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The Schrödinger equation is solved numerically for charmonium using the discrete variable representation (DVR) method.
The Hamiltonian matrix is constructed and diagonalized to obtain the eigenvalues and eigenfunctions. Using these
eigenvalues and eigenfunctions, spectra and various decay widths are calculated. The obtained results are in good
agreement with other numerical methods and with experiments.

1. Introduction

The first quarkonium state was discovered independently at
SLAC [1] and BNL [2], confirming the existence of heavy
quark bound states. Since then, quarkonium has always been
of great interest to particle physicists, being one of the exten-
sively investigated system both theoretically and experimen-
tally [3, 4]. New states are continuously being detected at
various experiments. Recently, the LHCb collaboration [5]
has detected a new state Xð3842Þ which is interpreted as a
candidate for the unobserved ψ3ð13D3Þ state. Both charmo-
nium and bottomonium have rich spectrum of states below
the open flavor threshold which have been experimentally
observed, and various decay widths of these states have also
been measured [6]. Studies on heavy quark systems are
important because it gives information about quark interac-
tion potential, confinement, QCD coupling constant, CKM
matrix elements, and various other inputs to the standard
model, some of which cannot be directly obtained from
QCD.

Theoretically, quarkonium systems have been studied by
various formalisms based on phenomenological potential
models [7–11], effective field theory [12], lattice gauge theory
[13–16], Bethe Salpeter equation [17–20], etc. Among these,
owing to its simplicity, formalism based on potential models
is the widely chosen method to investigate quarkonium sys-

tems. In this method, both relativistic and quantum correc-
tions can be easily incorporated. Potential models have
been highly successful in predicting the spectra and decay
widths [7, 9, 10]. In potential models, the usual method is
to extract the properties of quarkonium by solving the Schrö-
dinger equation using a chosen quark-antiquark potential.
The widely used quark-antiquark potential in phenomeno-
logical models is the so-called Cornell potential [21–25],
which includes a short-range Coulomb term and a linear
confinement term. The form of this potential is also con-
firmed by lattice QCD calculations [26, 27].

The Schrödinger equation for most of the q�q potentials
(including the Cornell potential) cannot be solved analyti-
cally; hence, numerical solutions are called for. Some of the
methods found in literature for solving the Schrödinger
equation for q�q systems are numerical methods based on
Runge-Kutte approximation [28, 29], Numerov matrix
method [30–32], asymptotic iteration method [33–35], Fou-
rier grid Hamiltonian method [36], variational method [37,
38], etc. Another method for numerically solving the Schrö-
dinger equation is the discrete variable representation
(DVR)method. This method has not been applied to quarko-
nium spectroscopy. Hence, in this article, we numerically
solve the Schrödinger equation for c�c system using the dis-
crete variable representation (DVR) scheme of Colbert and
Miller [39]. DVR method was initially introduced by Harris
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et al. [40] and was extensively developed by Light and
coworkers [41–46]. DVRs provide highly efficient and accu-
rate solutions to quantum dynamical problems and have
been widely used in atomic physics and quantum chemistry
[47–56]. More details on DVR methods can be found in refs.
[57, 58].

This paper is organised as follows: a brief discussion on
the potential model used to describe the c�c system and the
DVR scheme used to solve the Schrödinger equation are pre-
sented in Section 2. The various decay properties calculated
in the present analysis are given in Section 3. Results and dis-
cussions of the present work are given in Section 4.

2. Formalism

As a minimal model describing charmonium, we have used a
nonrelativistic potential model, with the Hamiltonian

H =M + p2

2μ +V rð Þ, ð1Þ

where p is the relative momentum, μð=mcm�c/mc +m�cÞ is
the reduced mass of the c�c system, M =mc +m�c, and VðrÞ is
the quark-antiquark potential. mc and m�c are the masses of
individual quark and antiquark, respectively. For describing
the quark-antiquark interaction, we use the standard Cornell
potential plus a Gaussian-smeared contact hyperfine interac-
tion [7]:

V rð Þ = −
4
3
αc
r
+ br +V0 +
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Parameters used in eq. (2) are given in Table 1 and are
obtained by fitting the spectrum. Charmonium properties
can be obtained by solving the Schrödinger equation corre-
sponding to the Hamiltonian given in eq. (1) with potential
given in eq. (2). In this work, to solve the Schrödinger equa-
tion, we have used the DVR scheme of Colbert and Miller
[39]. In the DVR, the Hamiltonian is represented by a matrix
on a uniform grid of points (ri = iΔr, i = 1, 2, 3, ::) in the coor-
dinate space. Once the H-matrix is constructed, diagonaliza-
tion gives us the bound state eigenvalues and the amplitudes
of eigenfunctions on the grid point chosen.

