%
can be regarded as 0 directly. In fact, for the experimental
data with non-zero mid-y or mid-#, we may directly regard
them as those with mid-y =0 or mid-# =0. This treatment
is performed to subtract the contribution of kinetic energy
of directed motion to the temperature.

3. Results and Discussion

Ordered by center-of-mass energy per nucleon pair (,/Syy or
\/s if only one pair) for different panels, Figure 1 shows the
py spectra, (a—c) (1/2np,)d*N/dpdy, (d, e) (1/2np,)d*ald
prdy, (£) d*o/dp,dy, and (g) d*Y/dp,dy, of (a-d) J/y — e*
e, (e) Jly - uy, (f) prompt J/y, and (g) inclusive J/y
produced in (a-c) gold-gold (Au + Au), (d, e) proton-proton
(p+p), (f) proton-antiproton (p+p), and (g) lead-lead
(Pb + Pb) collisions at mid-rapidity (a-d) |y | <1, (e) |y | <0.4,
(f) |y 1 <0.6, and forward rapidity (g) 2.5<y <4 at /sy Or
Vs = (a) 39, (b) 62.4, (c) 200, (d) 500, and (e) 510 GeV, as well
as (f) 1.8 and 1.96, and (g) 2.76 TeV, where N denotes the num-
ber of particles, o denotes the cross section, and Y denotes the
yield. The symbols represent the experimental data [13-16, 18]
and the curves are our fitted results. In the calculations, the
method of least square is used to obtain the best free parame-
ters. The values of free parameters (p,),, (p,),» N}, and kg are
listed in Table 1 with x* and number of degrees of freedom
(ndof). The values of free parameters p,, 1y, T, and # are listed

in Table 2 with ¥ and ndof. One can see that the (two-compo-
nent) Erlang distribution, the Hagedorn function, and the
Tsallis-Levy function fit approximately the experimental p,
spectra of J/y via different decay or production modes in high
energy p + p, p + p, Au + Au, and Pb + Pb collisions.

The p, spectra, d*/dp,dy, of (a, ¢, e, and g) prompt J/y
and (b, d, f, and h) J/y from b produced in (a, b) p + Pb and
(c-h) p + p collisions at | /sy or /s = (a,b) 5, (¢, d) 7, (e, f) 8,
and (g, h) 13 TeV are presented in Figure 2. The symbols rep-
resent the experimental data [19-22], and the curves are our
fitted results. The method of least square is used to obtain the
best parameter values which are listed in Tables 1 and 2 with
x* and ndof. One can see that the experimental p.. spectra of
Jly via different production modes in different rapidity
intervals in p + p and p + Pb collisions at high energies are
approximately fitted by the Erlang distribution, the Hage-
dorn function, and the Tsallis-Levy function.

Figure 3 shows the p spectra, (a, c-g) d”o/dp,dy and (b)
do/dp, of y(2S) via different production modes. The sym-
bols represent the experimental data [15, 16, 23, 28, 31, 32],
and the curves are our fitted results. The values of free
parameters are listed in Tables 1 and 2 with x* and ndof.
One can see that the experimental p, spectra of y(2S) via
different production modes in different rapidity intervals in
p+p,p+p,and p + Pb collisions at high energies are approx-
imately fitted by the (two-component) Erlang distribution,
the Hagedorn function, and the Tsallis-Levy function.

Figure 4 shows the p, spectra, d*a/dp dy, of y(2S) via
different production modes in p + p collisions at /s = (a, b)
7, (c) 8, and (d) 13 TeV. The symbols represent the experi-
mental data [29, 30, 33], and the curves are our fitted results.
The values of free parameters are listed in Tables 1 and 2 with
x* and ndof. For Figure 4(d), the two-component Egs. (5)
and (7) are used, where the free parameters for the first
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FIGURE 3: Transverse momentum spectra, (a, c-g) dch/dedy and (b) do/dpy, of y(2S) from different production modes in (a) p + p, (b)
p+Pb, and (c-g) p+p collisions at energies (a) 1.8 and 1.96, (b) 5, (c-e) 5.02, and (f-g) 7 TeV. The different symbols represent the
experimental data of the (a, ¢, e, and f) prompt y(2S), (b) inclusive y(2S), prompt y(2S), and y(2S) from b, and (d, g) non-prompt y/(2S)
measured by the (a) CDF [15, 16], (b) LHCb [23], (¢, d) ATLAS [28], and (e-g) CMS Collaborations [31, 32] in (a) p + p, (b) p + Pb, (c-g)

p +p collisions at /sy or

s=(a) 1.8 and 1.96, (b) 5, (c—e) 5.02, and (f, g) 7 TeV with (a) |y | <0.6, (b) 1.5<y <4.0, (¢, d) 0.00< |y | <

