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We discuss the continuous and infinitesimal gauge, supergauge, reparameterization, nilpotent Becchi-Rouet-Stora-Tyutin (BRST),
and anti-BRST symmetries and derive corresponding nilpotent charges for the one ð0 + 1Þ-dimensional (1D) massive model of a
spinning relativistic particle. We exploit the theoretical potential and power of the BRST and supervariable approaches to derive
the (anti-)BRST symmetries and coupled (but equivalent) Lagrangians for this system. In particular, we capture the off-shell
nilpotency and absolute anticommutativity of the conserved (anti-)BRST charges within the framework of the newly proposed
(anti-)chiral supervariable approach (ACSA) to BRST formalism where only the (anti-)chiral supervariables (and their suitable
super expansions) are taken into account along the Grassmannian direction(s). One of the novel observations of our present
investigation is the derivation of the Curci-Ferrari- (CF-) type restriction by the requirement of the absolute anticommutativity
of the (anti-)BRST charges in the ordinary space. We obtain the same restriction within the framework of ACSA to BRST
formalism by (i) the symmetry invariance of the coupled Lagrangians and (ii) the proof of the absolute anticommutativity of the
conserved and nilpotent (anti-)BRST charges. The observation of the anticommutativity property of the (anti-)BRST charges is
a novel result in view of the fact that we have taken into account only the (anti-)chiral super expansions.

1. Introduction

The basic concepts behind the local gauge theories are at the
heart of a precise theoretical description of three out of four
fundamental interactions of nature. Becchi-Rouet-Stora-
Tyutin (BRST) formalism [1–4] is one of the most intuitive
and beautiful approaches to quantize the local gauge theories
where the unitarity and quantum gauge (i.e., (anti-)BRST)
invariance are respected together at any arbitrary order of
perturbative computations for a given physical process that
is permitted by the local (i.e., interacting) gauge theory at
the quantum level. A couple of decisive features of the BRST
formalism are the nilpotency of the (anti-)BRST symmetries
as well as the existence of the absolute anticommutativity
property between the BRST and anti-BRST symmetry trans-
formations for a given local classical gauge transformation.
The hallmark of the quantum (anti-)BRST symmetries is
the existence of the (anti-)BRST invariant Curci-Ferrari-

(CF-) type restriction(s) [5, 6] that ensure the absolute antic-
ommutativity property of the (anti-)BRST symmetry transfor-
mations and the existence of the coupled (but equivalent)
Lagrangian densities for the quantum gauge theories. The
Abelian 1-form gauge theory is an exception where the CF-
type restriction is trivial and the Lagrangian density is unique
(but that is a limiting case of the non-Abelian 1-form gauge
theory where the CF condition [7] exists).

The usual superfield approach (USFA) to BRST formal-
ism [8–15] sheds light on the geometrical origin for the off-
shell nilpotency and absolute anticommutativity of the
(anti-)BRST symmetry transformations where the horizon-
tality condition (HC) plays an important and decisive role
[10–12]. These approaches, however, lead to the derivation
of the (anti-)BRST symmetries for the gauge field and associ-
ated (anti-)ghost fields only [10–12]. The above USFA does
not shed any light on the (anti-)BRST symmetries, associated
with the matter fields, in an interacting gauge theory. In our
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earlier works (see, e.g., [16–19]), we have systematically and
consistently generalized the USFA where in addition to the
HC, we exploit the potential and power of the gauge-
invariant restrictions (GIRs) to obtain the (anti-)BRST sym-
metry transformations for the matter, (anti-)ghost, and
gauge fields of an interacting gauge theory together. There
is no conflict between the HC and GIRs as they complement
and supplement each other in a beautiful fashion. This
approach has been christened as the augmented version of
superfield approach (AVSA) to BRST formalism. The USFA
with HC, developed in [10–12], is mathematically very ele-
gant and, in one stroke, it leads to the derivation of proper
(anti-)BRST symmetry transformations for the gauge and
associated (anti-)ghost fields along with the derivation of
the (anti-)BRST invariant CF-condition. The AVSA is a
minor extension of [10–12] where HC and gauge invariant
restrictions are exploited together (cf. Section 8).

In the recent set of papers [20–24], we have developed a
simpler version of the AVSA where only the (anti-)chiral
supervariables/superfields and their appropriate super
expansions have been taken into consideration. This super-
field approach to BRST formalism has been christened as
the (anti-)chiral superfield/supervariable approach (ACSA).
It may be mentioned here that, in all the earlier superfield
approaches [8–19], the full super expansions of the super-
fields/supervariables, along all the Grassmannian directions
of the (D, 2)-dimensional supermanifold, have been taken
into account for the consideration of a D-dimensional local
gauge-invariant theory (defined on the flat Minkowskian
space). One of the decisive features of the ACSA to BRST
formalism is its dependence on the quantum gauge (i.e.,
(anti-)BRST) invariant restrictions on the supervariables/su-
perfields which lead to the derivation of appropriate (anti-
)BRST symmetry transformations for all the fields/variables
of the theory together with the deduction of the (anti-)BRST
invariant CF-type restriction(s). The upshot of the results
from ACSA is the observation that the conserved and nilpo-
tent (anti-)BRST charges turn out to be absolutely anticom-
muting in nature despite the fact that only the (anti-)chiral
super expansions of the supervariables/superfields are taken
into account (within the framework of ACSA to BRST
formalism).

The purpose of our present investigation is to apply the
ACSA to BRST formalism to the 1D system of a massive
spinning relativistic particle and derive the proper (anti-)
BRST symmetry transformations for this system so that it
can be discussed and described within the framework of
BRST formalism. Our present 1D reparameterization invari-
ant system is important in its own right as it provides a pro-
totype model for the (super)gauge-invariant theory as well as
an example for a toy model of the supergravity theory. Need-
less to say, its generalization leads to the theory of super-
strings, too. If the existence of the continuous symmetries is
the guiding principle for the definition of a beautiful theory
in physics, the 1D model of a massive spinning particle rep-
resents one such example which encompasses in its folds a
host of beautiful continuous symmetries (cf. Sections 2 and
3). In our present investigation, we lay a whole lot of empha-
sis on the off-shell nilpotent and absolutely anticommuting

(anti-)BRST symmetry transformations of our 1D system
and derive the corresponding conserved Noether charges. It
is worthwhile to mention, at this stage, that, physically, the
property of off-shell nilpotency of the (anti-)BRST symme-
tries and corresponding charges imply their fermionic nature
and the absolute anticommutativity property encodes the lin-
ear independence of the above nilpotent symmetries and
charges.

Against the backdrop of the above discussions, in our
present endeavor, we have shown the existence of the three
classical level symmetries which are the gauge, supergauge,
and reparameterization transformations (cf. Equations (2)
and (4)) under which the first-order Lagrangian ðLf Þ for
the 1D system of a massive spinning relativistic particle
remains invariant. We have further established that the
reparameterization symmetry transformations contain (i)
the gauge symmetry transformations (cf. Equation (2)) pro-
vided all the fermionic variables are set equal to zero (i.e.,
ψμ = ψ5 = χ = 0), and (ii) the combination of gauge and
supergauge symmetry transformations (cf. Equation (7))
under specific conditions where the appropriate equations
of motion and identifications of the transformation parame-
ters are taken into account (cf. Equations (6), (9), and (10).
We have elevated the classical (super)gauge symmetry trans-
formations (7) to the quantum level within the framework of
BRST formalism and derived the (anti-)BRST symmetries
that are respected by the coupled (but equivalent) Lagrang-
ians Lb and L�b (cf. Equations (17) and (18)). We have demon-
strated that both the Lagrangians are equivalent because both
of them respect both the BRST and anti-BRST symmetry
transformations at the quantum level provided the whole
theory is considered on the submanifold of the quantum
Hilbert space of variables where the CF-type restriction is
satisfied (cf. Equations (20), (21), (22), and (23)). We have
further shown the existence of the (anti-)BRST invariant
CF-type restriction at the level of the proof of absolute antic-
ommutativity of the (anti-)BRST conserved charges in the
ordinary space (cf. Equations (35), (36), (37), and (38)).

In our present endeavor, we have captured all the above
key features within the framework of ACSA to BRST formal-
ism where only the (anti-)chiral supervariables and their cor-
responding super expansion(s) along the Grassmannian
direction(s) of the (1, 1)-dimensional (anti-)chiral super sub-
manifolds of the general (1, 2)-dimensional supermanifold
have been taken into consideration in a consistent and sys-
tematic fashion. One of the novel observations is the proof
of the absolute anticommutativity property of the conserved
and nilpotent (anti-)BRST charges within the ambit of ACSA
to BRST formalism where only the (anti-)chiral super expan-
sion(s) of the (anti-)chiral supervariables have been taken
into account. Moreover, we note that the above proof also
distinguishes between the chiral and antichiral (1, 1)-dimen-
sional super submanifolds within the framework of ACSA to
BRST formalism (cf. Appendix D).

Our present investigation is essential and interesting on
the following counts. First and foremost, our 1D system of
the massive spinning relativistic particle is more general than
its massless counterpart which has been discussed in our ear-
lier work [25]. Second, our present system is a toy model of a
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supersymmetric gauge theory whose generalization to 4D
provides a model for the supergravity theory with a cosmo-
logical constant term. Hence, this toy model is interesting
and important in its own right. Third, our present model is
also a generalization of the scalar relativistic particle where
the fermionic as well as bosonic (anti-)ghost variables appear
within the framework of BRST formalism. Fourth, we have
been curious to find out the contribution of the mass term
(and its associated variable) in the determination of the
gauge-fixing and Faddeev-Popov ghost terms within the
framework of BRST formalism (cf. Equation (16)). Fifth, we
have found out the CF-type restriction for the 1D massless
spinning particle in our earlier work by exploiting the beauty
of the supersymmetrization of horizontality condition [25].
Thus, we are now curious to find out its existence by proving
the absolute anticommutativity of the conserved (anti-)BRST
charges. Furthermore, we are interested in capturing its exis-
tence within the framework of ACSA to BRST formalism.
We have accomplished all these goals in our present
endeavor. Finally, a thorough study of our 1D system of a
massive spinning relativistic has been a challenge for us as
we have already studied a scalar relativistic particle and a
massless spinning relativistic particle from various angels
in our earlier works [25–32].

The theoretical material of our present endeavor is
organized as follows. In Section 2, we discuss the gauge,
supergauge, and reparameterization symmetries of the
Lagrangian that describes the 1D massive spinning relativis-
tic particle. Our Section 3 deals with the (anti-)BRST symme-
tries corresponding to the combined gauge and supergauge
symmetries where the fermionic as well as the bosonic
(anti-)ghost variables appear in the BRST analysis. The sub-
ject matter of Section 4 concerns itself with the derivation
of the BRST symmetries within the framework of ACSA to
BRST formalism where the quantum gauge (i.e., BRST)
invariant restrictions on the antichiral supervariables play a
crucial role. Our Section 5 is devoted to the derivation of
anti-BRST symmetries by exploiting the anti-BRST invariant
restrictions on the chiral supervariables within the purview of
ACSA to BRST formalism. In Section 6, we prove the exis-
tence of the CF-type restriction by capturing the symmetry
invariance of the Lagrangians within the ambit of ACSA.
We capture the off-shell nilpotency and absolute anticom-
mutativity of the conserved (anti-)BRST charges by applying
the key techniques of ACSA to BRST formalism in Section 7.
Finally, in Section 8, we make some concluding remarks and
point out a few future directions for further investigations.

In our Appendices A, B, and C, we collect a few of the
explicit computations which supplement as well as comple-
ment some of the crucial and key statements that have been
made and emphasized in the main body of our present
endeavor. Our Appendix D is devoted to the discussion of
an alternative proof of the absolute anticommutativity of
the (anti-)BRST charges and the existence of the CF-type
restriction (i) in the ordinary space and (ii) in the superspace
by exploiting the theoretical tricks and techniques of ACSA.

Convention and notations: the free (i.e., _pμ = 0) massive
spinning relativistic particle is embedded in a D-dimensional
flat Minkowskian spacetime manifold that is characterized

by a metric tensor ημν = diag ð+1,−1,−1⋯ Þ where the Greek
indices μ, ν, λ⋯ = 0, 1, 2⋯ ðD − 1Þ. We adopt the conven-
tion of the left-derivative w.r.t. the fermionic variables ðχ, ψμ,
ψ5, γ, c,�cÞ. We denote the (anti-)BRST fermionic ðs2ðaÞb = 0Þ
symmetry transformations by the symbol sðaÞb which anticom-
mutes (i.e., χ sðaÞb = −sðaÞb χ,  sðaÞb ψμ = −ψμ sðaÞb, etc.) with all
the fermionic variables ðχ, ψμ, ψ5, γ, c,�cÞ and commutes (i.e.,

xμ sðaÞb = sðaÞb xμ,  pμ sðaÞb = sðaÞb pμ,  e sðaÞb = sðaÞb e,  sðaÞb �b =
�b sðaÞb, etc.) with all the bosonic variables of our theory. We
also denote the (anti-)BRST charges by the symbol QðaÞb.

2. Preliminaries: Some Continuous and
Infinitesimal Symmetries in
Lagrangian Formulation

In this section, we discuss some infinitesimal and continuous
symmetries and demonstrate their equivalence under some
specific conditions where the usefulness of some appropriate
equations of motion as well as identifications of a few trans-
formation parameters has been exploited. We begin with the
following three equivalent Lagrangians which describe the
1D system of a massive spinning relativistic particle (see,
e.g., [33])

L0 =m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xμ + i χψμð Þ _xμ + iχψμ

� �r
− imχψ5,

Lf = pμ _x
μ + i

2 ψμ _ψ
μ − ψ5 _ψ5

� �
−
e
2 p2 −m2� �

+ iχ pμψ
μ −mψ5

� �
,

Ls =
1
2e _xμ + iχψμ

� �
_xμ + iχψμð Þ + e

2m
2

+ i
2 ψμ _ψ

μ − ψ5 _ψ5

� �
− imχψ5,

ð1Þ

where L0 is the Lagrangian with a square root, Lf is the first-
order Lagrangian, and Ls is the second-order Lagrangian.
Our one ð0 + 1Þ-dimensional (1D) system is embedded in a
flat Minkowskian D-dimensional target space where (xμ, pμ)
are the canonically conjugate bosonic coordinates and
momenta (with μ = 0, 1, 2⋯D − 1). The trajectory of the
particle is parameterized by an evolution parameter τ, and
generalized velocities ( _xμ = dxμ/dτ, _ψμ = dψμ/dτ) are defined
w.r.t. it. We have fermionic (ψμψν + ψνψμ = 0,  χψμ + ψμχ

= 0,  ψμψ5 + ψ5ψμ = 0, χψ5 + ψ5χ = 0, χ2 = 0, etc.) variables
in our theory which commute (ψμ e − eψμ = 0, ψμxν − xνψμ

= 0, ψμpν − pνψμ = 0, _xνψμ − ψμ _xν = 0, etc.) with all the
bosonic variables ðxμ, pμ, eÞ of our theory. It should be noted
that ψμ is the superpartner of xμ and ψ5 variable has been
invoked in the theory to incorporate a mass term m so that
the mass-shell condition ðp2 −m2 = 0Þ for the free particle
could be satisfied. We would like to point out that, in Ref.
[33], the emphasis is laid on the first-order Lagrangians and
their usefulness. Hence, the first-order Lagrangian (Lf ) is the
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only Lagrangian that is mentioned in [33] and there is absence
of L0 as well as Ls.

The Lagrangian L0 has a square root, and its massless
limit is not defined. On the other hand, the second-order
Lagrangian ðLsÞ is endowed with a variable (i.e., einbein)
which is located in the denominator. Thus, the Lagrangians
L0 and Ls have their own limitations. We shall focus on the
first-order Lagrangian ðLf Þ for our discussions where vari-
ables eðτÞ and χðτÞ are not purely Lagrange multiplier vari-
ables but their transformations are such that they behave
like the “gauge” and “supergauge” variables (cf. Equation
(2)). Our 1D system is a model of supersymmetric gauge the-
ory, and its generalization to 4D theory provides a model for
the supergravity theory where ψμ corresponds to the Rarita-
Schwinger field and eðτÞ becomes the vierbein field. The
massm, in the supergravity theory, represents the cosmolog-
ical constant term. In a nutshell, our present 1D model of a
massive spinning relativistic particle is important and inter-
esting in its own right because its generalization also becomes
a model of the superstring theory (see, e.g., [34, 35]).