In ref. [39], authors have shown that the kinetic energy
matrix can be written as

Tij =
ℏ2

2mΔr2
−1ð Þi−j

π2

3 −
1
2i2
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ð3Þ

with ri = iΔr, ði = 1, 2,⋯Þ, where Δr is the grid spacing. The
potential energy matrix is diagonal

Vij =V rið Þδij: ð4Þ

We have used eqs. (1)–(4) to construct the Hamiltonian
matrix in the present model, which upon diagonalization

returns the bound state eigenvalues and the amplitudes of
eigenfunctions on the chosen grid points. In the present anal-
ysis, we have chosen a grid of length 10 fm with 1000 grid
points. The eigenvalue problem for the matrix of the Hamil-
tonian (1) was solved using Mathematica. For a given eigen-
value, in order to obtain the eigenfunction in the entire range
of coordinates, we have used the built-in interpolation func-
tion in Mathematica through the obtained eigenfunctions on
grid points. This interpolation function was used as the rep-
resentation of the reduced radial wavefunction for our fur-
ther analysis. Obtained wavefunctions for 3S1 and

3PJ states
are shown in Figure 1. In order to compute fine structure of
the L ≠ 0 states, we add the spin-orbit and tensor terms per-
turbatively [7]:

V f s =
1
m2

c
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+ 4αc

r3
T

� �
: ð5Þ

The computed mass spectra of charmonium are listed in
Table 2. Using the obtained wavefunction, we also compute
the root mean square radii (

ffiffiffiffiffiffiffiffiffiffiffiffi
<r2 >

p
) and the square of the

radial wavefunction at the origin (jRð0Þj2) for these states,
and our results are listed in Table 3.

3. Decay Properties

For quarkonium, most of the decay properties are dependent
on the wave function. Hence, to test the wavefunctions as
obtained in the previous section, we calculate leptonic decay
widths and radiative decay widths (M1 and E1) of some char-
monium states.

3.1. Leptonic Decay Widths. The leptonic decay widths of the
vector states are calculated using the Van Royen-Weisskopf
formula [63, 64].

Γee =
4α2e2c
MnS

RnS 0ð Þj j2 1 − 16αs
3π

� �
, ð6Þ

where MnS is the mass for nS state, ec is the charm quark
charge in unit of electron charge, α is the fine structure con-
stant, αs ≈ αsð2mcÞ is the strong coupling constant, and Rnsð
0Þ is the radial nS wave function at the origin. The terms in
parenthesis are the QCD radiative correction factor.
Obtained results are listed in Table 4.

3.2. M1 Radiative Transitions. Magnetic dipole (M1) radia-
tive transitions obey the selection rule ΔL = 0 and ΔS = ±1.

Table 1: Parameters used in the model.

Parameter Value

αc 0.54

b 0.136GeV2

V0 0.149GeV

σ 1.1GeV

mc 1.4GeV
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Figure 1: The wavefunctions of charmonium 3S1 states (a) and 3PJ states (b). Solid curve represents the n = 1 state while dashed curve
represents the n = 2 state.

Table 2: Mass spectrum of charmonium states (in MeV).