0.75,0.75 < |y | <1.50, and 1.50 < |y | <2.00, (e) 0 < |y ] <0.9,0.9 < |y|<1.5,1.5<|y|<1.93,and 1.93 < |y | <2.4,and (f g) |y | <1.2, 1.2 < |y|
<1.6, and 1.6 < |y | <2.4, where different collaborations have used different precisions for the rapidity intervals. Some data points are scaled
by different amounts marked in the panels. The solid, dashed, and dotted curves represent our results fitted by the (two-component) Erlang
distribution (Eq. (3)), the Hagedorn function (Eq. (4)), and the Tsallis-Levy function (Eq. (6)), respectively.

(second) component are listed in the first (second) row. One
can see that the experimental p;. spectra of y(2S) via different
production modes in different rapidity intervals in p + p col-
lisions at high energies are also approximately fitted by the
Erlang distribution, the (two-component) Hagedorn func-
tion, and the (two-component) Tsallis-Levy function.

In Figure 5, the p;. spectra, (a, c-f) dZG/dedy and (b) d
oldpy, of (a—c) Y(nS,n=1,2,3)—utu", (d) Y(19)
—sutu, () Y(28)—pty, and (f) Y(3S)—u*y~ induced
in (a) p + p and (b-f) p + p collisions at /s = (a) 1.8, (b) 2.76,
(c) 5.02, and (d-f) 7 TeV are given. The symbols represent
the experimental data [17, 24, 25, 34], and the curves are
our fitted results. The parameter values are listed in
Tables 1 and 2 with x? and ndof. One can see that the exper-
imental p. spectra of Y(nS,n=1,2,3)—u* " in different
rapidity intervals in p + p and p + p collisions at high energies
are approximately fitted by the Erlang distribution, the Hage-
dorn function, and the Tsallis-Levy function.

In Figure 6, the p, spectra, d*odp,dy, of (a, d, and e) Y
(18)—utu~, (b, f) Y(2S)—puty, and (¢, g Y(3S)—
u*y induced in (a—c) and (e-g) p+p and (d) p + Pb collisions
at /sy or Vs =(a—c) 8, (d) 8.16, and (e-g) 13 TeV are given.
The symbols represent the experimental data [25-27], and
the curves are our fitted results. The parameter values are
listed in Tables 1 and 2 with x* and ndof. Once again, one
can see that the experimental p,. spectra of Y(nS,n=1,2,3)
—u*y in different rapidity intervals in p+ p and p +Pb
collisions at high energies are approximately fitted by the
Erlang distribution, the Hagedorn function, and the Tsallis-
Levy function.

Before discussing the trends of parameters, we would like
to point out the usability of the concept of temperature in p
+p (p+p) collisions, which are small in size. As in refs.
[56-59], in this work, we have treated p+p (p+p) collisions
as where a medium was formed, or at least there is some
degree of thermalization, enough to have a temperature for
the emission source. On the other hand, the temperature
parameter of the emission source is a reflection of the average
kinetic energy of given particles. This means that we may use
the concept of temperature. Even if the collision system is not
enough large, we may use the temperature parameter to char-
acterize the average kinetic energy of given particles over
many events.

Figure 7 shows the dependences of (a, ¢, and e) (p;) and
(b, d, and f) T; on /sy (or +/s) for (a, b) J1y, (¢, d) y(29),
and (e, f) Y(nS,n=1,2,3). The different symbols represent
the parameter values derived from free parameters extracted
from Figures 1-6 and listed in Tables 1 and 2, where only the
(two-component) Erlang distribution in the p, region of data
available is used as an example. It is expected that the results
corresponding to the Hagedorn and Tsallis-Levy functions
are very close to the plot, because the two functions also
describe approximately the data. As what we discussed in
Subsection 2.5, no matter what functions are used to fit the
experimental data, one should obtain similar (p;) (or T}), if
different functions fit the data good enough in the p, region
of data available. By using the mentioned three functions
which fit the data good enough, one can obtain (p;) (or T;)
within a systematic uncertainty of 8%. One can see from
Figure 7 that (p;) and T; increase significantly with the
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FIGURE 4: Same as Figure 3, but showing the results at (a, b) 7, (¢) 8, and (d) 13 TeV. The different symbols represent the experimental data of
(a, d) prompt y(2S), (b) non-prompt y(2S), and (c) prompt y(2S) and non-prompt y(2S) measured by the (a-c) ATLAS [29, 30] and (d)
CMS Collaborations [33] in (a, b) |y | <0.75, 0.75 < |y | <1.5, and 1.5 < |y | <2.0, (c) |y | <0.75, and (d) 0.0 < |y | <0.3,0.3 < |y | <0.6, 0.6 < |y
| <0.9, and 0.9 < |y | <1.2, where some data points are scaled by different amounts marked in the panels. The data points are fitted by the
Erlang distribution (Eq. (3), the solid curve), the Hagedorn function (Eq. (4), the dashed curves), and the Tsallis-Levy function (Eq. (6),
the dotted curves). In particular, the two-component Hagedorn function (Eq. (5), the dashed curves) and the two-component Tsallis-Levy