The Lagrangian Lf respects the following gauge ðδgÞ and
supergauge ðδsgÞ symmetry transformations, namely,

δgxμ = ξpμ,
δgpμ = 0,

δge = _ξ,
δgψμ = 0,
δgψ5 = 0,
δgχ = 0,

δsgxμ = κψμ,
δsgψμ = i κ pμ,
δsgpμ = 0,
δsgψ5 = iκm,
δsgχ = i _κ,
δsge = 2κχ,

ð2Þ

where ξðτÞ and κðτÞ are the infinitesimal gauge and super-
gauge symmetry transformation parameters, respectively. It
is straightforward to note that ξðτÞ is a bosonic and κðτÞ is a
fermionic (i.e., κ2 = 0) transformation parameter. Further-
more, the transformation δsg is a supersymmetric transforma-
tion because it transforms a bosonic variable to a fermionic
variable and vice versa. The transformations in Equation (2)
are symmetry transformations because the first-order
Lagrangian Lf transforms to the following total derivatives:

δgLf =
d
dτ

ξ

2 p2 +m2� �� �
,

δsgLf =
d
dτ

κ

2 pμψ
μ +mψ5

� �h i
:

ð3Þ

As a consequence, it is clear that the action integral S =Ð +∞
−∞ d τ Lf , under the transformations δg and δsg, would be

equal to zero (i.e., δpS = 0, p = g, sg) due to the fact that all
the physical variables vanish off at τ = ±∞. There is a repara-
meterization symmetry, too, in our theory due to the basic
infinitesimal transformation τ→ τ′ = τ − εðτÞ where εðτÞ is
an infinitesimal transformation parameter. In fact, the physi-
cal variables of our 1D system transform under the infinitesi-
mal reparameterization transformation ðδrÞ as

δr xμ = ε _xμ,
δr pμ = ε _pμ,

δr ψμ = ε _ψμ,

δrψ5 = ε _ψ5,

δre =
d
dτ

ε eð Þ,

δrχ = d
dτ

εχð Þ:

ð4Þ

The above transformations are symmetry transformations
for the action integral S = Ð +∞−∞ dτLf because of the following
transformation property of Lf , namely,

δrLf =
d
dτ

εLf

	 

⟹ δrS = 0: ð5Þ

It is evident that δr S = 0 due to the fact that ϵðτÞ and Lf

vanish off at τ = ±∞.
The reparameterization symmetry transformation ðδrÞ

and gauge symmetry transformation ðδgÞ are equivalent
under the following limits:

ξ = ϵe,
_xμ = epμ,
_pμ = 0,

ð6Þ

provided we set all the fermionic variables ðχ, ψ5, ψμÞ of our
theory equal to zero. In the above, we have used equations of
motion: _xμ = epμ and _pμ = 0, and we have identified the gauge
symmetry transformation parameter ξðτÞ with the combina-
tion of the reparameterization transformation parameter
ϵðτÞ and the einbein variable eðτÞ. In an exactly similar fash-
ion, we note that ðδrÞ and ðδg + δsgÞ are also equivalent. In
this context, first of all, we note that there are two primary
constraints (i.e., Πe ≈ 0,Πχ ≈ 0) and two secondary con-
straints (i.e., p2 −m2 ≈ 0, pμψμ −mψ5 ≈ 0) on our theory
where Πe and Πχ are the canonical conjugate momenta
w.r.t. the Lagrange multiplier variables e and χ, respectively.
The above four constraints of our theory are first-class in
the terminology of Dirac’s prescription for the classifica-
tion scheme of constraints because they (anti)commute
among themselves [36, 37]. These constraints generate
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the combined (super)gauge symmetry transformations
δ = δg + δsg for the physical variables of our theory as (see,
e.g., [27])

δxμ = ξpμ + κψμ,
δpμ = 0,
δψμ = iκpμ,

δe = _ξ + 2κχ,
δχ = i _κ,
δψ5 = iκm,

ð7Þ

under which the first-order Lagrangian Lf transforms to a
total “time” derivative as

δLf =
d
dτ

ξ

2 p2 +m2� �
+ κ

2 pμψ
μ +mψ5

� �� �
: ð8Þ

As a consequence of the above observation, it is evident
that δS = 0 where S = Ð +∞−∞ dτ Lf is the action integral. If we
use the following equations of motion:

_pμ = 0,
_xμ = epμ − iχψμ,
_ψμ = χpμ,
_ψ5 =mχ,

ð9Þ

and identify the transformation parameters as

ξ = eε,
κ = −iεχ,

ð10Þ

we find that the reparameterization symmetry transformation
(4) (emerging due to the basic transformation: τ→ τ′ = τ − ε
ðτÞ) and the combined gauge and supergauge symmetry trans-
formations (i.e., δ = δg + δsg), quoted in Equation (7), are
equivalent to each other. It is worthwhile to note that, under
the identifications (10), the transformation δe = _ξ + 2κχ
becomes δe = ðd/dτÞðεeÞ as we note that 2κχ = −2ieχ2 = 0:

We end this section with the following remarks. First of
all, we note that the canonical Hamiltonians, derived from
L0 and Lf (as well as Ls), are

H 0ð Þ
c = −iχ pμψ

μ −mψ5

� �
,

Hc =
e
2 p2 −m2� �

− iχ pμψ
μ −mψ5

� �
,

ð11Þ

where Hð0Þ
c is the canonical Hamiltonian corresponding to

the Lagrangian L0. It is straightforward to note that the pri-
mary constraints Πe ≈ 0, Πχ ≈ 0 lead to the derivation of

the secondary constraints ðp2 −m2Þ ≈ 0, ðpμψμ −mψ5Þ ≈ 0

from the Hamiltonians (11) as well as from all the three
equivalent Lagrangians (1) (cf. Appendix A). Second, we
have explicitly demonstrated that the (super)gauge symmetry
transformations and reparameterization symmetry transfor-
mations are equivalent under specific conditions (cf. Equa-
tions (9) and (10)). Finally, the system under consideration
is very interesting and important because it is endowed with
many symmetries and it provides a prototype example for the
supersymmetric gauge theory, superstrings, and a model for
the supergravity theory.

3. (Anti-)BRST Symmetries:
Lagrangian Formulation

Our present section is divided into two parts. In Subsection
3.1, we show the existence of the CF-type restriction by the
requirement of absolute anticommutativity of the (anti-)BRST
symmetries and (anti-)BRST invariance of the coupled (but
equivalent) Lagrangians Lb and L�b. In Subsection 3.2, we
establish the existence of the same by requiring the absolute
anticommutativity of the conserved and nilpotent (anti-)
BRST charges.

3.1. (Anti-)BRST Invariance and CF-Type Restriction. Corre-
sponding to the combined classical (super)gauge symmetry
transformations (cf. Equation (7)), we can write down the
quantum (anti-)BRST symmetry transformations sðaÞb where
the classical gauge symmetry parameter ξðτÞ would be
replaced by the fermionic (c2 =�c2 = 0, c�c +�c c = 0, etc.)
(anti-)ghost variables ð�cÞc and the classical supergauge sym-
metry transformations parameter κðτÞ would be replaced
by a pair of bosonic ðβ2 = �β ≠ 0Þ (anti-)ghost variables ð�βÞβ.
These off-shell nilpotent ½ðsðaÞbÞ2 = 0�, infinitesimal and con-
tinuous (anti-)BRST symmetry transformations ðsðaÞbÞ, in
their full blaze of glory for our 1D system of the massive spin-
ning relativistic particle, are (see, e.g., [25])

sabxμ =�cpμ + �βψμ,

e = _�c + 2�βχ,
sabψμ = i�βpμ,

sab�c = −i�β2,
sabc = i�b,
sab�β = 0,
sabβ = −iγ,
sabpμ = 0,
sabγ = 0,
sab�b = 0,

sabχ = i _�β,
sabb = 2i�βγ,
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sabψ5 = i�βm,

sbxμ = cpμ + βψμ,

sbe = _c + 2βχ, ð12Þ

sbψμ = iβpμ,

sbc = −iβ2,
sb�c = ib,
sbβ = 0,
sb�β = iγ,
sbpμ = 0,
sbγ = 0,
sbb = 0,
sbχ = i _β,
sb�b = −2iβγ,

sbψ5 = iβm,

ð13Þ

where b and �b are the Nakanishi-Lautrup-type auxiliary vari-
ables, fermionic (χ2 = 0, c2 =�c2 = 0, γ2 = 0) variables ðχ, c,�c,
γÞ are present in our theory, and the rest of the symbols have
already been explained earlier. As far as the absolute anticom-
mutativity ðsbsab + sabsb = 0Þ property is concerned, it can be
checked that

sb, sabf gxμ = i b + �b + 2β�β
� �

pμ,

sb, sabf ge = i
d
dτ

b + �b + 2β�β
� �

,
ð14Þ

are equal to zero only after imposing the CF-type restriction:
b + �b + 2β�β = 0 from outside. It is worthwhile to mention that
this CF-type restriction is a physical restriction within the
realm of BRST formalism because it is an (anti-)BRST invari-
ant (i.e., sðaÞb ½b + �b + 2β�β� = 0) quantity. Except for the vari-
ables (xμ, e), it is straightforward to check that the following
is true for the other variables of our theory, namely,

sb, sabf gΦ = 0,
Φ = pμ, ψμ, ψ5, χ, β, �β, c,�c, b, �b, γ,

ð15Þ

where ΦðτÞ is the generic variable of the (anti-)BRST
invariant theory. Thus, it is crystal clear that the (anti-)
BRST symmetry transformations in (12) and (13) are off-
shell nilpotent ½ðsðaÞbÞ2 = 0� and absolutely anticommuting
ðsbsab + sabsb = 0Þ in nature provided the whole theory is
considered on a submanifold of space of quantum variables
where the CF-type restriction: b + �b + 2β�β = 0, is satisfied in
the quantum Hilbert space (see, e.g., [25]).

The coupled (but equivalent) Lagrangians for our (anti-)
BRST invariant system of the 1Dmassive spinning relativistic
particle can be written as

Lb = Lf + sbsab
ie2

2 + c�c + χψ5

� �
,

L�b = Lf − sabsb
ie2

2 + c�c + χψ5

� �
,

ð16Þ

where Lf is the first-order Lagrangian that has been quoted in
Equation (1). The above Lagrangians for our 1D system of a
massive spinning relativistic particle can be written, in their
full glory incorporating the gauge-fixing and Faddeev-
Popov ghost terms, as

Lb = Lf + b2 + b _e + 2�ββ
� �

− i_�c_c + �β
2
β2 + 2iχ β_�c − �β_c

� �
− 2e �β _β + γχ

� �
+ 2γ β�c − �βc

� �
+m �β _β − _�ββ + γχ

� �
− _γψ5,

ð17Þ

L�b = Lf + �b
2 − �b _e − 2�ββ

� �
− i_�c_c + �β

2
β2 + 2iχ β_�c − �β_c

� �
+ 2e _�ββ − γχ

� �
+ 2γ β�c − �βc

� �
+m �β _β − _�ββ + γχ

� �
− _γψ5,

ð18Þ
where, as pointed out earlier, b and �b are the Nakanishi-
Lautrup-type auxiliary variables which lead to the derivation
of EL-EOMs (from Lb and L�b) as

2b + _e + 2β�β = 0,
2�b − _e + 2β�β = 0:

ð19Þ

It is elementary to note that the above relationships lead
to the derivation of the CF-type restriction: b + �b + 2 �ββ = 0,
which is the hallmark of a quantum gauge theory discussed
within the framework of BRST formalism [5, 6].

At this juncture, we are in the position to focus on the
symmetry properties of the coupled Lagrangians Lb and L�b.
In this context, we observe the following:

sbLb =
d
dτ

c
2 p2 +m2� �

+ β

2 pμψ
μ +mψ5

� �
+ b _c + 2βχð Þ

� �
,

ð20Þ

sabL�b =
d
dτ

�c
2 p2 +m2� �

+
�β

2 pμψ
μ +mψ5

� �
− �b _�c + 2�βχ
� �� �

:

ð21Þ
It is clear from the above observations that the action

integrals S1 =
Ð∞
−∞ dτLb and S2 =

Ð∞
−∞ dτL�b remain invariant

(i.e., sbS1 = 0, sabS2 = 0) under the quantum BRST and anti-
BRST symmetry transformations that have been listed in
Equations (13) and (12). The coupled (but equivalent)
Lagrangian respect both (i.e., BRST and anti-BRST) quantum
symmetries provided the whole theory is considered on a
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submanifold of the quantum Hilbert space of variables where
the CF-type restriction: b + �b + 2β�β = 0, is satisfied. In other
words, mathematically, we observe the following:

sbL�b =
d
dτ

c
2 p2 +m2� �

+ β

2 pμψ
μ +mψ5

� �
− �b _c + 2βχð Þ + 2ieβγ

� �
+ _c + 2βχð Þ d

dτ
b + �b + 2β�β
� �� �

− 2iβγð Þ b + �b + 2β�β
� �

,

ð22Þ

sabLb =
d
dτ

�c
2 p2 +m2� �

+
�β

2 pμψ
μ +mψ5

� �
+ b _�c + 2�βχ
� �

+ 2ie�βγ
� �

− _�c + 2�βχ
� � d

d τ
b + �b + 2β�β
� �� �

+ 2i�βγ
� �

b + �b + 2β�β
� �

:

ð23Þ
A close look at the above transformations demonstrates

that if we impose the (anti-)BRST invariant ½sðaÞbðb + �b + 2β
�βÞ = 0� quantum CF-type restriction ðb + �b + 2β�β = 0Þ from
outside, we obtain the following BRST symmetry transfor-
mation of the Lagrangian L�b and anti-BRST symmetry trans-
formation of the Lagrangian Lb, namely,

sbL�b =
d
dτ

c
2 p2 +m2� �

+ β

2 pμψ
μ +mψ5

� �
− �b _c + 2βχð Þ + 2ieβγ

� �
,

ð24Þ

sabLb =
d
dτ

�c
2 p2 +m2� �

+
�β

2 pμψ
μ +mψ5

� �
+ b _�c + 2�βχ
� �

+ 2ie�βγ
� �

:

ð25Þ
It is crystal clear now that the observations in Equations

(20), (21), (22), (23), (24), and (25) imply, in a straightfor-
ward manner, that both the Lagrangians (i.e., Lb and L�b)
respect both the quantum symmetries (i.e., BRST and anti-
BRST symmetry transformations) in the space of quantum
variables where the CF-type restriction is satisfied.

We end this subsection with the following remarks. First
and foremost, we observe that the presence of the term “χψ5”
in the square bracket of Equation (16) is due to the massive
nature of the spinning relativistic particle. In the massless
case, it disappears (see, e.g., Ref. [25]). Second, the hallmark
of the quantum gauge theory (within the framework of the
BRST formalism) is encoded in the existence of the CF-type
restriction which we have demonstrated in Equations (14),
(19), (22), and (23) where we have concentrated on the quan-
tum (anti-)BRST symmetries which are respected by the
coupled Lagrangians Lb and L�b. Finally, we note that the
absolute anticommutativity property of the (anti-)BRST
symmetries and equivalence of Lb and L�b owe their origins
to the CF-type restriction: b + �b + 2β�β = 0.

3.2. (Anti-)BRST Charges and CF-Type Restriction. In this
subsection, we demonstrate the existence of the (anti-)BRST
invariant CF-type restriction (i.e., b + �b + 2β�β = 0) by
demanding the absolute anticommutativity of the conserved
and nilpotent (anti-)BRST charges of our present theory. In

this context, first of all, we note that, according to Noether’s
theorem, the invariances sbS1 = 0,  sabS2 = 0 of the action inte-
grals S1 =

Ð +∞
−∞ dτLb and S2 =

Ð +∞
−∞ dτL�b under the (anti-)BRST

symmetry transformations (sðaÞb) (as quoted in Equations (20)
and (21)) lead to the derivation of the Noether conserved

(anti-)BRST charges (Qð1Þ
ðaÞb) as follows:

Q 1ð Þ
ab = �c

2 p2 −m2� �
+ �β pμψ

μ −mψ5

� �
− �b_�c − 2�b�βχ

− im�βγ − �β
2
_c − 2β�β2

χ,
ð26Þ

Q 1ð Þ
b = c

2 p2 −m2� �
+ β pμψ

μ −mψ5

� �
+ b_c + 2bβχ

− imβγ + β2 _�c + 2�ββ2χ:
ð27Þ

The conservation law (i.e., _Q
ð1Þ
b = 0, _Qð1Þ

ab = 0) can be
proven by using the EL-EOMs derived from the Lagrangians
Lb and L�b (cf. Appendix B). We have used the superscript

(1) on the (anti-)BRST charges (Qð1Þ
ðaÞb) to denote that these

charges have been directly derived by using the basic principle
behind Noether’s theorem. However, we have the option of
expressing these charges in a different form by using the EL-
EOMs that are derived from Lb and L�b. At this stage, it can

be noted that the Noether conserved charges Qð1Þ
ðaÞb are not

off-shell nilpotent (½Qð1Þ
ðaÞb�

2
≠ 0) of order two without any use

of EL-EOMs. In other words, we note that the following is
true, namely,

sbQ
1ð Þ
b = −i Q 1ð Þ

b ,Q 1ð Þ
b

n o
≠ 0,

sabQ
1ð Þ
ab = −i Q 1ð Þ

ab ,Q
1ð Þ
ab

n o
≠ 0,

ð28Þ

unless we use the EL-EOMs from Lb and L�b. Thus, we lay

emphasis on the fact that Qð1Þ
ðaÞb are only the on-shell nilpotent

conserved charges (even though we have used the off-shell nil-
potent (anti-)BRST symmetry transformations (12) and (13)
in their derivation).