State Present Exp [6] [7] [10] [59] [60] [61] [62]

J/ψ 3097 3096:900 ± 0:006 3090 3097 3094 3094 3090.0 3091.7

ηc(1S) 2986 2983:9 ± 0:5 2982 2979 2995 2989 2981.6 2992.4

ψ(2S) 3663 3686:097 ± 0:025 3672 3673 3649 3681 3671.8 3671.4

ηc(2S) 3620 3637:6 ± 1:2 3630 3623 3606 3602 3630.3 3631.7

ψ(3S) 4055 4039 ± 1 4072 4022 4036 4129 4071.6 4075.5

ηc(3S) 4025 4043 3991 4000 4058 4043.2 4048.1

ψ(4S) 4385 4421 ± 4 4406 4273 4362 4514 4406.1 4415.0

ηc(4S) 4360 4384 4250 4328 4448 4383.7 4393.3

ψ(5S) 4678 4463 4654 4863 4703.8

ηc(5S) 4657 4446 4622 4799 4685.0

ψ(6S) 4947 4608 4925 5185 4976.9

ηc(6S) 4929 4595 4893 5124 4960.4

χc2(1P) 3546 3556:17 ± 0:07 3556 3554 3556 3480 3549.0 3548.1

χc1(1P) 3498 3510:67 ± 0:05 3505 3510 3523 3468 3505.4 3501.8

χc0(1P) 3419 3414:71 ± 0:30 3424 3433 3457 3428 3424.5 3425.8

hc(1P) 3507 3525:38 ± 0:11 3516 3519 3534 3470 3515.6 3510.5

χc2(2P) 3955 3972 3937 3956 3955 3964.8 3970.0

χc1(2P) 3909 3925 3901 3925 3938 3924.9 3925.8

χc0(2P) 3839 3852 3842 3866 3897 3852.3 3856.7

hc(2P) 3918 3934 3908 3936 3943 3933.6 3933.4

ψ3 1 3D3
� �

3791 3806 3799 3801 3755 3805.3 3800.6

ψ2 1 3D2
� �

3786 3800 3798 3805 3772 3800.4 3796.7

ψ 13D1
� �

3771 3773:13 ± 0:35 3785 3787 3799 3775 3785.0 3783.1

ηc2 11D2
� �

3785 3799 3796 3802 3765 3799.4 3795.1

ψ3 23D3
� �

4146 4167 4103 4151 4176 4165.5 4167.1

ψ2 23D2
� �

4138 4158 4100 4152 4188 4158.2 4160.2

ψ 23D1
� �

4122 4191 ± 5 4142 4089 4145 4188 4141.5 4145.1

ηc2 21D2
� �

4138 4158 4099 4150 4182 4157.6 4159.1
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The M1 widths are evaluated using the formula [7].

ΓM1 n2S+1LJ ⟶ n′2S′+1L
J ′′

	 

= 4
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2L + 1 δLL′δS,S′+1e

2
c
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m2
c
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��� ���2E3

γ
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,

ð7Þ

where Eγ is the emitted photon energy, <ψf ∣ ψi > is the
overlap integral involving initial and final radial wavefunc-
tions, Ef is the total energy of the final state, and Mi is the
mass of the initial state. Calculated M1 widths are listed in
Table 5.

3.3. E1 Radiative Transitions. Electric dipole (E1) radiative
transitions obey the selection rule ΔL = ±1 and ΔS = 0. The

Table 3: Average radii (in fm) and square of the radial wave function at the origin (in GeV3).

State
ffiffiffiffiffiffiffiffiffiffiffiffi
<r2 >

p
[62] [61] [10] R 0ð Þj j2 [62] [61]

ηc(1S) 0.380 0.375 0.3655 1.649 1.5405 1.2294

ηc(2S) 0.863 0.839 0.8328 0.731 0.7541 0.8717

ηc(3S) 1.250 1.210 1.2072 0.573 0.6088 0.683

ηc(4S) 1.584 1.531 1.5306 0.502 0.5430 0.5994

ηc(5S) 1.885 1.8225 0.461 0.5503

J/ψ 0.434 0.421 0.4143 0.41 0.976 1.1861 1.97675

ψ(2S) 0.897 0.867 0.8627 0.91 0.897 0.7092 0.7225

ψ(3S) 1.274 1.230 1.2287 1.38 1.274 0.5914 0.6006

ψ(4S) 1.603 1.547 1.5478 1.87 1.603 0.5340 0.5417

ψ(5S) 1.902 1.8370 2.39 1.902 0.50538

11P 0.700 0.678 0.6738 ≈0 0 ≈0
13P 0.712 0.689 0.7173 0.71 ≈0 0 ≈0
21P 1.108 1.071 1.0697 ≈0 0 ≈0
23P 1.120 1.082 1.1107 1.19 ≈0 0 ≈0
11D 0.931 0.899 0.8984 ≈0 0 ≈0
13D 0.932 0.901 0.9179 0.96 ≈0 0 ≈0
21D 1.304 1.258 1.2595 ≈0 0 ≈0
23D 1.305 1.261 1.1914 1.44 ≈0 0 ≈0