function (Eq. (7), the dotted curves) are used in Figure 4(d).

increase of collision energy. Meanwhile, (p;) and T; increase
with the increase of particle mass.

Figure 8 is the same as Figure 7, but showing the depen-
dences of (a, ¢, e, and g) (p;) and (b, d, f, and h) T; on (a, b)
centrality C and (c-h) rapidity y for (a-d) J/y, (e, f) y(25),
and (g, h) Y(nS, n=1,2,3). The different symbols represent
the parameter values derived from free parameters extracted
from Figures 1-6 and listed in Tables 1 and 2, where only the
(two-component) Erlang distribution is used as an example.
One can see that (p;) and T; increase slightly with the
increase of event centrality from peripheral to central colli-

sions and decrease with the increase of rapidity from mid-
rapidity to forward rapidity. Meanwhile, (p;) and T} increase
with the increases of collision energy and particle mass.

The above parameter tendencies show that the tempera-
ture is mass dependent. This is also a reflection of the forma-
tion time dependence. According to the hydrodynamic
behavior, “massive particles coming out of the system earlier
in time with smaller radial flow velocities” [59]. This means
that with the increase of mass, the formation time decreases,
the temperature increases, and the flow velocity decreases. It
should be noted that the fact that the massive particles
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FIGURE 5: Transverse momentum spectra, (a, c—f) dzo/dprdy and (b) do/dpy, of (a—c) Y(nS,n=1,2,3)—u"p", (d) Y(1S)—u*u, (e)
Y(2S)—uty, and (f) Y(3S)— 'ty in (a) p+p and (b-f) p+p collisions at (a) 1.8, (b) 2.76, (c) 5.02, and (d-f) 7 TeV. The symbols
shown in (a—c) represent the experimental data measured by the (a) CDF [17], (b) LHCb [24], and (c) CMS Collaborations [34] in (a)
p+p and (b, ¢) p+p collisions in (a) |y | <0.4, (b) 2.0 <y < 4.5, and (c) |y | <2.4, respectively. The symbols shown in panels (d-f) represent
the experimental data measured by the LHCb Collaboration [25] in p + p collisions in 2.0 < y < 2.5, 2.5 <y <3.0,3.0<y < 3.5, 3.5 <y < 4.0,
and 4.0 < y <4.5 and scaled by different amounts shown in the panels. The data points are fitted by the Erlang distribution (Eq. (3)), the
Hagedorn function (Eq. (4)), and the Tsallis-Levy function (Eq. (6)) by the solid, dashed, and dotted curves, respectively.

coming out the system earlier is not caused by the high exci-
tation of the system, but the leaver over due to the inertia of
massive particles, in the hydrodynamic evolution.

We may explain the tendency of derived (p;) and T;
which have similar tendency with p;. With the increase of
collision energy, the violent degree of collisions increases sig-
nificantly due to large energy transfer, which results in the
obvious increase of p;. With the increase of centrality, the
degree of multiple-scattering increases due to more partici-
pant nucleons and produced particles taking part in the scat-
tering process, which results in a slight increase of emission

angle and then a slight increase of p;. With the increase of
rapidity, the energy transfer decreases due to larger penetra-
bility between participant nucleons. Meanwhile, the degree of
multiple-scattering also decreases due to less produced parti-
cles taking part in the scattering process. These two factors
result in the decrease of p;. It is natural that p, increases with
the increase of m,,.

The free parameters in the Erlang distribution are
directly reflected in (p;), which will not be discussed any-
more. The free parameters in the Hagedorn and Tsallis-
Levy functions will be discussed in the Appendix, because
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Figure 6: Continued.
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no clear physical conclusion can be drawn from them at
present, though the tendencies of them can be seen from
this work.