We have the freedom to use the EL-EOMs (derived from

L�b and Lb) to recast the Noether conserved charges Qð1Þ
ðaÞb in a

different form. For instance, the BRST charge Qð1Þ
b can be

written in a different form by using the following EL-EOMs:

_b = −
1
2 p2 −m2� �

− 2 �β _β + γχ
� �

,

pμψ
μ −mψ5 = 2ieγ − 2 β_�c − �β_c

� �
,

ð29Þ

which are derived from Lb w.r.t. the e and χ variables. The
ensuing expression for the conserved BRST charge (due to
EL-EOMs (29)) is

Q 2ð Þ
b = b_c − _bc + 2ieβγ + 2β�β_c − 2c �β _β + γχ

� �
+ 2bβχ

− 2imγβ − β2 _�c + 2χβ2�β:
ð30Þ
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Here, the superscript (2) denotes that the expression for
the BRST charge in Equation (30) has been derived from

the Noether conserved BRST charge Qð1Þ
b by using the EL-

EOMs quoted in Equation (29). It is now straightforward to
check that the following is true, namely,

sbQ
2ð Þ
b = −i Q 2ð Þ

b ,Q 2ð Þ
b

n o
= 0⇒ Q 2ð Þ

b

h i2
= 0, ð31Þ

where we have directly applied the BRST symmetry transfor-

mation (13) on the expression for Qð2Þ
b (cf. Equation (30)) for

the computation of the l.h.s. of Equation (31). We would like
to lay emphasis on the fact that Equation (31) is nothing but
the standard relationship between the continuous symmetry

transformation sb and its generator Qð2Þ
b . The latter is, to be

precise, the conserved BRST charge which is the generator
of the symmetry transformations (13). We, ultimately, note

that the off-shell nilpotency ð½Qð2Þ
b �2 = 0Þ of the Qð2Þ

b has been
proven in (31) where we have not used any EL-EOMs and/or
CF-type restriction.

Let us now concentrate on the proof of the off-shell nilpo-
tency of the anti-BRST charge (Qab). For this purpose, we use
the following EL-EOMs:

_�b = 1
2 p2 −m2� �

− 2 _�ββ − γχ
� �

,

pμψ
μ −mψ5 = 2ieγ − imγ − 2 β_�c − �β_c

� �
,

ð32Þ

that emerge out from the Lagrangian L�b (when we consider
the variables e and χ for their derivation) to recast the

Noether conserved charge Qð1Þ
ab as

Q 2ð Þ
ab = _�b�c − �b_�c + 2ie�βγ − 2β�β_�c + 2�c _�ββ − γχ

� �
− 2�b�βχ

− 2im�βγ + �β
2
_c − 2β�β2

χ,
ð33Þ

where the superscript (2) on the anti-BRST charge Qð2Þ
ab

denotes the fact that it has been derived from the Noether

conserved charge Qð1Þ
ab . We apply, at this stage, the anti-

BRST symmetry transformations (12) directly on the anti-

BRST charge Qð2Þ
ab to obtain

sabQ
2ð Þ
ab = −i Q 2ð Þ

ab ,Q
2ð Þ
ab

n o
= 0⇒ Q 2ð Þ

ab

h i2
= 0: ð34Þ

The above observation proves the off-shell nilpotency of

the anti-BRST charge Qð2Þ
ab because we do not use EL-EOMs

and/or CF-type restriction in its proof. In Equation (34), we
have used the basic principle behind the continuous symme-
tries and their generators. There are other ways, too, to prove

the off-shell nilpotency (½Qð2Þ
ðaÞb�

2
= 0) of the (anti-)BRST

chargesQð2Þ
ðaÞb. However, we have concentrated, in our present

endeavor, only on the standard relationship between the con-
tinuous symmetries and their generators.

A couple of decisive features of the BRST formalism is the
validity of the off-shell/on-shell nilpotency and absolute
anticommutativity properties of the (anti-)BRST symmetries
as well as the (anti-)BRST charges. We concentrate now on
the proof of the absolute anticommutativity of the conserved

and nilpotent (anti-)BRST charges Qð2Þ
ðaÞb. Toward this goal in

mind, we first concentrate on the expression for Qð2Þ
b (cf.

Equation (30)). Applying directly the anti-BRST symmetry
transformations (12) on it, we obtain the following:

sabQ
2ð Þ
b = i b + �b + 2β�β

� � _�b + 2χγ + 2β _�β
h i

− i�b
d
dτ

b + �b + 2β�β
	 


:

ð35Þ

In the terminology of the standard relationship between
the continuous symmetry transformation ðsabÞ and its gener-
ator Qð2Þ

ab , it is evident that the l.h.s. of Equation (35) can be
written in an explicit fashion as

sabQ
2ð Þ
b = −i Q 2ð Þ

b ,Q 2ð Þ
ab

n o
: ð36Þ

A close look at (35) and (36) demonstrates that the abso-
lute anticommutativity of the conserved (anti-)BRST charges
(that are off-shell nilpotent of order two) is true if and only if
the CF restriction: b + �b + 2β�β = 0, is imposed on the theory
from outside. However, as discussed earlier, this restriction,
on the quantum theory, is a physical condition because this
CF-type restriction is an (anti-)BRST invariant quantity.

Let us now focus on the expression for the off-shell nilpo-

tent ½ðQð2Þ
ab Þ

2
= 0� anti-BRST charge ðQð2Þ

ab Þ in Equation (33).
The direct application of the BRST symmetry transformation

(sb) of Equation (13) on the anti-BRST charge Qð2Þ
ab in (33)

yields the following:

sbQ
2ð Þ
ab = ib

d
d τ

b + �b + 2β�β
	 


− i b + �b + 2β�β
� � _b + 2 _β�β + 2γχ

h i
:

ð37Þ

It is straightforward to note that the r.h.s. of (37) would
be equal to zero if we impose the (anti-)BRST invariant CF-
type restriction ðb + �b + 2β�β = 0Þ from outside. Exploiting
the beauty of the standard relationship between continuous
symmetry transformation (sb) and its generator (conserved

and nilpotent BRST charge Qð2Þ
b ), we note that the l.h.s. of

the above equation can be written as

sbQ
2ð Þ
ab = −i Q 2ð Þ

ab ,Q
2ð Þ
b

n o
= 0, ð38Þ

provided, as stated earlier, we confine ourselves on the sub-
manifold of the quantum Hilbert space of variables where
the CF-type restriction ðb + �b + 2β �β = 0Þ is satisfied. We
have been able to establish an intimate connection between
the CF-type restriction and the geometrical objects called
gerbes [5, 6]. The existence of this restriction provides an
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independent identity to the BRST and anti-BRST symmetries
and the corresponding (anti-)BRST charges.

We end this subsection with the following remarks. First
and foremost, the existence of CF-type restriction is the hall-
mark of a quantum theory described within the framework of
BRST formalism [5, 6]. Second, the CF-type restriction is
responsible for the existence of the coupled (but equivalent)
Lagrangians Lb and L�b. Third, the absolute anticommutativ-
ity of the (anti-)BRST symmetries and corresponding (anti-
)BRST charges owe their origins to the CF-type restriction.
Finally, we have been able to show that Lb and L�b both respect
both the (anti-)BRST symmetries due to the existence of CF-
type restriction.

4. BRST Symmetry Transformations: ACSA

We exploit the basic tenets of ACSA to BRST formalism to
derive the proper off-shell nilpotent BRST symmetry trans-
formation (13) where we take into account the antichiral
supervariables (defined on the (1, 1)-dimensional antichiral
super submanifold of the general (1, 2)-dimensional super-
manifold). The above antichiral supervariables are the gener-
alizations of the ordinary variables of Lagrangian Lb and �bðτÞ
as follows:

xμ τð Þ→ Xμ τ, θ
� �

= xμ τð Þ + θR 1ð Þ
μ τð Þ,

pμ τð Þ→ Pμ τ, θ
� �

= pμ τð Þ + θR 2ð Þ
μ τð Þ,

e τð Þ→ E τ, θ
� �

= e τð Þ + θf1 τð Þ,

c τð Þ→ F τ, θ
� �

= c τð Þ + θb1 τð Þ,

�c τð Þ→ �F τ, θ
� �

=�c τð Þ + θb2 τð Þ,

β τð Þ→ ~β τ, θ
� �

= β τð Þ + θf2 τð Þ,

�β τð Þ→ e�β τ, θ
� �

= �β τð Þ + θf3 τð Þ,

ψμ τð Þ→Ψμ τ, θ
� �

= ψμ τð Þ + θb3 τð Þ,

ψ5 τð Þ→Ψ5 τ, θ
� �

= ψ5 τð Þ + θb4 τð Þ,

χ τð Þ→ ~χ τ, θ
� �

= χ τð Þ + θb5 τð Þ,

γ τð Þ→ Γ τ, θ
� �

= γ τð Þ + θb6 τð Þ,

b τð Þ→ B τ, θ
� �

= b τð Þ + θf4 τð Þ,

�b τð Þ→ �B τ, θ
� �

= �b τð Þ + θf5 τð Þ:

ð39Þ

In the above, we have taken the super expansions along
the Grassmannian θ-direction of the antichiral ð1, 1Þ
-dimensional super submanifold which is parameterized by
the superspace coordinates ðτ, θÞ. We note that, in the above

super expansions, the secondary variables ðRð1Þ
μ , Rð2Þ

μ , f1, f2,
f3, f4, f5Þ are fermionic and the rest of the secondary vari-
ables ðb1, b2, b3, b4, b5, b6Þ are bosonic in nature due to the

fermionic ðθ2 = 0Þ nature of the Grassmannian variable θ. It
is elementary to state that, in the limit θ = 0, we retrieve ordi-
nary variables of our theory described by the Lagrangian Lb
and �bðτÞ.

The trivial BRST invariant quantities: sbpμ = 0, sbγ = 0, sb
β = 0, sbb = 0, imply that the secondary variables Rð2Þ

μ = b6 =
f2 = f4 = 0. This is due to the fact that the basic tenets of
ACSA require that the BRST invariant quantities should be
independent of the Grassmannian variable θ (which is a
mathematical artifact in the superspace formalism). In other
words, we have the following:

P bð Þ
μ τ, θð Þ = pμ τð Þ + θ 0ð Þ ≡ pμ τð Þ + θ sbpμ τð Þ

� �
⇒ P bð Þ

μ τ, θð Þ = pμ τð Þ,

Γ bð Þ τ, θð Þ = γ τð Þ + θ 0ð Þ ≡ γ τð Þ + θ sbγ τð Þð Þ⇒ Γ bð Þ τ, θð Þ = γ τð Þ,

B bð Þ τ, θð Þ = b τð Þ + θ 0ð Þ ≡ b τð Þ + θ sbb τð Þð Þ⇒ B bð Þ τ, θð Þ = b τð Þ,

~β
bð Þ

τ, θð Þ = β τð Þ + θ 0ð Þ ≡ β τð Þ + θ sbβ τð Þð Þ⇒ ~β
bð Þ

τ, θð Þ = β τð Þ,
ð40Þ

where the superscript ðbÞ on the antichiral supervariables
denotes the supervariables that have been obtained after the
application of the BRST invariant ðsbpμ = sbγ = sbb = sbβ = 0Þ
restrictions so that the coefficients of θ, in the expansions
(39), becomes zero. This is due to the fact that there is a map-
ping (i.e., sb ↔ ∂θ,  sab ↔ ∂θ) between the (anti-)BRST sym-
metry transformations ðsðaÞbÞ and the translational operators
ð∂θ, ∂θÞ along the Grassmannian directions of the (1, 2)-
dimensional supermanifold that has been established in Refs.
[10–12]. It is crystal clear, from our discussions in this para-
graph, that we have to determine precisely all the secondary
variables in terms of the basic and auxiliary variables of our
theory so that we could know the coefficients of θ in the super
expansions (39).

Against the backdrop of our earlier discussions, we have
to obtain the precise expressions for the secondary variables
so that we could obtain the BRST symmetry transformations
ðsbÞ as the coefficient of θ in the antichiral super expansions
(39). Toward this goal in our mind, we have to find out the
specific combinations of the nontrivial quantities that are
BRST invariant. In this context, we note that the following
useful and interesting quantities are BRST invariant, namely,

sb �βγ
� �

= 0,
sb _c + 2βχð Þ = 0,

sb eγχ + e�β _β − i�β_cχ
� �

= 0,

sb β2�β + cγ
� �

= 0,
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sb cpμ + βψμ

� �
= 0,

sb βxμ − icψμ

� �
= 0,

sb b�β + γ�c
� �

= 0,

sb �b + 2β�β
� �

= 0,

sb _ψ5 − χmð Þ = 0: ð41Þ

The basic tenets of ACSA to BRST formalism require that
the above quantities, at the quantum level, should be inde-
pendent of the Grassmannian variable ðθÞ when these are
generalized onto the ð1, 1Þ-dimensional antichiral super sub-
manifold of the general ð1, 2Þ-dimensional supermanifold.
As a consequence, we have the following restrictions on the
specific combinations of the antichiral supervariables,
namely,

e�β τ, θ
� �

Γ bð Þ τ, θ
� �

= �β τð Þγ τð Þ,

_F τ, θ
� �

+ 2~β bð Þ
τ, θ
� �

~χ τ, θ
� �

= _c τð Þ + 2β τð Þχ τð Þ,

E τ, θ
� �

Γ bð Þ τ, θ
� �

~χ τ, θ
� �

+ E τ, θ
� �e�β τ, θ

� �
_~β
bð Þ

τ, θ
� �

− ie�β τ, θ
� �

_F τ, θ
� �

~χ τ, θ
� �

= e τð Þγ τð Þχ τð Þ + e τð Þ�β τð Þ _β τð Þ − i�β τð Þ_c τð Þχ τð Þ,

~β
2 bð Þ

τ, θ
� �e�β τ, θ

� �
+ F τ, θ
� �

Γ bð Þ τ, θ
� �

= β2 τð Þ�β τð Þ + c τð Þγ τð Þ,

F τ, θ
� �

P bð Þ
μ τ, θ
� �

+ ~β
bð Þ

τ, θ
� �

Ψμ τ, θ
� �

= c τð Þpμ τð Þ + β τð Þψμ τð Þ,

~β
bð Þ

τ, θ
� �

Xμ τ, θ
� �

− iF τ, θ
� �

Ψμ τ, θ
� �

= β τð Þxμ τð Þ − ic τð Þψμ τð Þ,

B bð Þ τ, θ
� �e�β τ, θ

� �
+ Γ bð Þ τ, θ

� �
�F τ, θ
� �

= b τð Þ�β τð Þ + γ τð Þ�c τð Þ,

�B τ, θ
� �

+ 2~β bð Þ
τ, θ
� �e�β τ, θ

� �
= �b τð Þ + 2β τð Þ�β τð Þ,

_Ψ5 τ, θ
� �

− ~χ τ, θ
� �

m = _ψ5 τð Þ − χ τð Þm: ð42Þ

The above restrictions are quantum gauge (i.e., BRST)
invariant conditions on the antichiral supervariables where
the supervariables with superscript ðbÞ have been derived
and explained in Equation (40) that corresponds to the trivial
BRST symmetry transformations.