Table 4: Leptonic decay widths (in keV).

State Present Exp [6] [59] [60] [65] [10]

J/ψ 4.979 5:55 ± 0:14 ± 0:02 3.623 2.925 1.8532 6.60

ψ(2S) 2.137 2:33 ± 0:04 1.085 1.533 0.5983 2.40

ψ(3S) 1.460 0:86 ± 0:07 0.748 1.091 0.3812 1.42

ψ(4S) 1.131 0:58 ± 0:07 0.599 0.856 0.2847 0.97

ψ(5S) 0.930 0.508 0.707 0.2286 0.70

Table 5: M1 radiative partial widths (in keV).

Transition Present Exp [6] [7] [60] [59] [66]

1 3S1 ⟶ 1 1S0 2.66 1:58 ± 0:37 2.9 2.722 1.647 2.39

2 3S1 ⟶ 2 1S0 0.17 0:21 ± 0:15 0.21 1.172 0.135 0.19

2 3S1 ⟶ 1 1S0 5.02 1:00 ± 0:15 4.6 7.506 69.57 7.80
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E1 widths are evaluated using the formula [7].

ΓE1 n2S+1LJ ⟶ n′2S′+1L
J ′′

	 

= 4
3Cf iδSS′e

2
cα <ψf rj jψi >
��� ���2E3

γ

Ef

Mi
,

ð8Þ

where <ψf jrjψi > is the spatial matrix element involving the
initial and final radial wavefunctions, and Cf i is the angular
matrix element given by

Cf i =max L, L′
	 


2J ′ + 1
	 
 L′ J ′ S

J L 1

( )2

: ð9Þ

E1 widths obtained from the present analysis are listed in
Table 6.

4. Discussion and Summary

In the present work, we have numerically solved the Schrö-
dinger equation for charmonium system using the DVR
scheme of Colbert and Miller. The Hamiltonian matrix was
constructed and diagonalised to obtain the masses and wave-
functions of charmonium states. In Table 2, we compare the
masses of radially and orbitally excited c�c states with experi-
ment [6] and other theoretical predictions [7, 10, 59–62].
Authors in refs. [7, 59–62] have also used Cornell type poten-
tial to study the c�c system, where as in ref. [10], authors use a
screened potential. From Table 2, we see that the predictions
using the DVR method are in good agreement with experi-
ment and other theoretical predictions. In Table 3, we have
compared our predictions for the root mean square radii
(

ffiffiffiffiffiffiffiffiffiffiffiffi
<r2 >

p
) and the square of the radial wavefunction at the

origin (jRð0Þj2) with other theoretical predictions [10, 61,
62]. The values of radial wavefunctions at the origin are
important inputs for calculating quarkonium production
cross-sections [22] and various decay amplitudes. We pres-
ent our results for leptonic decays in Table 4 in comparison
with experiment and other models. Our predictions for lower
states are in good agreement with the experimental results.
For higher excited states, our predictions are higher than

the experimental results. We present results of E1 and M1
radiative transitions in Tables 5 and 6, respectively. Radiative
transitions in quarkonia are important because they are one
of the few mechanisms that produce transitions among q�q
states with different quantum numbers. This decay mecha-
nism also helps to produce excited P-wave states and F-
wave states which are otherwise difficult to achieve [7]. M1
decays in particular allow to access spin-singlet states. From
Tables 5 and 6, we see that there is a wide range of precau-
tions for the radiative decay widths even though all these
models [7, 59, 60, 66] employ a Cornell type potential. This
may be due to the difference in wavefunctions of charmo-
nium states used in these models. Our predictions for radia-
tive decays are in accordance with experiment and other
theoretical predictions. Inclusion of higher multipole contri-
butions, coupled channel effects, relativistic corrections, etc.,
would give a better fit to the experimental results.