4. Summary and Conclusions

In summary, the transverse momentum spectra of J/y, y(2S)
,and Y(nS,n=1,2,3) produced in p+p, p+p, p+Pb, Au
+Au, and Pb+Pb collisions over an energy range from
39GeV to 13TeV have been analyzed by the (two-compo-
nent) Erlang distribution, the Hagedorn function, and the
Tsallis-Levy function. The function results are approximately
in agreement with the experimental data measured by several

international collaborations. The values of related parame-
ters are extracted from the fits, and the excitation functions
of these parameters are obtained.

The excitation functions of parameters (p,) and T
increase from 39 GeV to 13 TeV. Meanwhile, (p;) and T,
increase (slightly) with event centrality and particle mass
and decrease from mid-rapidity to forward rapidity. These
tendencies render that these parameters describe the
excitation and expansion degrees of the system. At higher
energy, larger energy transfer had happened, which results
in higher excitation and expansion degrees of the system.
In central collisions and at mid-rapidity, larger energy
transfer and further multiple-scattering had happened,



22

Advances in High Energy Physics

4.5 10
3.5 —
47 8
3 _ i
O { ! ¥z
> 34 g\ 2.5 - = 6 4 ¥ ‘
L L)
g 1| 2 e |
~ 2.5 ~ 2 ~
< 4 = ‘e SRS
~ 5 I f. s + ' I [ ] ~ l
.5 °
+ + ‘ * 2 4 [
1.5 4
14
1 IIIIIIII T IIIIIIII T IIIIIIII L llllllll T llllllll T llllllll LI O T T T L ||
100 100 10 102 100 10 10*
Vsyy (GeV) Vsyn (GeV) Vsyn (GeV)
P 2
e Jly A Prompt J/y e Jly A Prompt J/y ° romPt v
m Inclusive J/y v J/y fromb ® Inclusive J/w v J/y fromb ® Inclusivey (2)
v v A y(2S) fromb
v Non-prompt y (2S)
(a) (b) (c)
10 10
9 7
8 - s | 7
M
- o 74 M s Y
= 67 v 0 > ¥ = v b
< 8! S o7 ¢ 8 5 !
=] \ To] b = EEEERE
v ~ ]
R §° 4 ‘ 4 M t‘
2 ° 5 3
0 T — T 2 — 2 . Ll
10* 10* 10*
Vs (GeV) sy (GeV) Vsyy (GeV)
® Prompt y (25) ® Y(15) ® Y (IS
m Inclusive y (2S) =Y (25 = Y(2S
A y(2S) from b v Y (39) v Y@

v Non-prompt v (2S)
(d)

(e)

()
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which also results in higher excitation and expansion
degrees of the system.

The parameters p,, (T) and n, (n) increase with the colli-
sion energy, which reflects the degree of energy deposition
and transfer. In given collisions, there is a negative correla-
tion between p, (T) and n, (n). At different energies, there
is a positive correlation between p, (T) and n, (n). Indeed,
there are correlations between p, (T) and n, (n) when we
determine these parameters. The correlation between p, (T)
and n (n) is similar to that between kinetic freeze-out tem-
perature and transverse flow velocity. If p, (T) is similar to
kinetic freeze-out temperature, 1, (n) should be similar to
transverse flow velocity.

Appendix

A. Figures of Parameters and Some Discussions

Figure 9 is the same as Figure 7, but showing the dependences
of (a, ¢, €) py and (b, d, and f) n, on /54y (or \/s) for (a, b)
Jhy, (c, d) w(2S), and (e, f) Y(nS,n=1,2,3). The different
symbols represent the parameter values derived from free
parameters extracted from Figures 1-6 and listed in
Tables 1 and 2. One can see that p, and n, increase with
the increase of collision energy and particle mass.

Figure 10 is the same as Figure 7, but showing the depen-
dences of (a, ¢, e,and g) p, and (b, d, f, and h) n; on (a, b) cen-
trality C and (c-h) rapidity y for (a-d) J/y, (e, f) y(2S), and



Advances in High Energy Physics

3
2.75 4
2.5 4
9 2254
A S S
¢ 2
-~ ! _l
& L754—¢— ——
1.5 -
1.25
1 T T T T
0 20 40 60 80
C (%)
Jly
® 39GeV m 62.4GeV
A 200 GeV ¥ 276 TeV
(a)
5
4.5 -
T 47
%
9 3.5+ :ZX—G-
. -
S 3 _%_Lg'_ =9
+ Ly
i =
2.5 - %=
a
2 T T T T T
0 1 2 3 4 5
y
Prompt J/y Jly from b
® 5TeV o 5TeV
= 7TeV 0o 7TeV
a 8TeV A 8TeV
v 13 TeV @ 13 TeV