The substitutions of the antichiral super expansions (39)
and the trivial expansions (40) into (42) lead to the following
precise expressions for the secondary variables in terms of the
basic and auxiliary variables of the coupled (but equivalent)

(anti-)BRST invariant Lagrangians Lb and L�b (cf. Equations
(17) and (18)), namely,

R 1ð Þ
μ = cpμ + βψμ,
f1 = _c + 2βχ,
b1 = iβ2,
b2 = ib,
f3 = iγ,
b3 = iβpμ,
b4 = iβm,

b5 = i _β,
f5 = −2iβγ:

ð43Þ

Ultimately, we obtain the super expansions of (39) in
terms of the off-shell nilpotent (s2b = 0) BRST transformations
(13) of our theory as follows:

X bð Þ
μ τ, θ
� �

= xμ + θ c pμ + βψμ

� �
≡ xμ τð Þ + θ sbxμ

� �
,

E bð Þ τ, θ
� �

= e τð Þ + θ _c + 2 β χð Þ ≡ e τð Þ + θ sbeð Þ,

F bð Þ τ, θ
� �

= c τð Þ + θ iβ2� �
≡ c τð Þ + θ sbcð Þ,

�F bð Þ τ, θ
� �

=�c τð Þ + θ ibð Þ ≡�c τð Þ + θ sb�cð Þ,

e�β bð Þ
τ, θ
� �

= �β τð Þ + θ iγð Þ ≡ �β τð Þ + θ sb�β
� �

,

Ψ bð Þ
μ τ, θ
� �

= ψμ τð Þ + θ iβpμ
� �

≡ ψμ τð Þ + θ sbψμ

� �
,

Ψ
bð Þ
5 τ, θ
� �

= ψ5 τð Þ + θ iβmð Þ ≡ ψ5 τð Þ + θ sbψ5ð Þ,

~χ bð Þ τ, θ
� �

= χ τð Þ + θ i _β
� �

≡ χ τð Þ + θ sbχð Þ,

�B bð Þ τ, θ
� �

= �b τð Þ + θ −2iβγð Þ ≡ �b τð Þ + θ sb�b
� �

,

ð44Þ

which are besides the super expansions in (40) (that deter-
mine the trivial BRST symmetry transformations as sbpμ = 0
, sbγ = 0, sbβ = 0, sbb = 0). The superscript ðbÞ on the antic-
hiral supervariable on the l.h.s. of the above expansions
denotes the fact that these supervariables have been deter-
mined after the quantum gauge (i.e., BRST) invariant restric-
tions have been imposed on the supervariables as quoted in
Equation (42). In our Appendix C, we collect the step-by-
step computations that lead to the derivation of (43) from
(42). At the classical level, we know that the gauge
invariant quantities (GIRs) are physical objects. Within the
framework of BRST formalism, all the (anti-)BRST invariant
quantities are physical objects at the quantum level. Hence,
these quantities should be independent of the Grassmannian
variables ðθ, θÞ. In fact, this requirement is one of the basic
tenets of ACSA to BRST formalism which is quite physical.
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We end this section with the following remarks. First of
all, we note that the coefficients of θ in the super expansions
(40) and (44) are nothing but the BRST transformations (13).
Second, it is evident that ∂θΩ

ðbÞðx, θÞ = sbωðτÞ where ΩðbÞðx,
θÞ is the generic antichiral supervariable that is located on
the l.h.s. of Equations (40) and (44) and the symbol ωðτÞ cor-
responds to the generic ordinary variable that is present in
the Lagrangians Lb and L�b. Finally, we observe that, due to
the mapping sb ↔ ∂θ, the off-shell nilpotency ðs2b = 0Þ of the
BRST symmetry transformations (13) is deeply connected
with the nilpotency ð∂2

θ
= 0Þ of the translational generator

ð∂θÞ along the θ-direction of (1, 1)-dimensional antichiral
super submanifold on which the antichiral supervariables
are defined. It will be noted that only the BRST symmetry
transformations have been mentioned in Ref. [33] for the
spinning relativistic particle. However, the full set of
(anti-)BRST symmetry transformations and the corre-
sponding (anti-)BRST invariant CF-type restriction have
been derived in our earlier work [25].

5. Anti-BRST Symmetry
Transformations: ACSA

In this section, we derive the anti-BRST symmetry transfor-
mations (12) by exploiting the theoretical potential and power
of ACSA to BRST formalism. Toward this objective in mind,
first of all, we generalize the ordinary variables of L�b (and
the auxiliary variable bðτÞ) onto (1, 1)-dimensional chiral
super submanifold of the general (1, 2)-dimensional superma-
nifold (on which our 1D ordinary theory is generalized) as

xμ τð Þ→ Xμ τ, θð Þ = xμ τð Þ + θ�R 1ð Þ
μ τð Þ,

pμ τð Þ→ Pμ τ, θð Þ = pμ τð Þ + θ�R 2ð Þ
μ τð Þ,

e τð Þ→ E τ, θð Þ = e τð Þ + θ�f 1 τð Þ,
c τð Þ→ F τ, θð Þ = c τð Þ + i θ�b1 τð Þ,
�c τð Þ→ �F τ, θð Þ =�c τð Þ + i θ�b2 τð Þ,
β τð Þ→ ~β τ, θð Þ = β τð Þ + θ�f 2 τð Þ,
�β τð Þ→ e�β τ, θð Þ = �β τð Þ + θ�f 3 τð Þ,

ψμ τð Þ→Ψμ τ, θð Þ = ψμ τð Þ + θ�b3 τð Þ,
ψ5 τð Þ→Ψ5 τ, θð Þ = ψ5 τð Þ + θ�b4 τð Þ,
χ τð Þ→ ~χ τ, θð Þ = χ τð Þ + θ�b5 τð Þ,
γ τð Þ→ Σ τ, θð Þ = γ τð Þ + θ�b6 τð Þ,
b τð Þ→ B τ, θð Þ = b τð Þ + θ�f 4 τð Þ,
�b τð Þ→ �B τ, θð Þ = �b τð Þ + θ�f 5 τð Þ,

ð45Þ

where the ð1, 1Þ-dimensional chiral super submanifold is
parameterized by the superspace coordinates ðτ, θÞ and all
the chiral supervariables on the l.h.s. of (45) are a function of
these superspace coordinates. The fermionic ðθ2 = 0Þ nature

of the Grassmannian variable θ implies that the secondary var-

iables ð�Rð1Þ
μ , �Rð2Þ

μ , �f 1, �f 2, �f 3, �f 4, �f 5Þ are fermionic and ð�b1, �b2,
�b3, �b4, �b5, �b6Þ are bosonic in nature. It is straightforward to
note that, in the limit θ = 0, we retrieve our ordinary
variables of Lagrangian L�b and the variable bðτÞ.

We note that there are trivially anti-BRST invariant
quantities (cf. Equation (12)) such as sabpμ = 0, sabγ = 0,
sab�b = 0, sab�β = 0. As a consequence, we have the following

trivial chiral super expansions (with inputs: �Rð2Þ
μ = �b6 = �f 5 =

�f 3 = 0), namely,

pμ τð Þ→ P abð Þ
μ τ, θð Þ = pμ τð Þ + θ 0ð Þ ≡ pμ τð Þ + θ sabpμ τð Þ

� �
,

γ τð Þ→ Γ abð Þ τ, θð Þ = γ τð Þ + θ 0ð Þ ≡ γ τð Þ + θ sab γ τð Þð Þ,
�b τð Þ→ �B abð Þ τ, θð Þ = �b τð Þ + θ 0ð Þ ≡ �b τð Þ + θ sab �b τð Þ� �

,

�β τð Þ→ e�β abð Þ
τ, θð Þ = �β τð Þ + θ 0ð Þ ≡ �β τð Þ + θ sab �β τð Þ� �

,
ð46Þ

where the superscript ðabÞ on the supervariables denotes the
chiral supervariables where the coefficient of θ yields the
anti-BRST symmetry transformations (12) in view of themap-
ping: sab ↔ ∂θ [10–12], which becomes transparent when we
observe that ∂θΩ

ðabÞðτ, θÞ = sabωðτÞ for the generic supervari-
able ΩðabÞðτ, θÞ and the corresponding ordinary generic vari-
able ωðτÞ. The trivial super expansion (46) would be utilized
in our further discussions.

The basic ingredient of the ACSA to BRST formalism
requires that the nontrivial anti-BRST invariant quantities
must be independent of the Grassmannian variable θ when
these quantities are generalized onto the (1, 1)-dimensional
chiral super submanifold. We exploit this idea to determine
the secondary variables of the super expansion (45) in terms
of the basic and auxiliary variables of L�b. Toward this aim in
our mind, we note that the following anti-BRST invariant
quantities:

sab βγð Þ = 0,
sab _�c + 2�βχ
� �

= 0,

sab eγχ − e _�ββ + iβ_�cχ
� �

= 0,

sab β�β
2 −�cγ

� �
= 0,

sab �cpμ + �βψμ

� �
= 0,

sab �βxμ − i�cψμ

� �
= 0,

sab �bβ − γc
� �

= 0,

sab b + 2�ββ
� �

= 0,
sab _ψ5 − χmð Þ = 0,

ð47Þ

11Advances in High Energy Physics



are found to be very useful and interesting because their
generalizations onto the (1, 1)-dimensional chiral super
submanifold, namely,

~β τ, θð ÞΓ abð Þ τ, θð Þ = β τð Þγ τð Þ,

_�F τ, θð Þ + 2e�β abð Þ
τ, θð Þ~χ τ, θð Þ = _�c τð Þ + 2�β τð Þχ τð Þ,

E τ, θð ÞΓ abð Þ τ, θð Þ~χ τ, θð Þ − E τ, θð Þ _e�β τ, θð Þ~β abð Þ
τ, θð Þ

+ i~β τ, θð Þ _�F τ, θð Þ~χ τ, θð Þ
= e τð Þγ τð Þχ τð Þ − e τð Þ _�β τð Þβ τð Þ + iβ τð Þ_�c τð Þχ τð Þ,

~β τ, θð Þe�β2 abð Þ
τ, θð Þ − �F τ, θð ÞΓ abð Þ τ, θð Þ = β τð Þ�β 2ð Þ

τð Þ −�c τð Þγ τð Þ,

�F τ, θð ÞP abð Þ
μ τ, θð Þ + e�β abð Þ

τ, θð ÞΨμ τ, θð Þ =�c τð Þpμ τð Þ + �β τð Þψμ τð Þ,

e�β abð Þ
τ, θð ÞXμ τ, θð Þ − i�F τ, θð ÞΨμ τ, θð Þ = �β τð Þxμ τð Þ − i�c τð Þψμ τð Þ,

�B abð Þ τ, θð Þ~β τ, θð Þ − Γ abð Þ τ, θð ÞF τ, θð Þ = �b τð Þβ τð Þ − γ τð Þc τð Þ,

B τ, θð Þ + 2e�β abð Þ
τ, θð Þ~β τ, θð Þ = b τð Þ + 2�β τð Þβ τð Þ,

_Ψ5 τ, θð Þ − ~χ τ, θð Þm = _ψ5 τð Þ − χ τð Þm, ð48Þ

yield the precise values of the secondary variables of the
expansion in (45). To be more precise, we note that the
equalities in (48) lead to

�R 1ð Þ
μ =�cpμ + �βψμ,
�f 1 = _�c + 2�βχ,
�b1 = i�b,
�b2 = −i�β2,
�f 2 = −iγ,
�b3 = i�βpμ,
�b4 = i�βm,
�b5 = i _�β,
�f 4 = 2i�βγ:

ð49Þ

Thus, we have determined precisely the expressions for
the secondary variables in terms of the basic and auxiliary
variables of L�b by requiring that the quantum gauge (i.e.,
anti-BRST) invariant quantities must be independent of θ
as the Grassmannian variable(s) are only mathematical

artifact and they are not physical quantity in the real sense
of the word.

The substitutions of all the expressions for the secondary
variables (cf. Equation (49)) into the expansions in (45) lead
to the following:

X abð Þ
μ τ, θð Þ = xμ + θ �cpμ + �βψμ

� �
≡ xμ τð Þ + θ sabxμ

� �
,

E abð Þ τ, θð Þ = e τð Þ + θ _�c + 2�βχ
� �

≡ e τð Þ + θ sabeð Þ,
F abð Þ τ, θð Þ = c τð Þ + θ i�b

� �
≡ c τð Þ + θ sabcð Þ,

�F abð Þ τ, θð Þ =�c τð Þ + θ −i�β2� �
≡�c τð Þ + θ sab�cð Þ,

~β
abð Þ

τ, θð Þ = �β τð Þ + θ −iγð Þ ≡ β τð Þ + θ sabβð Þ,
Ψ abð Þ

μ τ, θð Þ = ψμ τð Þ + θ i�βpμ
� �

≡ ψμ τð Þ + θ sabψμ

� �
,

Ψ
abð Þ
5 τ, θð Þ = ψ5 τð Þ + θ i�βm

� �
≡ ψ5 τð Þ + θ sabψ5ð Þ,

~χ abð Þ τ, θð Þ = χ τð Þ + θ i _�β
� �

≡ χ τð Þ + θ sabχð Þ,

B abð Þ τ, θð Þ = b τð Þ + θ 2i�βγ
� �

≡ b τð Þ + θ sabbð Þ:
ð50Þ

In the above equation, the superscript ðabÞ on the chiral
supervariables (cf. the l.h.s. of (46) and (50)) denotes the
super expansions that have been derived after the applica-
tions of the anti-BRST invariant restrictions in (48). We note
that the coefficients of θ, in the above expansions, are nothing
but the anti-BRST symmetry transformations (12) of our 1D
system of a massive spinning relativistic particle.

We wrap up this section with the following comments.
First and foremost, we observe that the trivial anti-BRST
invariant (e.g., sabpμ = sabγ = sab�b = sab�β = 0) variables have
been incorporated in the super expansions in (46). Second,
the nontrivial anti-BRST symmetry transformations (12)
have been incorporated in the super expansions (50). Finally,
we have exploited the basic idea of ACSA to BRST formalism
where we have demanded that the anti-BRST (i.e., quantum
gauge) invariant quantities must be independent of the
Grassmannian variable θ when they are generalized onto
the ð1, 1Þ-dimensional chiral super submanifold of the gen-
eral (1, 2)-dimensional supermanifold.

6. Symmetry Invariance of Lagrangians: ACSA

In this section, we capture the (anti-)BRST symmetry invari-
ance of the coupled (but equivalent) Lb and L�b (cf. Equations
(20)–(23)) within the framework of ACSA to BRST formal-
ism. In this context, it is pertinent to point out that the CF-
type condition (b + �b + 2β�β = 0) is responsible for the exis-
tence of the coupled (but equivalent) Lagrangians Lb and L�b
and it is also responsible for the absolute anticommutativity
(i.e., fsb, sabg = 0) of the (anti-)BRST symmetries (sðaÞb) and
the absolute anticommutativity (i.e., fQb,Qabg = 0) of the cor-
responding conserved ð _QðaÞb = 0Þ and off-shell nilpotent (i.e.,
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_Q
2
ðaÞb = 0) (anti-)BRST charges ðQðaÞbÞ. Thus, it is important

for us to capture the existence of the (anti-)BRST invariant
(i.e., sðaÞb ½b + �b + 2β�β� = 0) CF-type restriction in the context
of symmetry considerations of the coupled (but equivalent)
Lagrangians Lb and L�b for our 1D system of a reparameteriza-
tion invariant massive model of spinning relativistic particle.