In summary, in this article, we have successfully
employed the DVR method to investigate the spectra and
decays of charmonium. The obtained results of the present
study are in good agreement with experimental data and with
other theoretical models.
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The data used to support the findings of this study are
included within the article and are cited at relevant places
within the text as references.

Conflicts of Interest

The author declares that he has no conflicts of interest.

References

[1] J. E. Augustin, A. M. Boyarski, M. Breidenbach et al., “Discov-
ery of a narrow resonance in e+e− annihilation,” Physical
Review Letters, vol. 33, pp. 1406–1408, 1974.

[2] J. J. Aubert, U. Becker, P. J. Biggs et al., “Experimental observa-
tion of a heavy particle j,” Physical Review Letters, vol. 33,
pp. 1404–1406, 1974.

Table 6: E1 radiative partial widths (in keV).

Transition Present Exp [6] [7] [60] [59] [66] [10]

2 3S1 ⟶ 1 3P2 29.78 27:99 ± 0:96 38 62.312 7.07 36 43

2 3S1 ⟶ 1 3P1 49.31 28:67 ± 1:05 54 43.292 10.39 45 62

2 3S1 ⟶ 1 3P0 49.38 28:78 ± 0:98 63 21.863 11.93 27 74

1 3P2 ⟶ 1 3S1 436.45 374:30 ± 19:73 424 157.225 233.85 327 473

1 3P1 ⟶ 1 3S1 319.08 288:12 ± 16:09 314 146.317 189.86 269 354

1 3P0 ⟶ 1 3S1 175.78 151:2 ± 9:99 152 112.030 118.29 141 167

2 3D1 ⟶ 1 3P2 6.07 <17.4 4.9 5.722 6.45 5.4 5.8

2 3D1 ⟶ 1 3P1 159.05 67:73 ± 6:73 125 93.775 139.52 115 150

2 3D1 ⟶ 1 3P0 425.59 187:68 ± 17:72 403 161.504 343.87 243 486

5Advances in High Energy Physics



[3] G. T. Bodwin, E. Braaten, E. Eichten, S. L. Olsen, T. K. Pedlar,
and J. Russ, “Quarkonium at the frontiers of high energy phys-
ics: a snowmass white paper,” 2013, https://arxiv.org/abs/1307
.7425.

[4] N. Brambilla, S. Eidelman, B. K. Heltsley et al., “Heavy quarko-
nium: progress, puzzles, and opportunities,” The European
Physical Journal C, vol. 71, no. 2, p. 1534, 2011.

[5] A. Alfonso Albero, A. Camboni, S. Coquereau et al., “Near-
threshold D�d spectroscopy and observation of a new charmo-
nium state,” Journal of High Energy Physics, vol. 2019, no. 7,
p. 35, 2019.

[6] M. Tanabashi, K. Hagiwara, K. Hikasa et al., “Review of parti-
cle physics,” Physical Review D, vol. 98, article 030001, 2018.

[7] T. Barnes, S. Godfrey, and E. S. Swanson, “Higher charmonia,”
Physical Review D, vol. 72, no. 5, article 054026, 2005.

[8] S. Godfrey and N. Isgur, “Mesons in a relativized quark model
with chromodynamics,” Physical Review D, vol. 32, pp. 189–
231, 1985.

[9] O. Lakhina and E. S. Swanson, “Dynamic properties of char-
monium,” Physical Review D, vol. 74, no. 1, article 014012,
2006.

[10] B.-Q. Li and K.-T. Chao, “Higher charmonia and x, y, z states
with screened potential,” Physical Review D, vol. 79, no. 9, arti-
cle 094004, 2009.

[11] W. Lucha, F. F. Schöberl, and D. Gromes, “Bound states of
quarks,” Physics Reports, vol. 200, no. 4, pp. 127–240, 1991.

[12] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, “Effective-field
theories for heavy quarkonium,” Reviews of Modern Physics,
vol. 77, pp. 1423–1496, 2005.