(c)

T;(GeV)

T, (GeV)

24
2.2 -
2 —
1.8 —_*__*_
1.6 o
14 e
1.2 -
1 T T T T
0 20 40 60 80 100
C (%)
Jhy
® 39GeV m 624 GeV
A 200 GeV Y 276 TeV
(b)
4.5
4 |
3.5 4
3 iy B
oAk
2.5 4 olv o
=‘=.L:§___ e
==
2 &x
1.5
T T T T T
0 1 2 3 4 5 6
y
Prompt J/y Jly from b
® 5TeV o 5TeV
= 7TeV 0o 7TeV
s 8TeV A 8TeV
v 13TeV @ 13 TeV
(d)

FiGure 8: Continued.

23



24

10
9 —
8 -
)
= 77
L
C 6b—i
- f
&5 ——
4 —m_
—— —
3 —o—1 o
2 T T T T
0 0.5 1 1.5 2 2.5
y
Prompt Non-prompt
v (29) v (29)
® 502TeV 05.02 TeV
= 7TeV 07 TeV
A 13TeV

(e)

{pr» (GeVlc)
|

Y (1S) Y (25) Y (39)

8.16 TeV A
7 TeV ® O ¢
8 TeV u O 4p
13 TeV v A *

(g)

Advances in High Energy Physics

12

10

T, (GeV)
[o)}
i
T
%
{;

Prompt
¥ (29)

Non-prompt
v (29)

® 502TeV
= 7TeV
A 13TeV

05,02 TeV
07 TeV

®

f%

T, (GeV)
()}
|

Y (1S) Y (2S) Y (3S)

8.16 TeV A
7 TeV [} o ¢
8 TeV | | O 4]
13 TeV v A *

()

FIGURE 8: Same as Figure 7, but showing the dependences of (a, ¢, e, and g) (p;) and (b, d, f, and h) T; on (a, b) C and (c-h) y for (a-d)

Jhy, (e, f) w(2S), and (g, h) Y(nS,n=1,2,3).

(g h) Y(nS,n=1,2,3). One can see that p, (n,) increases
(decreases) slightly with the increase of event centrality from
peripheral to central collisions and decreases (increases)
(slightly) with the increase of rapidity from mid-rapidity to
forward rapidity. Meanwhile, p, (n,) increases with the
increases of collision energy and particle mass.

Figure 11 is the same as Figure 7, but showing the depen-
dences of (a, ¢, and e) T and (b, d, and f) n on /sy (or 1/s)
for (a, b) J/y, (c, d) w(2S), and (e, f) Y(nS,n=1,2,3). One
can see that T and n increases with the increase of collision
energy and particle mass.

Figure 12 is the same as Figure 7, but showing the depen-
dences of (a, ¢, e,and g) T and (b, d, f, and h) n on (a, b) cen-

trality C and (c-h) rapidity y for (a-d) J/y, (e, f) y(2S), and
(g h) Y(nS,n=1,2,3). One can see that T (n) increases
(decreases) slightly with the increase of event centrality from
peripheral to central collisions and decreases (increases)
(slightly) with the increase of rapidity from mid-rapidity to
forward rapidity. Meanwhile, T (n) increases with the
increases of collision energy and particle mass.

The tendency of p, (T) and n, (n) with collision energy
are also explained by more violent collision at higher energy.
Both p, (T) and n, (n) increase with the increase of collision
energy. This means that p, (T) and n,(n) are positively
correlative at different energies. Meanwhile, for a given p,
spectrum or in given collisions, an increase in p, (T) is
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and (e, f) Y(nS,n=1,2,3), where T is not the initial temperature, but an effective temperature parameter in the Tsallis-Levy function.
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concomitant with a decrease in n, (n). This means that p, (T)
and n, (n) are negatively correlative in given collisions (at
given energy). There are correlations between p, (T) and
1y (n) when we determine these parameters.

The correlation between p, (T) and n, (n) is similar to
that between kinetic freeze-out temperature and transverse
flow velocity [60, 61] which also show positive correlation
at different energies and negative correlation in a given spec-
trum. If p, (T) is similar to kinetic freeze-out temperature,
1y (n) should be similar to transverse flow velocity. Mean-
while, the results obtained in this work are in agreement with
our recent work [62], which shows mass-dependent parame-
ters. In particular, with the increase of particle mass, (p;), T},
Po» and 7, increase.
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