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By N-soliton solutions and a velocity resonance mechanism, soliton molecules are constructed for the KdV-Sawada-Kotera-Ramani
(KSKR) equation, which is used to simulate the resonances of solitons in one-dimensional space. An asymmetric soliton can be formed
by adjusting the distance between two solitons of solitonmolecule to small enough. The interactions amongmultiple solitonmolecules
for the equation are elastic. Then, full symmetry group is derived for the KSKR equation by the symmetry group direct method. From
the full symmetry group, a general group invariant solution can be obtained from a known solution.

1. Introduction

Soliton molecules, also known as multisoliton complexes, are
the bound states of solitons which exhibit molecule-like
behavior [1]. Investigation on soliton molecules provides a
direct route to study the interactions between solitary waves,
and the formation and dissociation of soliton molecules are
closely related to subjects such as soliton collision, soliton
splashing, soliton rains, and the trapping of solitons. Besides,
the significance they bring to the fundamental understanding
of soliton physics, soliton molecules also present the possibil-
ity of transferring optical data surpassing the limitation of
binary coding [2]. Recently, soliton molecules have been
became one of the most challenging study field, which have
been investigated theoretically and observed experimentally
in some fields [3–8]. In 2005, soliton molecules were experi-
mentally observed in dispersion-managed optical fibers [3].
In 2017, the evolution of femtosecond soliton molecules
resolved in the cavity of a few-cycle mode-locked laser by
means of an emerging timestretch technique [7]. In 2018,
Liu et al. have experimentally observed the real-time dynamics
of the entire buildup process of stable solitonmolecules for the
first time [8]. Two-soliton bound states in Bose-Einstein con-
densates with contact atomic interactions and some dynamic
phenomena of soliton molecules were reported in [9, 10]. In

2019, Lou [11] introduced a velocity resonant mechanism
to form soliton molecules and asymmetric solitons for
three-fifth order systems. Very recently, soliton molecules
and some hybrid solutions involving Lump, breather, and
positon have been investigated for some (1 + 1)-dimensional
and (2 + 1)-dimensional equations by Hirota bilinear method
and Darboux transformation [12–27].

As we all know, the study of symmetry is one of the most
powerful methods for differential equations. The symmetry
group direct method has been developed to obtain full sym-
metry groups for some PDEs [28–31]. Once the full symme-
try group of a given system is given, the Lie point symmetry
group can be derived, and sometimes, the discrete transfor-
mation group can also be expected. At the same time, the
related Lie point symmetries can be recovered simply by
restricting arbitrary functions or arbitrary constants in infin-
itesimal forms. Furthermore, one can reproduce a general
group invariant solutions by the full symmetry groups and
a known simple solution.

In this paper, we will investigate the following KdV-
Sawada-Kotera-Ramani equation [32–34]:

ut + a 3u2 + uxx
� �

x
+ b 15u3 + 15uuxx + uxxxx
� �

x
= 0, ð1Þ
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which was proposed to describe the resonances of soli-
tons in a one-dimensional space [32]. The conservation law
for Eq. (1) was further given by Konno [34]. The KdV-
Sawada-Kotera-Ramani equation (1) is a linear combination
of the KdV equation and the Sawada-Kotera equation. When
b = 0, Eq. (1) is reduced to the KdV equation. When a = 0,
Eq. (1) is reduced to the Sawada-Kotera equation [35]. In Ref.
[36], the authors investigated Lie symmetries, exact solutions,
and integrability to the KdV-Sawada-Kotera-Ramani equa-
tion. To our knowledge, soliton molecules and full symmetry
group of Eq. (1) have not been investigated so far.

The rest of paper is organized as follows. In Section 2, by
introduce a velocity resonant condition, soliton molecules
are constructed from N-solitons of the KdV-Sawada-
Kotera-Ramani equation. The transmission and collision
properties of soliton molecules are discussed. In Section 3,
the full symmetry group of the KdV-Sawada-Kotera-Ramani
equation is derived by the symmetry group direct method.
From the full symmetry group, a general group invariant
solution can be obtained from a known solution. In Section
4, short conclusions are given.

2. Soliton Molecules

The bilinear form of Eq. (1) is as follows

DxDt + aD4
x + bD6

x

� �
f · f = 0, ð2Þ

under the transformation u = 2ðln f Þxx, where D is the
Hirota’s bilinear differential operator and f = f ðx, tÞ is a real
function of variables fx, tg. Based on the Hirota’s bilinear
theory, the N-soliton solutions for Eq. (1) can be obtained as

u = 2 ln fð Þxx,

f = 〠
ρ=0,1

exp 〠
N

1≤j<i≤N
ρiρjAij + 〠

N

j=1
ρjη j

 !
,

ð3Þ

with

ηi = kix +wit + ϕi,

eAij = −
ki − kj
� �

wi −wj

� �
+ a ki − kj
� �4 + b ki − kj

� �6
ki + kj
� �

wi +wj

� �
+ a ki + kj
� �4 + b ki + kj

� �6 ,
wi = − ak3i + bk5i

� �
, 1 ≤ j < i ≤N ,

ð4Þ

where fki,wi, ϕigði = 1, 2,⋯,NÞ are arbitrary constants,
∑N

1≤j<i≤N is the summation of all possible pairs taken from
N elements with the condition 1 ≤ j < i ≤N , and ∑ρ=0,1
indicates a summation over all possible combinations of
ρi, ρj = 0, 1ði, j = 1, 2,⋯,NÞ.