[13] G. T. Bodwin, D. K. Sinclair, and S. Kim, “Quarkonium decay
matrix elements from quenched lattice qcd,” Physical Review
Letters, vol. 77, pp. 2376–2379, 1996.

[14] T. Burch, C. DeTar, M. Di Pierro et al., “Quarkonium mass
splittings in three-flavor lattice qcd,” Physical Review D,
vol. 81, article 034508,, 2010.

[15] C. T. H. Davies, K. Hornbostel, A. Langnau et al., “Precision Υ
spectroscopy from nonrelativistic lattice qcd,” Physical Review
D, vol. 50, pp. 6963–6977, 1994.

[16] S. Piemonte, S. Collins, M. Padmanath, D. Mohler, and
S. Prelovsek, “Charmonium resonances with JPC = 1−− and
3−− from �Dd scattering on the lattice,” Physical Review D,
vol. 100, article 074505, 2019.

[17] S. Bhatnagar and L. Alemu, “Approach to calculation of mass
spectra and two-photon decays ofcc¯mesons in the framework
of Bethe-Salpeter equation,” Physical Review D, vol. 97, no. 3,
article 034021, 2018.

[18] M. Blank and A. Krassnigg, “Bottomonium in a bethe-
salpeter-equation study,” Physical Review D, vol. 84, article
096014, 2011.

[19] T. Hilger, C. Popovici, M. Gómez-Rocha, and A. Krassnigg,
“Spectra of heavy quarkonia in a bethe-salpeter-equation
approach,” Physical Review D, vol. 91, article 034013, 2015.

[20] H. Negash and S. Bhatnagar, “Mass spectrum and leptonic
decay constants of ground and radially excited states of ηc
and ηb in a bethe–salpeter equation framework,” International
Journal of Modern Physics E, vol. 24, no. 4, article 1550030,
2015.

[21] E. J. Eichten, K. Lane, and C. Quigg, “b-meson gateways to
missing charmonium levels,” Physical review letters, vol. 89,
article 162002, 2002.

[22] E. J. Eichten and C. Quigg, “Quarkonium wave functions at the
origin,” Physical Review D, vol. 52, no. 3, p. 1726, 1995.

[23] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M.
Yan, “Interplay of confinement and decay in the spectrum of
charmonium,” Physical Review Letters, vol. 36, pp. 500–504,
1976.

[24] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M.
Yan, “Charmonium: the model,” Physical Review D, vol. 17,
pp. 3090–3117, 1978.

[25] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M.
Yan, “Charmonium: comparison with experiment,” Physical
Review D, vol. 21, pp. 203–233, 1980.

[26] G. S. Bali, B. Bolder, N. Eicker et al., “Static potentials and glue-
ball masses from qcd simulations with wilson sea quarks,”
Physical Review D, vol. 62, article 054503, 2000.

[27] G. S. Bali, “Qcd forces and heavy quark bound states,” Physics
Reports, vol. 343, no. 1-2, pp. 1–136, 2001.

[28] W. Lucha and F. F. Schöberl, “Solving the schrödinger equa-
tion for bound states with mathematica 3.0,” International
Journal of Modern Physics C, vol. 10, no. 4, pp. 607–619, 1999.

[29] S. Patel, P. C. Vinodkumar, and S. Bhatnagar, “Decay rates of
charmonia within a quark-antiquark confining potential,”
Chinese Physics C, vol. 40, no. 5, article 053102, 2016.

[30] J.-L. Domenech-Garret and M.-A. Sanchis-Lozano, “Qq-onia
package: a numerical solution to the schrödinger radial equa-
tion for heavy quarkonium,” Computer Physics Communica-
tions, vol. 180, no. 5, pp. 768–778, 2009.

[31] V. Mateu, P. G. Ortega, D. R. Entem, and F. Fernández, “Cal-
ibrating the nave cornell model with nrqcd,” The European
Physical Journal C, vol. 79, no. 4, p. 323, 2019.