Against the backdrop of the above statements, first of all,
we consider the (anti-)BRST symmetry invariance (cf. Equa-
tions (20) and (21)) of the Lagrangians Lb and L�b. Toward
this goal in mind, we generalize these Lagrangians on the
(1, 1)-dimensional chiral and antichiral super submanifolds
(in terms of the corresponding supervariables) as

L�b → ~L
cð Þ
�b τ, θð Þ

= ~L
cð Þ
f τ, θð Þ + �B abð Þ τ, θð Þ�B abð Þ τ, θð Þ − �B abð Þ τ, θð Þ

� _E
abð Þ

τ, θð Þ − 2e�β abð Þ
τ, θð Þ~β abð Þ

τ, θð Þ
� �

− i _�F
abð Þ

τ, θð Þ _F abð Þ
τ, θð Þ

+ e�β abð Þ
τ, θð Þe�β abð Þ

τ, θð Þ~β abð Þ
τ, θð Þ~β abð Þ

τ, θð Þ + 2i~χ abð Þ τ, θð Þ
� ~β

abð Þ
τ, θð Þ _�F abð Þ

τ, θð Þ − e�β abð Þ
τ, θð Þ _F abð Þ

τ, θð Þ
� �

+ 2E abð Þ τ, θð Þ

� _e�β abð Þ
τ, θð Þ~β abð Þ

τ, θð Þ − Γ abð Þ τ, θð Þ~χ abð Þ τ, θð Þ
" #

+ 2Γ abð Þ τ, θð Þ

� ~β
abð Þ

τ, θð Þ�F abð Þ τ, θð Þ − e�β abð Þ
τ, θð ÞF abð Þ τ, θð Þ

� �
+m

� e�β abð Þ
τ, θð Þ _~β

abð Þ
τ, θð Þ − _e�β abð Þ

τ, θð Þ~β abð Þ
τ, θð Þ

"

� + Γ abð Þ τ, θð Þ~χ abð Þ τ, θð Þ
#
− _Γ

abð Þ
τ, θð ÞΨ abð Þ

5 τ, θð Þ,

Lb → ~L
acð Þ
b τ, θ
� �

= ~L
acð Þ
f τ, θ
� �

+ B bð Þ τ, θ
� �

B bð Þ τ, θ
� �

+ B bð Þ τ, θ
� �

� _E
bð Þ

τ, θ
� �

+ 2e�β bð Þ
τ, θ
� �

~β
bð Þ

τ, θ
� �� �

− i _�F
bð Þ

τ, θ
� �

_F
bð Þ

τ, θ
� �

+ e�β bð Þ
τ, θ
� �e�β bð Þ

τ, θ
� �

~β
bð Þ

τ, θ
� �

~β
bð Þ

τ, θ
� �

+ 2i~χ bð Þ τ, θ
� �

� ~β
bð Þ

τ, θ
� �

_�F
bð Þ

τ, θ
� �

− e�β bð Þ
τ, θ
� �

_F
bð Þ

τ, θ
� �� �

− 2E bð Þ τ, θ
� �

� e�β bð Þ
τ, θ
� �

_~β
bð Þ

τ, θ
� �

+ Γ bð Þ τ, θ
� �

~χ bð Þ τ, θ
� �� �

+ 2Γ bð Þ τ, θ
� �

� ~β
bð Þ

τ, θ
� �

�F bð Þ τ, θ
� �

− e�β bð Þ
τ, θ
� �

F bð Þ τ, θ
� �� �

+m

� e�β bð Þ
τ, θ
� �

_~β
bð Þ

τ, θ
� �

−
_e�β bð Þ

τ, θ
� �

~β
bð Þ

τ, θ
� �"

� + Γ bð Þ τ, θ
� �

~χ bð Þ τ, θ
� �#

− _Γ
bð Þ

τ, θ
� �

Ψ
bð Þ
5 τ, θ
� �

,

ð51Þ

where the superscripts ðcÞ and ðacÞ on the super Lagrangians

(i.e., ~L
ðcÞ
�b , ~LðacÞb ) denote that these Lagrangians incorporate

chiral and antichiral supervariables that have been obtained
after the (anti-)BRST invariant restrictions (cf. Equations

(40), (44), (46), and (50)). Furthermore, we note that the
super first-order Lagrangians are

~L
cð Þ
f τ, θð Þ
= P abð Þ

μ τ, θð Þ _Xμ abð Þ
τ, θð Þ − 1

2 E
abð Þ τ, θð Þ

� P abð Þ
μ τ, θð ÞPμ abð Þ τ, θð Þ −m2

h i
+ i
2 Ψ abð Þ

μ τ, θð Þ _Ψμ abð Þ
τ, θð Þ −Ψ

abð Þ
5 τ, θð Þ _Ψ abð Þ

5 τ, θð Þ
h i

+ i ~χ abð Þ τ, θð Þ P abð Þ
μ τ, θð ÞΨμ abð Þ τ, θð Þ −mΨ

abð Þ
5 τ, θð Þ

h i
,

~L
acð Þ
f τ, θ
� �
= P bð Þ

μ τ, θ
� �

_X
μ bð Þ

τ, θ
� �

−
1
2 E

bð Þ τ, θ
� �

� P bð Þ
μ τ, θ
� �

Pμ bð Þ τ, θ
� �

−m2
h i

+ i
2 Ψ bð Þ

μ τ, θ
� �

_Ψ
μ bð Þ

τ, θ
� �

−Ψ
bð Þ
5 τ, θ
� �

_Ψ
bð Þ
5 τ, θ
� �h i

+ i~χ bð Þ τ, θ
� �

P bð Þ
μ τ, θ
� �

Ψμ bð Þ τ, θ
� �

−mΨ
bð Þ
5 τ, θ
� �h i

:

ð52Þ

It is, at this stage, very essential to point out that some of
the supervariables are (anti-)BRST invariant and, hence, they
are merely ordinary variables. For instance, we note that

PðabÞ
μ ðτ, θÞ = PðbÞ

μ ðτ, θÞ = pμðτÞ, ΓðbÞðτ, θÞ = ΓðabÞðτ, θÞ = γðτÞ,e�βðabÞ
ðτ, θÞ = �βðτÞ, ~βðbÞðτ, θÞ = βðτÞ, �BðabÞðτ, θÞ = �bðτÞ, BðbÞðτ,

θÞ = bðτÞ.
In view of the mappings: sb ↔ ∂θ, sab ↔ ∂θ [10–12], we

can now capture the (anti-)BRST invariance of L�b and Lb
(cf. Equations (20) and (21)) as

∂
∂θ

~L
acð Þ
b τ, θ
� �

= d
d τ

c
2 p2 +m2� �

+ β

2 pμψ
μ +mψ5

� �
+ b _c + 2βχð Þ

� �
≡ sbLb,

∂
∂θ

~L
cð Þ
�b τ, θð Þ

= d
d τ

�c
2 p2 +m2� �

+
�β

2 pμψ
μ −mψ5

� �
− �b _�c + 2�βχ
� �� �

≡ sabL�b:

ð53Þ

Thus, we have captured the (anti-)BRST invariance of the
Lagrangians L�b and Lb (cf. Equations (21) and (20)) within
the framework of ACSA to BRST formalism. Geometrically,

the chiral super Lagrangian ~L
ðcÞ
�b ðτ, θÞ is a unique sum of the

combination of (super)variables that have been obtained
after the quantum gauge (i.e., anti-BRST) invariant restric-
tions. The translation of this unique sum, along the θ
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-direction of (1, 1)-dimensional chiral super submanifold,
generates a total “time” derivative (cf. Equation (21)) in the
ordinary space. As a consequence, the action integral S =Ð +∞
−∞ dτL�b remains invariant under the anti-BRST symmetry

transformations (sab). In exactly similar fashion, we can dis-
cuss the BRST invariance of the Lagrangian Lb (cf. Equation
(20)) within the framework of ACSA to BRST formalism and
provide the geometrical interpretation for the super antic-

hiral Lagrangian ~L
ðacÞ
b ðτ, θÞ and its connection with the

BRST-invariance (cf. Equation (20)) in the ordinary space.
Now let us capture Equations (22) and (23), where the

BRST symmetry transformation operates on L�b and the
anti-BRST symmetry transformation acts on Lb, within the
purview of ACSA to BRST formalism. In this context, let
us, first of all, generalize the Lagrangian Lb onto the chiral
(1, 1)-dimensional super submanifold such that chiral super-
variables (with the superscript ðabÞ) appear in it. In other
words, we have the following generalization:

Lb → ~L
cð Þ
b τ, θð Þ

= ~L
cð Þ
f τ, θð Þ + B abð Þ τ, θð ÞB abð Þ τ, θð Þ + B abð Þ τ, θð Þ

� _E
abð Þ

τ, θð Þ + 2e�β abð Þ
τ, θð Þ~β abð Þ

τ, θð Þ
� �

− i _�F
abð Þ

τ, θð Þ _F abð Þ

� τ, θð Þe�β abð Þ
τ, θð Þe�β abð Þ

τ, θð Þ~β abð Þ
τ, θð Þ~β abð Þ

τ, θð Þ + 2i~χ abð Þ τ, θð Þ
� ~β

abð Þ
τ, θð Þ _�F abð Þ

τ, θð Þ − e�β abð Þ
τ, θð Þ _F abð Þ

τ, θð Þ
� �

− 2E abð Þ τ, θð Þ

� e�β abð Þ
τ, θð Þ _~β

abð Þ
τ, θð Þ + Γ abð Þ τ, θð Þ~χ abð Þ τ, θð Þ

� �
+ 2Γ abð Þ τ, θð Þ

� ~β
abð Þ

τ, θð Þ�F abð Þ τ, θð Þ − e�β abð Þ
τ, θð ÞF abð Þ τ, θð Þ

� �
+m

� e�β abð Þ
τ, θð Þ _~β

bð Þ
τ, θð Þ − _e�β abð Þ

τ, θð Þ~β abð Þ
τ, θð Þ

"

+ Γ abð Þ τ, θð Þ~χ abð Þ τ, θð Þ
#
− _Γ

abð Þ
τ, θð ÞΨ abð Þ

5 τ, θð Þ:

ð54Þ

It should be noted that some of the chiral supervariables
with the superscript ðabÞ are, primarily, the ordinary variables.
For instance, we note that all the chiral supervariables on the

l.h.s. of (46) are actually such variables (i.e., PðabÞ
μ ðτ, θÞ =

pμðτÞ, ΓðabÞðτ, θÞ = γðτÞ, e�βðabÞ
ðτ, θÞ = �βðτÞ). Keeping in our

mind the mapping: sab ⇔ ∂θ, it is clear that we can operate ∂θ
on the above chiral Lagrangian ~L

ðcÞ
b ðτ, θÞ to yield the following:

∂
∂ θ

~L
cð Þ
b τ, θð Þ

= d
dτ

�c
2 p2 +m2� �

+
�β

2 pμψ
μ +mψ5

� �
+ b _�c + 2�βχ
� �

+ 2ie�βγ
� �

− _�c + 2�βχ
� � d

d τ
b + �b + 2β�β
� �� �

+ 2i�βγ
� �

b + �b + 2β�β
� �

≡ sabLb:

ð55Þ

The above observation establishes the fact that Lagrangian
Lb also respects the anti-BRST symmetry transformation (12)
provided we invoke the CF-type restriction ðb + �b + 2β�β = 0Þ
from outside. In other words, we have captured the existence
of the (anti-)BRST invariant CF-type restriction within the
framework of ACSA to BRST formalism and have proved that
the Lagrangian Lb (which is perfectly BRST invariant (cf. Equa-
tion (20))) is also invariant w.r.t. the anti-BRST symmetry
transformation (12) provided we confine ourselves to the sub-
manifold of the quantum variable where the CF-type restriction
is satisfied.

At this juncture, we generalize the ordinary Lagrangian

L�b to its counterpart antichiral Lagrangian ~L
ðacÞ
�b ðτ, θÞ on the

(1, 1)-dimensional antichiral super submanifold as

L�b → ~L
acð Þ
�b τ, θ
� �

= ~L
acð Þ
f τ, θ
� �

+ �B bð Þ τ, θ
� �

 �B bð Þ τ, θ
� �

− �B bð Þ τ, θ
� �

� _E
bð Þ

τ, θ
� �

− 2 e�β bð Þ
τ, θ
� �

~β
bð Þ

τ, θ
� �� �

− i _�F
bð Þ

τ, θ
� �

_F
bð Þ

τ, θ
� �

+ e�β bð Þ
τ, θ
� �

 e�β bð Þ
τ, θ
� �

 ~β bð Þ

� τ, θ
� �

 ~β bð Þ
τ, θ
� �

+ 2 i ~χ bð Þ τ, θ
� �

� ~β
bð Þ

τ, θ
� �

_�F
bð Þ

τ, θ
� �

− e�β bð Þ
τ, θ
� �

_F
bð Þ

τ, θ
� �� �

+ 2 E bð Þ τ, θ
� �

� _e�β bð Þ
τ, θ
� �

 ~β bð Þ
τ, θ
� �

− Γ bð Þ τ, θ
� �

 ~χ bð Þ τ, θ
� �" #

+ 2Γ bð Þ τ, θ
� �

� ~β
bð Þ

τ, θ
� �

 �F bð Þ τ, θ
� �

− e�β bð Þ
τ, θ
� �

 F bð Þ τ, θ
� �� �

+m

� e�β bð Þ
τ, θ
� �

_~β
bð Þ

τ, θ
� �

−
_e�β bð Þ

τ, θ
� �

~β
bð Þ

τ, θ
� �"

+ Γ bð Þ τ, θ
� �

 ~χ bð Þ τ, θ
� �#

− _Γ
bð Þ

τ, θ
� �

 Ψ bð Þ
5 τ, θ
� �

:

ð56Þ
It will be noted that some of the above antichiral super-

variables (cf. Equation (40)) are basically ordinary variables

(e.g., PðbÞ
μ ðτ, θÞ = pμðτÞ,  ~β

ðbÞðτ, θÞ = βðτÞ,  ΓðbÞðτ, θÞ = γðτÞ).
As far as the dependence on the Grassmannian variable of
~L
ðacÞ
b ðτ, θÞ is concerned, it is straightforward to note that we

have θ-dependence. Thus, the mapping: sb ↔ ∂θ, allows us

to apply, on the super Lagrangian ~L
ðacÞ
�b ðτ, θÞ, a derivative

(∂θ) w.r.t. the Grassmannian variable θ. The ensuing mathe-
matical expression, as the outcome of the above operation, is
as follows:

∂
∂ θ

~L
acð Þ
b τ, θ
� �

= d
d τ

c
2 p2 +m2� �

+ β

2 pμ ψ
μ +mψ5

� �
− �b _c + 2βχð Þ + 2 i eβγ

� �
+ _c + 2βχð Þ d

d τ
b + �b + 2β�β
� �� �

− 2 iβγð Þ  b + �b + 2β�β
� �

≡ sb L�b:

ð57Þ

14 Advances in High Energy Physics



At this stage, it is an elementary exercise to state that the
perfectly anti-BRST invariant Lagrangian L�b (cf. Equation
(21)) also respects the BRST symmetry transformations (13)
provided the whole theory is considered on a submanifold of
the Hilbert space of quantum variables where the CF-type
restriction ðb + �b + 2β �β = 0Þ is satisfied. In other words, the
Lagrangian L�b respects the BRST symmetry transformations
(13) provided we impose the CF-type restriction from outside.
Thus, we have derived the CF-type restriction (cf. Equation
(57)) within the ambit of ACSA to BRST formalism.

We end this section with the remark that the CF-type
restriction is the hallmark [5, 6] of a quantum theory (dis-
cussed within the framework of BRST formalism). We have
shown its existence on our theory within the framework of
ACSA to BRST formalism. Hence, we have achieved a proper
BRST quantization of our theory of the 1D system.

7. Off-Shell Nilpotency and Absolute
Anticommutativity of the (Anti-)BRST
Charges: ACSA

We have already seen that the (anti-)BRST symmetry trans-
formations (13) and (12) are off-shell nilpotent ðs2ðaÞb = 0Þ
and absolutely anticommuting (cf. Equation (15)) in nature
provided the CF-type restriction (cf. Equation (14)) is
imposed from outside on our theory. As the off-shell nilpo-
tent (anti-)BRST symmetry transformations are generated
by the conserved (anti-)BRST charges, the above off-shell nil-
potency and absolute anticommutativity are also respected
by the conserved and off-shell nilpotent (anti-)BRST charges.
In our present section, we capture these properties of the
conserved ( _QðaÞb = 0) fermionic (anti-)BRST charges QðaÞb
within the framework of ACSA to BRST formalism.

We have already demonstrated that the Noether con-

served charges Qð1Þ
ðaÞb (cf. Equations (26) and (27)) are not

off-shell nilpotent. In fact, they are on-shell nilpotent. Using
the EL-EOMs, we have recast these conserved charges into
another forms (cf. Equations (30) and (33)) and denoted them

by Qð2Þ
ðaÞb. These latter forms of the charges turn out to be off-

shell nilpotent of order two (i.e., ðQð2Þ
ðaÞbÞ

2
= 0). We now con-

centrate on Qð2Þ
b and generalize the BRST charge Qð2Þ

b onto
the ð1, 1Þ-dimensional antichiral super submanifold as

Q 2ð Þ
b → ~Q

2ð Þ
b τ, θ
� �

= B bð Þ τ, θ
� �

_F
bð Þ

τ, θ
� �

− _B
bð Þ

τ, θ
� �

F bð Þ τ, θ
� �

+ 2 i E bð Þ

� τ, θ
� �

~β
bð Þ

τ, θ
� �

Γ bð Þ τ, θ
� �

+ 2 ~β bð Þ
τ, θ
� � e�β bð Þ

� τ, θ
� �

_F
bð Þ

τ, θ
� �

− 2 F bð Þ τ, θ
� �

� e�β bð Þ
τ, θ
� �

_~β
bð Þ

τ, θ
� �

+ Γ bð Þ τ, θ
� �

~χ bð Þ τ, θ
� �� �

+ 2B bð Þ τ, θ
� �

~β
bð Þ

τ, θ
� �

~χ bð Þ τ, θ
� �

− 2 i mΓ bð Þ τ, θ
� �

~β
bð Þ

� τ, θ
� �

− ~β
bð Þ

τ, θ
� �

~β
bð Þ

τ, θ
� �

_�F
bð Þ

τ, θ
� �

+ 2 ~χ bð Þ τ, θ
� �

~β
bð Þ

τ, θ
� �

~β
bð Þ

τ, θ
� � e�β bð Þ

τ, θ
� �

, ð58Þ

where all the antichiral supervariables with the superscript ðbÞ
have been derived in Equations (40) and (44). It is evident that
there are some supervariables in the above expression for
~Q
ð2Þ
b ðτ, θÞ which are actually ordinary variables (cf. Equation

(40)). Keeping in our mind the mapping: sb ↔ ∂θ [10–12], it
can be explicitly checked that

∂
∂ θ

~Q
2ð Þ
b τ, θ
� �

≡
ð
d θ ~Q

2ð Þ
b τ, θ
� �

= 0⇔ sb Q
2ð Þ
b = 0: ð59Þ

The above relationship is nothing but the proof of the off-

shell nilpotency ½ðQð2Þ
b Þ2 = 0� of the conserved BRST charge

Qð2Þ
b . To corroborate this statement, we note that, in the ordi-

nary space, the observation sb Q
ð2Þ
b = 0 can be mathematically

stated as Equation (31) which proves the off-shell nilpotency

½ðQð2Þ
b Þ2 = 0� of the conserved charge Qð2Þ

b .