To find nonsingular analytical resonant excitation
from Eq. (3), we apply the velocity resonance conditions
ðki ≠ ±kj,wi ≠ ±wjÞ,

ki
kj

= wi

wj
= bk5i + ak3i
bk5j + ak3j

: ð5Þ

Then, we can get the following expression

ki =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−b bk2j + a
� �r
b

, or,

ki = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−b bk2j + a
� �r
b

:

ð6Þ

It can be known under the resonance condition (5)
that two solitons, ith soliton and jth soliton in Eq. (3),
exhibit one soliton molecule structure. To see this fact,
we take N = 2 as a simple example. When N = 2, the
solution (3) can be simplified to

u = 2 ln 1 + eη1 + eη2 + A12e
η1+η2ð Þ½ �xx ,

ηi = kix − bki
5 + aki

3� �
t + ϕi,

A12 = −
k1 − k2ð Þ −bk1

5 + bk2
5 − ak1

3 + ak2
3� �

+ a k1 − k2ð Þ4 + b k1 − k2ð Þ6
k1 + k2ð Þ −bk1

5 − bk2
5 − ak1

3 − ak2
3� �

+ a k1 + k2ð Þ4 + b k1 + k2ð Þ6
:

ð7Þ

Figure 1 displays the molecule structure expressed by
Eq. (7) with the parameter selections

a = 6,
b = −1,
k1 = 1,
k2 = −

ffiffiffi
5

p
,

ϕ1 = 0,
ϕ2 = 4:

ð8Þ

From Figure 1, one can see that two solitons in the
molecule are different because k1 ≠ k2 though the veloci-
ties of them are same.

If changing values ϕ1 and ϕ2, the distance between two
solitons of the molecule will change, respectively. When
the distance of two solitons is close enough to have an
interaction with each other, the soliton molecule will
become an asymmetric soliton. Figure 2 is the plots of
the asymmetric soliton with parameters (8) except for
{ϕ1 = −8, ϕ2 = 10}. From Figure 2, one can see the two-
soliton molecule keeps its asymmetric shape and velocity
during the evolution.

Two-soliton molecules can be generated from four soli-
tons; k1,w1 and k2,w2 satisfy Eq. (6); k3,w3 and k4,w4 satisfy
Eq. (6) at the same time. Figure 3 displays the elastic
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Figure 1: Soliton molecule structure for Eq. (1) with the parameter selections (8): (a) three-dimensional plot; (b) density plot.
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Figure 2: Asymmetric soliton for Eq. (1) with the parameter selections (8) except for fϕ1 = −8, ϕ2 = 10g: (a) three-dimensional plot; (b) two-
dimensional plot at t = −3, 0, 3.

3Advances in Mathematical Physics



interaction property for the solution (3) with N = 4 and with
parameter selections

a = 6,
b = −1,
k1 = 1,
k2 = −

ffiffiffi
5

p
,

ϕ1 = 0,
ϕ2 = 6,

k3 =
3
4 ,

k4 = −
ffiffiffiffiffi
87

p

4 ,

ϕ3 = 4,

ϕ4 = 8 k3 =
1
2 , k4 = −

ffiffiffiffiffi
23

p

2 , ϕ3 = −2, ϕ4 = 10
 !

:

ð9Þ

From Figure 4, one can see that the height of wave peaks
and velocities are not changed except for phase after
collision.

3. Finite Symmetry Groups

According to the symmetry group direct method, we set the
solutions of Eq. (1) as follows:

u = α + βU ξ, τð Þ, ð10Þ

where α = αðx, tÞ, β = βðx, tÞ, ξ = ξðx, tÞ, τ = τðx, tÞ, and U =
Uðξ, τÞ satisfy the same equations in Eq. (1)

Uτ + a 3U2 +Uξξ

� �
ξ
+ b 15U3 + 15UUξξ +Uξξξξ

� �
ξ
= 0, ð11Þ

Substituting Eq. (11) into Eq. (1) and eliminating all
terms including Uξξξξξ by Eq. (11), we obtain one polynomial
differential equations with respect to U and their derivatives.
Then, collecting the coefficients ofU and their derivatives, we
obtain a set of overdetermined partial differential equations
with respect to differential functions: {α, β, ξ, τ}. From the
overdetermined PDEs, it is easy to find that