[32] M. Sakai, Y. Matsuda, M. Hirano, and K. Katō, “A partial
width calculation of ozi-allowed charmonium decays in a
coupled channel framework,” Few-Body Systems, vol. 46,
no. 3, pp. 189–198, 2009.

[33] R. Kumar and F. Chand, “Asymptotic study to the n-
dimensional radial Schrödinger equation for the quark-
antiquark system,” Communications in Theoretical Physics,
vol. 59, no. 5, p. 528, 2013.

[34] H. Mutuk, “Spin averaged mass spectrum of heavy quarko-
nium via asymptotic iteration method,” Canadian Journal of
Physics, vol. 97, no. 12, pp. 1342–1348, 2019.

[35] R. Rani, S. B. Bhardwaj, and F. Chand, “Mass spectra of heavy
and light mesons using asymptotic iteration method,” Com-
munications in Theoretical Physics, vol. 70, no. 2, p. 179, 2018.

[36] F. Brau and C. Semay, “The three-dimensional Fourier grid
Hamiltonian method,” Journal of computational physics,
vol. 139, no. 1, pp. 127–136, 1998.

[37] K. V. Kumar and A. P. Monteiro, “Heavy quarkonium spectra
and its decays in a nonrelativistic model with Hulthen poten-
tial,” Journal of Physics G: Nuclear and Particle Physics,
vol. 38, no. 8, article 085001, 2011.

[38] S. F. Radford and W. W. Repko, “Potential model calculations
and predictions for heavy quarkonium,” Physical Review D,
vol. 75, article 074031, 2007.

[39] D. T. Colbert and W. H. Miller, “A novel discrete variable rep-
resentation for quantum mechanical reactive scattering via the
s-matrix kohn method,” The Journal of chemical physics,
vol. 96, no. 3, pp. 1982–1991, 1992.

[40] D. O. Harris, G. G. Engerholm, andW. D. Gwinn, “Calculation
of matrix elements for one-dimensional quantum-mechanical
problems and the application to anharmonic oscillators,” The

6 Advances in High Energy Physics

https://arxiv.org/abs/1307.7425
https://arxiv.org/abs/1307.7425


Journal of Chemical Physics, vol. 43, no. 5, pp. 1515–1517,
1965.

[41] Z. Bačić and J. C. Light, “Highly excited vibrational levels of
“floppy” triatomic molecules: a discrete variable representa-
tion–distributed Gaussian basis approach,” Journal of chemical
physics, vol. 85, no. 8, pp. 4594–4604, 1986.

[42] Z. Bačić and J. C. Light, “Accurate localized and delocalized
vibrational states of hcn/hnc,” Journal of chemical physics,
vol. 86, no. 6, pp. 3065–3077, 1987.

[43] S. E. Choi and J. C. Light, “Determination of the bound and
quasibound states of ar–hcl van der Waals complex: discrete
variable representation method,” The Journal of Chemical
Physics, vol. 92, no. 4, pp. 2129–2145, 1990.

[44] J. C. Light, I. P. Hamilton, and J. V. Lill, “Generalized discrete
variable approximation in quantum mechanics,” The Journal
of Chemical Physics, vol. 82, no. 3, pp. 1400–1409, 1985.

[45] J. V. Lill, G. A. Parker, and J. C. Light, “Discrete variable rep-
resentations and sudden models in quantum scattering the-
ory,” Chemical Physics Letters, vol. 89, no. 6, pp. 483–489,
1982.

[46] R. M. Whitnell and J. C. Light, “Efficient pointwise representa-
tions for vibrational wave functions: eigenfunctions of h+3,”
The Journal of Chemical Physics, vol. 90, no. 3, pp. 1774–
1786, 1989.

[47] L. Bytautas, N. Matsunaga, T. Nagata, M. S. Gordon, and
K. Ruedenberg, “Accurate ab initio potential energy curve of
f 2. iii. the vibration rotation spectrum,” The Journal of chem-
ical physics, vol. 127, no. 20, article 204313, 2007.

[48] M. Chrysos, O. Gaye, and Y. Le Duff, “Quantum analysis of
absolute collision-induced scattering spectra from bound,
metastable and free ar diatoms,” The Journal of chemical phys-
ics, vol. 105, no. 1, pp. 31–36, 1996.