We now focus on the proof of the nilpotency ½ðQð2Þ
ab Þ

2
= 0�

of the anti-BRST charge Qð2Þ
ab (cf. Equation (33)) within the

ambit of ACSA to BRST formalism. In this context, we note

that Qð2Þ
ab can be generalized onto the ð1, 1Þ-dimensional chi-

ral super submanifold as

Q 2ð Þ
ab → ~Q

2ð Þ
ab τ, θð Þ

= _�B
abð Þ

τ, θð Þ �F abð Þ τ, θð Þ − �B abð Þ τ, θð Þ _�F abð Þ
τ, θð Þ

+ 2 i E abð Þ τ, θð Þ e�β abð Þ
τ, θð ÞΓ abð Þ τ, θð Þ − 2 ~β abð Þ

� τ, θð Þ e�β abð Þ
τ, θð Þ _�F abð Þ

τ, θð Þ + 2 �F abð Þ τ, θð Þ

� _e�β abð Þ
τ, θð Þ ~β abð Þ

τ, θð Þ − Γ abð Þ τ, θð Þ ~χ abð Þ τ, θð Þ
" #

− 2 �B abð Þ τ, θð Þ e�β abð Þ
τ, θð Þ ~χ abð Þ τ, θð Þ − 2 i mΓ abð Þ

� τ, θð Þ e�β abð Þ
τ, θð Þ + e�β abð Þ

τ, θð Þ e�β abð Þ
τ, θð Þ _F abð Þ

τ, θð Þ
− 2 ~χ abð Þ τ, θð Þ e�β abð Þ

τ, θð Þ e�β abð Þ
τ, θð Þ ~β abð Þ

τ, θð Þ,
ð60Þ

where all the supervariables with superscript ðabÞ are chiral
expansions that have been quoted in Equations (46) and
(50). It is pertinent to point out that some of the chiral super-
variables, on the r.h.s. of (60), are actually ordinary variables
(cf. Equation (46)) because they are anti-BRST invariant (e.g.,
sab �β = sab �b = sab pμ = 0) variables. In view of the mapping:
sab ↔ ∂θ [10–12], we are in the position to operate a
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derivative w.r.t. the Grassmannian variable θ on the expres-
sion for the super anti-BRST charge to show that

∂
∂ θ

~Q
2ð Þ
ab τ, θð Þ ≡

ð
d θ ~Q

2ð Þ
ab τ, θð Þ = 0⇔ sab Q

2ð Þ
ab = 0, ð61Þ

where, as pointed out earlier, we have to substitute the chiral
super expansion (46) and (50) into the r.h.s. of (60) and, then
only, we have to operate ∂θ. The above equation (61) is noth-

ing but the proof for the off-shell nilpotency ½ðQð2Þ
ab Þ

2
= 0� of

the anti-BRST charge which becomes transparent when we
exploit the beauty of the relationship between the continuous
symmetries and their generators as we have shown in Equa-
tion (34). Thus, we have captured the off-shell nilpotency of
the anti-BRST charge within the framework of ACSA.

At this juncture, we pay our attention to capture the
absolute anticommutativity of the BRST charge with the
anti-BRST charge using the theoretical power of ACSA to
BRST formalism. In this context, we note that the BRST

charge Qð2Þ
b (cf. Equation (30)] can be also generalized onto

the (1, 1)-dimensional chiral super submanifold as

Q 2ð Þ
b → ~Q

2ð Þ
b τ, θð Þ

= B abð Þ τ, θð Þ _F abð Þ
τ, θð Þ − _B

abð Þ
τ, θð ÞF abð Þ τ, θð Þ

+ 2 i E abð Þ τ, θð Þ~β abð Þ
τ, θð ÞΓ abð Þ τ, θð Þ + 2 ~β abð Þ

� τ, θð Þe�β abð Þ
τ, θð Þ _F abð Þ

τ, θð Þ − 2 F abð Þ τ, θð Þ
� e�β abð Þ

τ, θð Þ _~β
abð Þ

τ, θð Þ + Γ abð Þ τ, θ
� �

~χ abð Þ τ, θð Þ
� �

+ 2B abð Þ τ, θð Þ~β abð Þ
τ, θð Þ~χ abð Þ τ, θð Þ − 2 i mΓ abð Þ

� τ, θð Þ~β abð Þ
τ, θð Þ − ~β

abð Þ
τ, θð Þ~β abð Þ

τ, θð Þ _�F abð Þ
τ, θð Þ

� + 2 ~χ abð Þ τ, θð Þ~β abð Þ
τ, θð Þ~β abð Þ

τ, θð Þe�β abð Þ
τ, θð Þ,

ð62Þ

where the chiral supervariables on the r.h.s. are nothing but
the super expansions that have been quoted in (46) and
(50). It is worthwhile to point out that some of the supervari-
ables are ordinary variables in the true sense of the word (cf.
Equation (46)). We can now operate by the Grassmannian
derivative ∂θ on (62) to produce

∂
∂ θ

~Q
2ð Þ
b τ, θð Þ ≡

ð
d θ ~Q

2ð Þ
b τ, θ
� �

= i b + �b + 2β �β
� � _�b + 2χ γ + 2β _�β

h i
− i �b

d
d τ

b + �b + 2β �β
	 


≡ sabQ
2ð Þ
b

= −i Q 2ð Þ
b ,Q 2ð Þ

abð Þ
n o

:

ð63Þ

In the above, we have utilized the mapping ∂θ ⇔ sab to
express the l.h.s. in the ordinary space. The expression

sab Q
ð2Þ
b is nothing but the absolute anticommutativity

(i.e., fQð2Þ
b ,Qð2Þ

ab g) of the BRST charge with the anti-BRST

charge Qð2Þ
ab . It is crystal clear that the absolute anticom-

mutativity property (i.e., fQð2Þ
b ,Qð2Þ

ab g = 0) is satisfied if
and only if we impose the condition ðb + �b + 2β �β = 0Þ.
In other words, we have been able to derive the CF-type
restriction: b + �b + 2β �β = 0 (which characterizes a BRST
quantized theory) by exploiting the theoretical tricks and
techniques of ASCA to BRST formalism.

Ultimately, we concentrate to capture the absolute antic-

ommutativity of the anti-BRST charge Qð2Þ
ab with the BRST

charge Qð2Þ
b within the framework of ACSA to BRST formal-

ism. Toward this goal in mind, we generalize the anti-BRST

charge Qð2Þ
ab (cf. Equation (33)) onto the (1, 1)-dimensional

antichiral super submanifold as

Q 2ð Þ
ab → ~Q

2ð Þ
ab τ, θ
� �

= _�B
bð Þ

τ, θ
� �

�F bð Þ τ, θ
� �

− �B bð Þ τ, θ
� �

_�F
bð Þ

τ, θ
� �

+ 2 i E bð Þ τ, θ
� � e�β bð Þ

τ, θ
� �

Γ bð Þ τ, θ
� �

− 2 ~β bð Þ
τ, θ
� � e�β bð Þ

τ, θ
� �

_�F
bð Þ

τ, θ
� �

+ 2 �F bð Þ τ, θ
� �

� _e�β bð Þ
τ, θ
� �

~β
bð Þ

τ, θ
� �

− Γ bð Þ τ, θ
� �

~χ bð Þ τ, θ
� �" #

− 2 �B bð Þ τ, θ
� � e�β bð Þ

τ, θ
� �

~χ bð Þ τ, θ
� �

− 2 i mΓ bð Þ

� τ, θ
� � e�β bð Þ

τ, θ
� �

+ e�β bð Þ
τ, θ
� � e�β bð Þ

τ, θ
� �

_F
bð Þ

τ, θ
� �

− 2 ~χ bð Þ τ, θ
� � e�β bð Þ

τ, θ
� � e�β bð Þ

τ, θ
� �

~β
bð Þ

τ, θ
� �

,

ð64Þ

where the antichiral supervariable on the r.h.s. are nothing
but the super expansions (40) and (44) that have been
derived after the applications of the quantum gauge (i.e.,
BRST) invariant restrictions on the antichiral supervariables.
It goes without saying that some of the supervariables on the
r.h.s. of (64) are actually ordinary variables (cf. Equation
(40)). In view of our understanding that we have sab ⇔ ∂θ
[10–12], we can operate a derivation w.r.t. the Grassmannian

variable θ on the ~Q
ð2Þ
ab ðτ, θÞ as

∂
∂ θ

~Q
2ð Þ
ab τ, θ
� �

≡
ð
dθ~Q

2ð Þ
ab τ, θ
� �

= 0

= ib
d
d τ

b + �b + 2β�β
	 


− i b + �b + 2β�β
� �

� _b + 2β�β + 2γχ
h i

⇔ sbQ
2ð Þ
ab

= −i Q 2ð Þ
ab ,Q

2ð Þ
b

n o
:

ð65Þ
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In other words (cf. Equation (38)), we have captured the
absolute anticommutativity property of the anti-BRST
charge with the BRST charge within the framework of ACSA
to BRST formalism. A close look at (65) demonstrates that

the r.h.s. of ∂θ ~Q
ð2Þ
b ðτ, θÞ is zero if and only if the CF-type

restriction is imposed from outside. In other words, we
have proven the existence of the CF-type restriction: b +
�b + 2β�β = 0 (on our BRST quantized theory) within the
framework of ACSA to BRST formalism.

We end this section with the following remarks. First and
foremost, we observe that the mappings: sb ↔ ∂θ, sab ↔ ∂θ
[10–12], play a crucial role in the proof of the two decisive
properties of the (anti-)BRST conserved charges. Second, it

is interesting to point out that the conserved charges Qð2Þ
ðaÞb

can be generalized onto ð1, 1Þ-dimensional (anti-)chiral
super submanifolds of the general ð1, 2Þ-dimensional super-
manifold. Finally, the operations of the translational genera-
tors ð∂θ, ∂θÞ (along the chiral and antichiral directions of the
super submanifolds) on the generalized forms of the super-

charges ~Q
ð2Þ
ðaÞb lead to the proof of the off-shell nilpotency

(cf. Equations (59) and (61)) and absolute anticommutativity
properties of the (anti-)BRST charges as well as the deduc-
tion of the (anti-)BRST invariant CF-type restriction (cf.
Equations (63) and (65)) within the framework of ACSA to
BRST formalism.

8. Conclusions

In our present endeavor, we have done a thread-bare analysis
of the classical gauge, supergauge, and reparameterization
symmetries of the first-order Lagrangian for the 1D system
of a massive spinning relativistic particle. We have demon-
strated that, in specific limits and identifications, the repara-
meterization symmetries incorporate the gauge and
(super)gauge symmetries (cf. Section 2). We have established
that the constraints of our theory (described by the first-
order Lagrangian) are of first-class variety in the terminology
of Dirac’s prescription for the classification scheme [36, 37].
We have obtained the secondary constraints from the equiv-
alent Lagrangians and corresponding canonical Hamilto-
nians of our 1D system of spinning relativistic particle (cf.
Section 2 and Appendix A).

We have elevated the combined classical gauge and
supergauge symmetry transformations (cf. Equation (7)) to
its counterpart quantum (anti-)BRST symmetry transforma-
tions which are respected by the coupled (but equivalent)
(anti-)BRST invariant Lagrangians. The hallmark of a quan-
tum theory (discussed within the purview of the BRST
approach) is the existence of the CF-type restriction(s). We
have demonstrated the existence of a single CF-type restric-
tion on our theory by demanding the absolute anticommuta-
tivity of the off-shell nilpotent (anti-)BRST symmetry
transformations as well as by proving the equivalence of the
coupled Lagrangians with respect to the quantum gauge
(i.e., (anti-)BRST) symmetry transformations (cf. Equations
(22) and (23)). In other words, the absolute anticommutativ-
ity of the (anti-)BRST symmetry transformations and the

existence of the coupled (but equivalent) Lagrangians owe
their origins to the CF-type restriction which defines a sub-
manifold in the quantum Hilbert space of variables that is
defined by the equation: b + �b + 2β�β = 0.

To corroborate the sanctity of our (anti-)BRST symmetry
transformations, coupled (but equivalent) Lagrangians, and
their invariance(s), we have exploited the theoretical poten-
tial and power of ACSA to BRST formalism [20–24] where
only the (anti-)chiral supervariables and their suitable expan-
sion(s) along the Grassmannian direction(s) have been con-
sidered. One of the novel observations, in this context, has
been the proof of absolute anticommutativity of the con-
served and nilpotent (anti-)BRST charges within the frame-
work of ACSA to BRST formalism where we have
considered only the (anti-)chiral super expansions. This
proof, it should be emphasized, is obvious when the full
expansions of the supervariables (defined on the full super-
manifold) are taken into account. The importance of the
ACSA to BRST formalism lies in its simplicity and its depen-
dence on the quantum gauge (i.e., (anti-)BRST) invariant
restrictions on the supervariables which are defined on the
(anti-)chiral super submanifolds of the general (full) super-
manifold. Whereas the (anti-)chiral super submanifolds are
characterized by a single Grassmannian variable, the general
supermanifold is defined by the superspace coordinates that
incorporate a pair of Grassmannian variables. The quantum
(anti-)BRST symmetry transformations are found to be asso-
ciated with the translational generators ð∂θ, ∂θÞ along the

Grassmannian directions ðθ, θÞ.
We have devoted a great of discussion on the derivation

and proof of the existence of CF-type restriction (see, also,
e.g., [25]) on our theory because the hallmark [5, 6] of a
quantum theory (described and discussed within the frame-
work of BRST formalism) is its presence. We have shown
its appearance in the context of absolute anticommutativity
of the (anti-)BRST symmetries (cf. Equation (14)), invariance
and equivalence of the coupled (but equivalent) Lagrangians
(cf. Equations (23)–(25)), and absolute anticommutativity of
the conserved and nilpotent (anti-)BRST charges (cf. Equa-
tions (35) and (37)) in the ordinary space. These features
have also been captured in the superspace by exploiting the
theoretical potential and power of ACSA to BRST formalism
(cf. Sections 6 and 7).

We would like to comment on the various kinds of super-
field approaches (e.g., USFA, AVSA, and ACSA) to BRST
formalism that have been developed over the years. The
USFA is the one where mathematically beautiful HC has
been exploited to derive the (anti-)BRST symmetry transfor-
mations for the gauge and associated (anti-)ghost fields in
the case of a (non-)Abelian 1-form gauge theory (see, e.g.,
[10–12]). In addition, it has led to the systematic deriva-
tion of the (anti-)BRST invariant CF condition [7]. The
AVSA is a minor extension of the USFA (developed in
[10–12]) where the HC and gauge-invariant restriction(s)
play an important role together for the derivation of the
proper (anti-)BRST symmetry transformations of the
gauge, (anti-)ghost, and matter fields together for an interact-
ing gauge theory. The ACSA is a simplified version of USFA
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where the quantum gauge (i.e., (anti-)BRST) invariant restric-
tions on the superfields/supervariables lead to the derivation
of the (anti-)BRST symmetry transformations for all the fields.
Within the framework of ACSA, the (anti-)BRST invariant
CF-type restriction(s) arise in the proof of (i) the invariance
of the coupled (but equivalent) Lagrangian densities and (ii)
the absolute anticommutativity of the conserved and nilpotent
(anti-)BRST charges.