τ = τ tð Þ,
β = β tð Þ,

ξxx = 0,
αx = 0:

ð12Þ

Now, the substitution of Eq. (12) into the overdetermined
PDEs leads to

β τt − ξ5x

� �
= 0,

β 45ξxα2b + 6ξxαa + ξt
� �

= 0,

6βξx −aξ4x + 15bαβ + aβ
� �

= 0,

−βξ3x aξ2x − 15bα − a
� �

= 0,

15βξ3xb β − ξ2x

� �
= 0,

45bβξx β − ξ2x

� �
β + ξ2x

� �
= 0,

αt = βt = 0:

ð13Þ
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Figure 3: Three-dimensional plots of solution (17) with parameter selections (8) and (18): (a) soliton molecule structure; (b) asymmetric
soliton structure.
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With the help of symbolic computation after performing
some calculations, the general solutions of Eqs. (12) and (13)
are as follows

α = a σ2c2 − 1
� �

15b ,

β = c2σ2,

ξ = σcx −
a2 σ4c5 − c
� �

5b t + ξ0, τ = c5t + τ0,

ð14Þ

where b ≠ 0, c, ξ0, and τ0 are arbitrary constants while the
constant σ possess discrete values determined by

σ5 = 1⇒

σ1 = 1,

σ2 =
ffiffiffi
5

p
− 1

� �
+ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 + 2

ffiffiffi
5

pp
4 ,

σ3 =
ffiffiffi
5

p
− 1

� �
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 + 2

ffiffiffi
5

pp
4 ,

σ4 =
ffiffiffi
5

p
− 1

� �
+ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 − 2

ffiffiffi
5

pp
4 ,

σ5 =
ffiffiffi
5

p
− 1

� �
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 + 2

ffiffiffi
5

pp
4 , i =

ffiffiffiffiffiffi
−1

p� �
:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð15Þ

From the above results, one can get the following symme-
try group theorem for Eq. (1).

Theorem 1. If U =Uðx, tÞ is a solution of KdV-Sawada-
Kotera-Ramani equation (1), then so is

u = a σ2c2 − 1
� �

15b
+ σ2c2U ξ, τð Þ, ð16Þ

with (14) and (15).

From the symmetry group Theorem 1, we know that for
the real KSKR equation, the Lie point symmetry group which
corresponds to σ = 1. For the complex KSKR equation, the
symmetry group is divied into five sectors which correspond
to five values of σ in Eq. (15). At the same time, we can derive
the classical Lie symmetry from Theorem 1 by taking arbi-
trary constants fc, ξ0, τ0g as some special infinitesimal
parameter forms.

Furthermore, one can obtain a general group invariant
solutions of KSKR equation by Theorem 1 and a known sim-
ple solution. For example, from Eq. (7) and Theorem 1, we
can derive a general two solitons for KSKR equation as fol-
lows

u = a σ2c2 − 1
� �

15b + 2σ2c2 ln 1 + eη1 + eη2 + A12e
η1+η2ð Þ½ �ξξ,

ηi = kiξ − bki
5 + aki

3� �
τ + ϕi,

ð17Þ

with (14) and (15).
It is necessary to point out that when two-soliton solution

(17) exhibits one soliton molecule structure, the velocity res-
onance condition is the same as (5). Figure 3 displays the
molecule structure and asymmetric soliton structure
expressed by (17) with the parameter selections (8) and

σ = 1,
c = 1:1,
ξ0 = 2 ξ0 = 0ð Þ,
τ0 = 1 τ0 = −2ð Þ:

ð18Þ

4. Conclusion

In this paper, we investigated the KdV-Sawada-Kotera-
Ramani (KSKR) equation, which is used to simulate the res-
onances of solitons in one-dimensional space. On the basis of
general N-soliton express and velocity resonance mecha-
nism, we obtained one soliton molecule and multiple soliton
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Figure 4: Two-soliton molecule structure for the solution (3) of Eq. (8) with the parameter selections (9).
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molecule structure for the KSKR equation. Asymmetric
soliton can be formed by adjusting the distance between
two solitons to small enough. The interactions among these
soliton molecules for the KSKR equation are elastic. Then,
we derived the full symmetry group for the KSKR equation
by the symmetry group direct method. From the full symme-
try group, a general group invariant solution can be obtained
from a known solution. The results of the paper can be
expected to provide some useful information for the dynamic
behaviors of KSKR equations. It is necessary to note that on
the basis of N-soliton solutions by Hirota bilinear method,
we only obtain a soliton molecule including two solitons for
the KSKR equation. It is usually not easy to derive a soliton
molecule containing multiple solitons. In order to obtain a
soliton molecule containing multiple solitons, one can inves-
tigate N-solitons from Darboux transform to find a soliton
molecule with multiple solitons [14]. The method to con-
struct soliton molecules and the symmetry group method
can be applied to investigate other nonlinear models.
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