In our present investigation, we have performed the
BRST and supervariable analysis of a toy model (i.e., 1D sys-
tem) of a massive spinning relativistic particle where only the
(super)gauge symmetry transformations (7) have been
exploited for the BRST analysis. We have not devoted any
time on the BRST analysis corresponding to the infinitesimal
reparameterization symmetries (4). It would be a nice future
endeavor to exploit the latter symmetry transformations for
the BRST analysis in view of the fact that such an exercise
has already been performed by us in the case of a scalar rela-
tivistic particle [26]. We plan to extend the richness of our
theoretical analysis to the realm of interesting systems of
the quantum field theory as well as diffeomorphism invariant
theories of gravitation and (super)strings. It is worthwhile to
mention here that, in a recent set of papers (see, e.g., [38–40]),
the BRST analysis has been performed for the celebrated
ABJM theory. It would be, therefore, a very nice future pro-
ject for us to apply our present theoretical analysis to the
ABJM theory. We are currently very seriously involved with
the classical diffeomorphism symmetry and its elevation to
the quantum (anti-)BRST symmetries for the system of sca-
lars, vectors, and metric tensor. Our results, in this direction,
would be reported elsewhere [41].

Appendix

A. On the Derivation of Secondary Constraints

The purpose of our present appendix is to derive the second-
ary constraints p2 −m2 ≈ 0 and pμ ψ

μ −mψ5 ≈ 0 from all the
three equivalent Lagrangians (1) as well as from the corre-
sponding Hamiltonians (11). First of all, we focus on L0
and Hð0Þ

c . It is evident that the expression for the canonical
conjugate momenta ðpμÞ w.r.t. the coordinate ðxμÞ is

pμ =
∂L0
∂ _xμ

=
m _xμ + iχψμ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xρ + i χψρð Þ _xρ + iχψρ

� �r : ðA:1Þ

It is self-evident that the Euler-Lagrange equation of
motion (EL-EOM) for our free system is _pμ = dpμ/dτ = 0
and it satisfies the mass-shell condition:

pμ p
μ =

m2 _xμ + iχψμ

� �
_xμ + iχψμð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_xρ + i χψρð Þ _xρ + iχψρ

� �r� �2 =m2: ðA:2Þ

Furthermore, it is evident from L0 that we have the
expression for the canonical conjugate momentum w.r.t.
the variable χ (with Πχ weakly equal to zero) as

Πχ =
∂L0
∂ _χ

= 0⇒Πχ ≈ 0: ðA:3Þ

Thus, we have the primary constraint as Πχ ≈ 0 (weekly
zero). Hence, we are allowed to take a first-order time deriv-
ative on it in the EL-EOM w.r.t. χ as (see, e.g., [36, 37, 42]):

d
d τ

∂L0
∂ _χ

� �
= ∂L0

∂χ
⇒ _Πχ = +i pμ ψ

μ −mψ5

� �
≈ 0, ðA:4Þ

which leads to the derivation of the secondary constraint as
ðpμ ψμ −mψ5Þ ≈ 0. The same result is also obtained from

the canonical Hamiltonian Hð0Þ
c as we note that the Heisen-

berg EOMs for the time derivative on the conjugate momenta
operators (pμ,Πχ) are

_pμ = −i pμ,H 0ð Þ
c

h i
= 0,

_Πχ = −i Πχ,H 0ð Þ
c

h i
= i pμ ψ

μ −mψ5

� �
≈ 0:

ðA:5Þ

Hence, we have derived the secondary constraints
ðp2 −m2Þ ≈ 0 and ðpμ ψμ −mψ5Þ ≈ 0 from the Lagrangian
L0 with square root and the corresponding canonical
Hamiltonian Hð0Þ

c (which, primarily, is nothing but the
secondary constraint on our theory).

Now, the stage is set to derive the primary and secondary
constraints from the Lagrangians Lf and Ls (cf. Equation (1))
and corresponding canonical Hamiltonian Hc (cf. Equation
(11)). It is evident that the expressions for the canonical
conjugate momenta w.r.t. the variables e and χ, from Lf

and Ls, are

Πe =
∂Lr
∂ _e

≈ 0,

Πχ =
∂Lr
∂ _χ

≈ 0,

 r = f , s:

ðA:6Þ

Hence, we have primary constraints Πe ≈ 0 and Πχ ≈ 0
(i.e., weekly zero). As per the Dirac prescription (see, e.g.,
[36, 37, 42]), we are allowed to take a first-order time
derivative on these primary constraints. Using the EL-
EOMs w.r.t. e and χ variables, we find that

d
d τ

∂Lf

∂ _e

� �
=
∂Lf

∂ e
⇒ _Πe = −

1
2 p2 −m2� �

≈ 0,

d
d τ

∂Lf

∂ _χ

� �
=
∂Lf

∂χ
⇒ _Πχ = −i pμ ψ

μ −mψ5

� �
≈ 0:

ðA:7Þ
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It is clear, from the above, that we have already
derived the secondary constraints p2 −m2 ≈ 0 and pμ ψ

μ

−mψ5 ≈ 0. As far as the Lagrangian Ls is concerned, we
have the expression for the canonical conjugate momenta
ðpμÞ w.r.t. the coordinates ðxμÞ as

pμ =
∂ Ls
∂ _xμ

=
_xμ + i eψμ

� �
e

: ðA:8Þ

The EL-EOM w.r.t. e (from the second-order Lagrangian
Ls) yields

d
dτ

∂Ls
∂_e

� �
= ∂Ls

∂e
⇒ _Πe

= −
1
2

_xμ + iχψμ

� �
_xμ + iχψμð Þ

e2
+ m2

2
≡ −

1
2 p2 −m2� �

≈ 0,

ðA:9Þ

which produces the secondary constraint p2 −m2 ≈ 0: Simi-
larly, the EL-EOM w.r.t. χ is

d
dτ

∂Ls
∂ _χ

� �
= ∂Ls

∂χ
⇒ _Πχ = −i pμ ψ

μ −mψ5

� �
≈ 0: ðA:10Þ

Hence, we have derived both the secondary constraints
p2 −m2 ≈ 0 and pμ ψ

μ −mψ5 ≈ 0 from the first- and second-
order Lagrangians Lf and Ls, respectively.

Against the backdrop of the existence of the primary con-
straints Πe ≈ 0 and Πχ ≈ 0, we derive the secondary con-
straints from the canonical Hamiltonian Hc (cf. Equation
(11)) as follows (with the natural units ℏ = c = 1), namely,

_Πe = −i Πe,Hc½ � = −
1
2 p2 −m2� �

≈ 0,

_Πχ = −i Πχ,Hc

h i
= −i pμ ψ

μ −mψ5

� �
≈ 0,

ðA:11Þ

where we have used the canonical commutator ½e,Πe� = i and
canonical anticommutator as fχ,Πχg = i in the natural units
ℏ = c = 1. We end this appendix with the remark that we have
derived the secondary constraints p2 −m2 ≈ 0 and pμ ψ

μ −
mψ5 ≈ 0 from all the three equivalent Lagrangian (1) as well
as from the canonical Hamiltonian (11). As a passing remark,
we note that the whole dynamics of our theory is governed by
the secondary constraints because a close look at Hc (cf.
Equation (11)) demonstrates that the Hamiltonian is a linear
combination of the constraints p2 −m2 ≈ 0 and pμ ψ

μ −m
ψ5 ≈ 0. Last but not the least, we note that the constraint pμ
ψμ −mψ5 ≈ 0 is the square root of the mass-shell condition
p2 −m2 ≈ 0 because we observe the following:

pμ ψ
μ −mψ5

� �2
= 1
2 pμ ψ

μ −mψ5,  pν ψν −mψ5

n o
:

ðA:12Þ

It is straightforward to note, from the first-order and
second-order Lagrangians, that we have the following explicit
expressions, namely,

Π
μ
ψð Þ = −

i
2 ψμ,

Π ψ5ð Þ =
i
2 ψ5,

ðA:13Þ

as the canonical conjugate momenta w.r.t. the fermionic var-
iables ψμ and ψ5. As a consequence, we have the following
canonical anticommutators:

ψμ, ψν

n o
= −2 ημν,

ψ5, ψ5f g = 2 ⇒  ψ2
5 = 1:

ðA:14Þ

Using the above anticommutators (A.14), we find that
the r.h.s. of (A.12) is nothing but the mass-shell condition:
p2 −m2 = 0: This observation establishes the fact that the
two secondary constraints (i.e., p2 −m2 ≈ 0,  pμ ψμ −mψ5
≈ 0) of the theory are interrelated.

B. On the Derivation of Conserved
Noether Charges

The central goal of our present appendix is to derive the

(anti-)BRST charges Qð1Þ
ðaÞb from the basic principle of

Noether’s theorem and prove their conservation law by
exploiting the EL-EOMs that emerge out from the coupled
(but equivalent) Lagrangians Lb and L�b. First of all, we con-

centrate on the derivation of the anti-BRST charge Qð1Þ
ab by

using the following standard formula for the Noether charge
in 1D, namely,

Q 1ð Þ
ab = sabxμ

� � ∂L�b
∂ _xμ

 !
+ sabψμ

� � ∂L�b
∂ _ψμ

 !
+ sabψ5ð Þ ∂L�b

∂ _ψ5

� �

+ sabeð Þ ∂L�b
∂_e

� �
+ sabβð Þ ∂L�b

∂ _β

 !
+ sabcð Þ ∂L�b

∂_c

� �
+ sab�cð Þ ∂L�b

∂_�c

� �
−
�c
2 p2 +m2� �

−
�β

2 pμ ψ
μ +mψ5

� �
+ �b _�c + 2 �βχ
� �

,
ðB:1Þ

where we have taken into account the transformation prop-
erty of the Lagrangian (cf. Equation (21)) under the anti-
BRST symmetry transformation ðsabÞ that is quoted in
Equation (12). Furthermore, we have utilized our knowledge
of the transformations: sab�β = 0 and sabγ = 0. In addition, we
have also noted that ð∂L�b/∂ _χÞ = 0 and ð∂L�b/∂ _bÞ = 0. We
would like to lay emphasis on the fact that we have taken into
account the convention of the left derivative w.r.t. the fermi-
onic variables (ψμ, ψ5, c,�c). Hence, the expression for the
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anti-BRST charge in Equation (B.1) is correct according to
our adopted convention of the derivatives.

The substitutions of the transformations (12) and the
proper expressions for the derivatives into (B.1) lead to

the exact expression for the anti-BRST charge (Qð1Þ
ab ) that

has been quoted in Equation (26). The conservation law

(i.e., _Q
ð1Þ
ab = 0) can be proven by taking into account the

following EL-EOMs that emerge out from the Lagrangian
L�b, namely,

_pμ = 0,
_xμ = e pμ − iχψμ,
_ψμ = χ pμ,

2 �b − _e + 2β �β = 0,
_ψ5 =mχ − i _γ ≡ 2 e χ −mχ − 2 β�c − �β c

� �
,

€c + 2β _χ + i γð Þ + 2 _β χ = 0,

€�c + 2 �β _χ + i γð Þ + 2χ _�β = 0,

m − eð Þ _�β = �β �b + β �β
� �

+ iχ _�c + γ�c,

e −mð Þ _β = β �b + β �β − _e
� �

− iχ _c + γ c:

ðB:2Þ

It would be noted that we have not incorporated, in
the above, the EL-EOMs w.r.t. the variables e and χ
because these have already been invoked and utilized in
Equation (32).

At this stage, we focus on the derivation of the Noether

conserved charge Qð1Þ
b (cf. Equation (27)). Applying the

basic concept behind the Noether theorem, we note that
we have the following expression for the BRST charge,
namely,

Q 1ð Þ
b = sbxμ

� � ∂Lb
∂ _xμ

 !
+ sbψμ

� � ∂Lb
∂ _ψμ

 !
+ sbψ5ð Þ ∂Lb

∂ _ψ5

� �

+ sbeð Þ ∂Lb
∂_e

� �
+ sb�β
� � ∂Lb

∂ _�β

 !
+ sbcð Þ ∂Lb

∂_c

� �
+ sb�cð Þ ∂Lb

∂_�c

� �
−

c
2 p2 +m2� �

−
β

2 pμ ψ
μ +mψ5

� �
− b _c + 2βχð Þ,

ðB:3Þ

where we have taken into account the trivial transforma-
tions sb β = 0, sb γ = 0 as well as the fact that ð∂ Lb/∂ _χÞ = 0
and ð∂ Lb/∂ _�bÞ = 0. The substitutions of the transformations
(13) and the proper and precise values of the derivatives
(derived from Lb) lead to the derivation of the conserved

charge Qð1Þ
b that has been listed in Equation (27). The con-

servation law _Q
ð1Þ
b = 0 can be proven by taking into account

the following EL-EOMs that emerge out from the Lagrangian
Lb, namely,

_pμ = 0,
_xμ = e pμ − iχψμ,  

_ψμ = χ pμ,  

2 b + _e + 2β �β = 0,
_ψ5 = 2 eχ − 2 β�c − �β c

� �
−mχ ≡mχ − i _γ,  

 €�c + 2 �β _χ + i γð Þ + 2χ _�β = 0,

€c + 2β _χ − i γð Þ + 2 _βχ,

m − eð Þ _β + bβ + �ββ2 − iχ _c − γ c = 0,

m − eð Þ _�β − b + _eð Þ �β − �β
2
β − iχ _�c − γ�c = 0:

ðB:4Þ

We would like to point out that, in the above, we have not
incorporated a couple of equations (hidden in Equation (29))
which are the EL-EOMs w.r.t. the variables e and χ from Lb.

We end this appendix with the remarks that we have

derived the Noether conserved (anti-)BRST charges Qð1Þ
ðaÞb (cf.

Equations (26) and (27)) which are only on-shell nilpotent
of order two. To accomplish the off-shell nilpotency (without
any use of EL-EOMs and/or CF-type restriction), it is essential
for us to use the EL-EOMs w.r.t. e and χ (cf. Equations (29)
and (32)) to convert the Noether conserved (anti-)BRST

charges ðQð1Þ
ðaÞbÞ into Qð2Þ

ðaÞb (cf. Equations (30) and (33)).

C. On the Step-by-Step Derivation of the BRST
Symmetry Transformations by Using the
ACSA to BRST Formalism

In our present appendix, we derive the BRST symmetry
transformations (13) by exploiting the theoretical potential
and power of ACSA to BRST formalism in a systematic fash-
ion. In other words, we obtain the relationships in (43) from
the BRST invariant restrictions on the antichiral supervari-
ables in (42). In this context, we note that

e�β τ, θ
� �

Γ bð Þ τ, θ
� �

= �β τð Þ γ τð Þ⇒ �β τð Þ + θ f3 τð Þ
h i

γ τð Þ
= �β τð Þ γ τð Þ,

ðC:1Þ

implies that f3ðτÞ∝ γðτÞ. In other words, we obtain f3ðτÞ =
k γðτÞ where k is a numerical constant. Now, we focus on
the following restriction on the combination of the antichiral
supervariables, namely,

B bð Þ τ, θ
� � e�β τ, θ

� �
+ Γ bð Þ τ, θ

� �
�F τ, θ
� �

= b τð Þ �β τð Þ + γ τð Þ�c τð Þ,
ðC:2Þ

which is precisely the generalization of the BRST invariant
quantity: sbðb �β + γ�cÞ = 0. The substitution of the expansion
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for e�βðτ, θÞ = �βðτÞ + θ ½k γðτÞ� into the above and use of
Equation (40) yield the following relationship:

b τð Þ �β τð Þ + θ k γð Þ
h i

+ γ τð Þ �c τð Þ + θ b2 τð Þð Þ
h i

= b τð Þ �β τð Þ + γ τð Þ�c τð Þ:
ðC:3Þ

It is clear, from the above, that we obtain the following:

k b τð Þ γ τð Þ − γ b2 τð Þ = 0⇒ k b τð Þ − b2 τð Þ½ � γ τð Þ = 0: ðC:4Þ

From this relationship, it is clear that if we wish to have
sb �c = i b in our theory, the constant k would turn out to be k
= i. It would be recalled that sb �c = i b is a standard transfor-
mation w.r.t. the BRST symmetry ðsbÞ within the framework
of BRST formalism. Thus, ultimately, we have derived the fol-
lowing super expansions in terms of (13), namely,

�F bð Þ τ, θ
� �

=�c τð Þ + θ i b τð Þð Þ ≡�c τð Þ + θ sb �c τð Þð Þ,

e�β bð Þ
τ, θ
� �

= �β τð Þ + θ i γ τð Þð Þ ≡ �β τð Þ + θ sb �β τð Þ� �
:

ðC:5Þ

Thus, we note that coefficients of θ are nothing but the
BRST symmetry transformations: sbc = i b,  sb�β = i γ. Now,
we concentrate on the BRST invariant quantity: sb ðβ2 �β +
c γÞ = 0: This can be generalized onto the (1, 1)-dimen-
sional antichiral super submanifold as

~β
2 bð Þ

τ, θ
� � e�β bð Þ

τ, θ
� �

+ F τ, θ
� �

Γb τ, θ
� �

≡ β2 τð Þ �β τð Þ + c τð Þ γ τð Þ:
ðC:6Þ

The substitutions of ~β
ðbÞðτ, θÞ = βðτÞ,  Γbðτ, θÞ = γðτÞ,

 Fðτ, θÞ = cðτÞ + θ b1ðτÞ, and (C.5) lead to the following
explicit expressions for the l.h.s. and r.h.s., namely,

β2 τð Þ �β τð Þ + θ i γ τð Þð Þ
h i

+ c τð Þ + θ b1 τð Þ
h i

γ τð Þ
= β2 τð Þ �β τð Þ + c τð Þ γ τð Þ:

ðC:7Þ

The straightforward algebra yields: b1ðτÞ = −iβ2ðτÞ:
Hence, we have the following super expansion for the antic-
hiral supervariable Fðτ, θÞ, namely,

F bð Þ τ, θ
� �

= c τð Þ + θ −i β2 τð Þ� �
= c τð Þ + θ sb c τð Þð Þ: ðC:8Þ

We note that the coefficient of θ is nothing but sbc =
−iβ2. It is now straightforward to note that, from the BRST
invariant quantities: sb ð_c + 2βχÞ = 0 and sb ð�b + 2β�βÞ = 0
and their generalizations onto the (1, 1)-dimensional antic-
hiral super submanifold (cf. Equation (42)) (with the inputs

from (C.5) and (C.8)) lead to the following:

f1 τð Þ = _c + 2βχ,
f5 = −2 iβ γ:

ðC:9Þ

The above values of the secondary variables yield the
following super expansions:

E bð Þ τ, θ
� �

= e τð Þ + θ _c τð Þ + 2β τð Þχ τð Þ½ � ≡ e τð Þ + θ sb e τð Þð Þ,
ðC:10Þ

�B bð Þ τ, θ
� �

≡ �b τð Þ + θ −2 iβ τð Þ γ τð Þð Þ ≡ �b τð Þ + θ sb�b τð Þ� �
:

ðC:11Þ
Hence, we have derived the BRST symmetry transfor-

mations: sb e = _c + 2βχ,  sb �b = −2 iβ γ, as the coefficients
of θ. Now, the inputs from Equations (C.5), (C.8), and
(C.11) lead to the determination of all the secondary vari-
ables (cf. Equation (43)) from the BRST invariant restric-
tion in (42). The superscript ðbÞ on all the supervariables
denotes that, in the super expansions of these supervari-
ables, the coefficients of θ are nothing but the off-shell nil-
potent BRST symmetry transformations (13) for our theory.

We end this appendix with the following remarks. First,
the BRST and anti-BRST invariant restrictions on the (anti-)
chiral supervariables (cf. Equations (40), (42), (46), and
(48)) are, precisely speaking, the quantum gauge-invariant
restrictions which lead to provide the correct relationships
among the secondary variables and basic as well as auxiliary
variables of the (anti-)BRST invariant theory. Second, the
determination of the secondary variables (that lead to the
derivation of the anti-BRST symmetry transformations (12)
as the coefficients of θ in the expansion (50)) has been carried
out following exactly similar kind of procedure as we have
done to derive the relationship (43) from (42) in the case of
determination of the BRST symmetry transformations (13)
as the coefficient of θ in the expansions (44). Finally, the
ACSA to BRST formalism is a simple but beautiful
symmetry-based theoretical technique which is applicable
to all kinds of physical systems of theoretical interest.

D. On an Alternative Proof of the Absolute
Anticommutativity and the Existence of CF-
Type Restriction

The purpose of our present appendix is to provide an alterna-
tive proof of the absolute anticommutativity of the conserved
and nilpotent (anti-)BRST charges and the existence of the
(anti-)BRST invariant (i.e., sðaÞb ðb + �b + 2β �βÞ = 0] CF-type
restriction: b + �b + 2β �β = 0, in the ordinary space as well as
in the superspace by exploiting the theoretical potential and
power of ACSA to BRST formalism. In this context, we note

that the off-shell nilpotent ð½Qð2Þ
ðaÞb�

2
= 0Þ (anti-)BRST charges

Qð2Þ
ðaÞb (cf. Equations (33) and (30)) can be expressed as
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follows:

Q 2ð Þ
ab = sab  i �c _c − _�c c

� �
+ 2 i β�c + �β c

� �
χ − 2 e �ββ + 2 γψ5

	 

,

ðD:1Þ

Q 2ð Þ
b = sb  i _�c c −�c _c

� �
− 2 i �β c + β�c

� �
χ + 2 e �ββ + 2 γψ5

	 

,

ðD:2Þ
where the (anti-)BRST symmetry transformations have been
quoted in Equations (13) and (12), respectively. In other

words, it is obvious that the BRST charge Qð2Þ
b can be written

as a BRST exact quantity and the anti-BRST charge Qð2Þ
ab can

be reexpressed in the exact form w.r.t. the anti-BRST sym-
metry transformation sab (cf. Equation (12)). Thus, it is
transparent now that we have the following explicit rela-
tionships, namely,

sabQ
2ð Þ
ab = −i Q 2ð Þ

ab ,Q
2ð Þ
ab

n o
= 0⇔ Q 2ð Þ

ab

h i2
= 0⇔ s2ab = 0,

ðD:3Þ

sbQ
2ð Þ
b = −i Q 2ð Þ

b ,Q 2ð Þ
b

n o
= 0⇔ Q 2ð Þ

b

h i2
= 0⇔ s2b = 0,

ðD:4Þ
where we have used the fundamental relationship between
the continuous symmetry transformations sðaÞb and their

generators Qð2Þ
ðaÞb. It is evident, from equations (D.3) and

(D.4), that the off-shell nilpotency of the (anti-)BRST charges

Qð2Þ
ðaÞb is deeply and intimately connected with the off-shell nil-

potency of the (anti-)BRST symmetry transformations sðaÞb in
the ordinary space. It is worthwhile to point out that these
conclusions can not be drawn from our earlier proof of the
off-shell nilpotency (cf. Equations (38) and (36)).

In view of the mappings: sb → ∂θ,  sab → ∂θ, it is clear that
the expressions in (D.1) and (D.2) can be expressed in terms of
the (anti-)chiral supervariables and the derivatives as well as
the differentials w.r.t. the Grassmannian variables as

Q 2ð Þ
ab = ∂

∂θ
i �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ − _�F
abð Þ

τ, θð Þ F abð Þ τ, θð Þ
� ��

+ 2 i ~β
abð Þ

τ, θð Þ �F abð Þ τ, θð Þ + e�β abð Þ
τ, θð Þ F abð Þ τ, θð Þ

� �
� ~χ abð Þ τ, θð Þ − 2 E abð Þ τ, θð Þ e�β abð Þ

τ, θð Þ ~β abð Þ
τ, θð Þ

+ 2Γ abð Þ τ, θð ÞΨ abð Þ
5 τ, θð Þ

�
≡
ð
dθ i �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ − _�F
abð Þ

τ, θð Þ F abð Þ τ, θð Þ
� ��

+ 2 i ~β
abð Þ

τ, θð Þ �F abð Þ τ, θð Þ + e�β abð Þ
τ, θð Þ F abð Þ τ, θð Þ

� �
� ~χ abð Þ τ, θð Þ − 2 E abð Þ τ, θð Þ e�β abð Þ

τ, θð Þ ~β abð Þ
τ, θð Þ

+ 2Γ abð Þ τ, θð ÞΨ abð Þ
5 τ, θð Þ

�
, ðD:5Þ

Q 2ð Þ
b = ∂

∂θ
i _�F

bð Þ
τ, θ
� �

F bð Þ τ, θ
� �

− �F bð Þ τ, θ
� �

_F
bð Þ

τ, θ
� �� ��

− 2 i e�β bð Þ
τ, θ
� �

F bð Þ τ, θ
� �

− ~β
bð Þ

τ, θ
� �

�F bð Þ τ, θ
� �� �

� ~χ bð Þ τ, θ
� �

+ 2 E bð Þ τ, θ
� � e�β bð Þ

τ, θ
� �

~β
bð Þ

τ, θ
� �

+ 2Γ bð Þ τ, θ
� �

Ψ
bð Þ
5 τ, θ
� ��

≡
ð
dθ i _�F

bð Þ
τ, θ
� �

F bð Þ τ, θ
� �

− �F bð Þ τ, θ
� �

_F
bð Þ

τ, θ
� �� ��

− 2 i e�β bð Þ
τ, θ
� �

F bð Þ τ, θ
� �

− ~β
bð Þ

τ, θ
� �

�F bð Þ τ, θ
� �� �

� ~χ bð Þ τ, θ
� �

+ 2 E bð Þ τ, θ
� � e�β bð Þ

τ, θ
� �

~β
bð Þ

τ, θ
� �

+ 2Γ bð Þ τ, θ
� �

Ψ
bð Þ
5 τ, θ
� ��

:

ðD:6Þ
It is crystal clear that, a close look at the above equations

(D.5) and (D.6), leads to the following relationship within
the framework of ACSA to BRST formalism:

∂θ Q
2ð Þ
ab = 0⇔ ∂2θ = 0⇔ s2ab = 0,

∂θ Q
2ð Þ
b = 0⇔ ∂2

θ
= 0⇔ s2b = 0:

ðD:7Þ

Thus, we have captured the off-shell nilpotency ½ðQð2Þ
ðaÞbÞ

2

= 0� of the (anti-)BRST charges (cf. Equations (D.3) and
(D.4)) within the framework of ACSA and established that
the off-shell nilpotency of the (anti-)BRST symmetries and
corresponding conserved charges is intimately connected
with the nilpotency ð∂2

θ
= ∂2θ = 0Þ of the translational gener-

ators ð∂θ, ∂θÞ along the Grassmannian ðθÞθ-directions of
the (1, 1)-dimensional (anti-)chiral super submanifolds (of
the general (1, 2)-dimensional supermanifold). The relation-
ships in (D.3) and (D.4) are sacrosanct, and these are
expected results within the framework of ACSA.

We now focus in the derivation of the CF-type restriction
(b + �b + 2β �β = 0) in the ordinary space as well as in the
superspace (by exploiting the basic techniques of ACSA).
Toward this goal in mind, first of all, we assume the validity
of the CF-type restriction on our theory, right from the
beginning. As a consequence, we observe that the (anti-)

BRST charges Qð2Þ
ðaÞb can be expressed in different forms as

Q 3ð Þ
ab = b _�c − _b�c − 2 �β _β�c − 2�c γ χ + �β

2
_c − 2 i �β m − eð Þ γ

+ 2 b �βχ + 2 �β2
βχ,

ðD:8Þ

Q 3ð Þ
b = _�b c − �b _c + 2 _�ββ c − 2 c γ χ − β2 _�c − 2 iβ m − eð Þ γ

− 2 �bβχ − 2 �ββ2 χ:

ðD:9Þ
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The above forms are very interesting because now we can
express the BRST charge as an exact expression w.r.t. the
anti-BRST symmetry transformations (12) and the anti-
BRST charge as an exact quantity w.r.t. the BRST symmetry
transformation listed in (13). In other words, we have the fol-
lowing explicit expressions:

Q 3ð Þ
ab = sb i _�c�c − 2 i �β�cχ + e �β

2 −m �β
2h i
, ðD:10Þ

Q 3ð Þ
b = sab i c _c + 2 iβ cχ − eβ2 +mβ2	 


: ðD:11Þ

It is straightforward, at this juncture, to note that we have
the following:

sbQ
3ð Þ
ab = −i Q 3ð Þ

ab ,Q
3ð Þ
b

n o
= 0⇔ s2b = 0, ðD:12Þ

sabQ
3ð Þ
b = −i Q 3ð Þ

b ,Q 3ð Þ
ab

n o
= 0⇔ s2ab = 0: ðD:13Þ

The above observations demonstrate that the absolute
anticommutativity of the anti-BRST charge with BRST
charge is deeply connected with the off-shell nilpotency
(s2b = 0) of the BRST symmetry transformations (13). On
the other hand, the absolute anticommutativity of the con-
served BRST charge with the anti-BRST charge is intimately
connected with the off-shell nilpotency (s2ab = 0) of the anti-
BRST symmetry transformations (12). Thus, even in the
ordinary space, a close look at (D.12) and (D.13) demon-
strates that the proof of absolute anticommutativity property
distinguishes between the off-shell nilpotency of the BRST
and anti-BRST symmetry transformations. This exercise, in
a subtle manner, also proves the existence of the anti-BRST
invariant ½sðaÞb ðb + �b + 2β �βÞ = 0� CF-type restriction: b + �b

+ 2β �β = 0, on our theory of a 1D system of the reparameter-
ization and (super)gauge invariant massive spinning relativ-
istic particle. In this connection, it is worthwhile to point
out that the specific forms (cf. Equations (D.8) and (D.9))
of the (anti-)BRST charges have been obtained from the
other expressions for the (anti-)BRST charges (cf. Equations
(33) and (30)) only after the substitution of the CF-type
restriction: b + �b + 2β �β = 0, of our theory.

We are now in the position to capture the above absolute
anticommutativity property within the framework of ACSA.
Keeping in our mind the mappings: sb ↔ ∂θ,  sab ↔ ∂θ (see,
e.g., Refs. [10–12] for details), it is evident that the observa-
tions in (D.10) and (D.11) can be translated into superspace
(with the help of ACSA to BRST formalism) as

Q 3ð Þ
ab = ∂

∂θ
i _�F

bð Þ
τ, θ
� �

�F bð Þ τ, θ
� �

− 2 i e�β bð Þ
τ, θ
� �

�F bð Þ τ, θ
� ��

� χ bð Þ τ, θ
� �

+ E bð Þ τ, θ
� � e�β2 bð Þ

τ, θ
� �

−m e�β2 bð Þ
τ, θ
� ��

≡
ð
dθ i _�F

bð Þ
τ, θ
� �

�F bð Þ τ, θ
� �

− 2 i e�β bð Þ
τ, θ
� �

�F bð Þ τ, θ
� ��

� χ bð Þ τ, θ
� �

+ E bð Þ τ, θ
� � e�β2 bð Þ

τ, θ
� �

−m e�β2 bð Þ
τ, θ
� ��

,

Q 3ð Þ
b = ∂

∂θ
i F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ + 2 i ~β abð Þ
τ, θð Þ F abð Þ τ, θð Þ

h
� χ bð Þ τ, θð Þ − E abð Þ τ, θð Þ ~β2 abð Þ

τ, θð Þ +m ~β
2 abð Þ

τ, θð Þ
i

≡
ð
dθ i F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ + 2 i ~β abð Þ
τ, θð Þ F abð Þ τ, θð Þ

h
� χ bð Þ τ, θð Þ − E abð Þ τ, θð Þ ~β2 abð Þ

τ, θð Þ +m ~β
2 abð Þ

τ, θð Þ
i
,

ðD:14Þ

where the superscripts ðbÞ and ðabÞ on the (anti-)chiral
supervariables have already been explained (cf. Equations
(40), (44), (46), and (50)) earlier (see Sections 4 and 5). At
this stage, we observe, in a straightforward fashion, that

∂θQ
3ð Þ
ab = 0⇔ ∂2

θ
= 0⇔ s2b = 0, ðD:15Þ

∂θQ
3ð Þ
b = 0⇔ ∂2θ = 0⇔ s2ab = 0: ðD:16Þ

The above equations are the reflections of our earlier
observations in (D.12) and (D.13) which are nothing but
the proof of absolute anticommutativity property of the con-
served and nilpotent (anti-)BRST charges. In other words, we
have been able to capture the absolute anticommutativity
property within the purview of ACSA to BRST formalism.

We end this appendix with the closing and key remarks
that the proof of the absolute anticommutativity property
of the (anti-)BRST charges within the framework of ASCA
to BRST formalism distinguishes (cf. Equations (D.15) and
(D.16)) between the (1, 1)-dimensional chiral and antichiral
super submanifolds of the general (1, 2)-dimensional super-
manifold on which our 1D system of a massive spinning rel-
ativistic particle has been generalized. This is due to the fact
that the nilpotent (∂2

θ
= ∂2θ = 0) translational generators

(∂θ, ∂θ) are defined separately and independently along the
(anti-)chiral Grassmannian directions of the (1, 1)-dimen-
sional super submanifolds (of the (1, 2)-dimensional
supermanifold).
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