[49] P. Fassbinder and W. Schweizer, “Hydrogen atom in very
strong magnetic and electric fields,” Physical Review A,
vol. 53, pp. 2135–2139, 1996.

[50] J. Komasa, M. Puchalski, P. Czachorowski, G. Łach, and
K. Pachucki, “Rovibrational energy levels of the hydrogenmol-
ecule through nonadiabatic perturbation theory,” Physical
Review A, vol. 100, article 032519, 2019.

[51] Y. Liu, W. Hu, S. Luo et al., “Vibrationally resolved above-
threshold ionization in no molecules by intense ultrafast
two-color laser pulses: an experimental and theoretical study,”
Physical Review A, vol. 100, article 023404, 2019.

[52] V. S. Melezhik, “Three-dimensional hydrogen atom in crossed
magnetic and electric fields,” Physical Review A, vol. 48,
pp. 4528–4538, 1993.

[53] G. A. Pitsevich and A. E. Malevich, “Comparison of the Fou-
rier and discrete-variable-representation methods in the
numerical solution of multidimensional Schrödinger equa-
tions,” Journal of Applied Spectroscopy, vol. 82, no. 6,
pp. 893–900, 2016.

[54] H. Salami, T. Bergeman, B. Beser et al., “Spectroscopic obser-
vations, spin-orbit functions, and coupled-channel depertur-
bation analysis of data on the a1Σ+

u and b3Πu states of rb2,”
Physical Review A, vol. 80, article 022515, 2009.

[55] W. Schweizer and P. Fassbinder, “Discrete variable method for
nonintegrable quantum systems,” Computers in Physics,
vol. 11, no. 6, pp. 641–646, 1997.

[56] T. Seideman and W. H. Miller, “Calculation of the cumulative
reaction probability via a discrete variable representation with

absorbing boundary conditions,” The Journal of Chemical
Physics, vol. 96, no. 6, pp. 4412–4422, 1992.

[57] J. C. Light and T. Carrington Jr., “Discrete-variable representa-
tions and their utilization,” Advances in Chemical Physics,
vol. 114, pp. 263–310, 2000.

[58] W. Schweizer, “Discrete variable method: numerical quantum
dynamics,” in Progress in Theoretical Chemistry and Physics,
vol. 9, Springer, Dordrecht, 2002.

[59] V. Kher and A. K. Rai, “Spectroscopy and decay properties of
charmonium,” Chinese Physics C, vol. 42, no. 8, article
083101, 2018.

[60] N. R. Soni, B. R. Joshi, R. P. Shah, H. R. Chauhan, and J. N.
Pandya, “Spectroscopy using the Cornell potential,” The Euro-
pean Physical Journal C, vol. 78, no. 7, p. 592, 2018.

[61] M. Atif Sultan, N. Akbar, B. Masud, and F. Akram, “Higher
hybrid charmonia in an extended potential model,” Physical
Review D, vol. 90, article 054001, 2014.

[62] V. R. Debastiani and F. S. Navarra, “A non-relativistic model
for the $[cc][\bar{c}\bar{c}]$ tetraquark,” Chinese Physics C,
vol. 43, no. 1, article 013105, 2019.

[63] W. Kwong, P. B. Mackenzie, R. Rosenfeld, and J. L. Rosner,
“Quarkonium annihilation rates,” Physical Review D, vol. 37,
pp. 3210–3215, 1988.

[64] R. Van Royen and V. F. Weisskopf, “Hardon decay processes
and the quark model,” Il Nuovo Cimento A (1971-1996),
vol. 50, no. 3, pp. 617–645, 1967.

[65] N. Akbar, “Decay properties of conventional and hybrid char-
monium mesons,” Journal of the Korean Physical Society,
vol. 77, no. 1, pp. 17–24, 2020.

[66] W.-J. Deng, H. Liu, L.-C. Gui, and X.-H. Zhong, “Charmo-
nium spectrum and their electromagnetic transitions with
higher multipole contributions,” Physical Review D, vol. 95,
no. 3, article 034026, 2017.

7Advances in High Energy Physics


	Charmonium Properties Using the Discrete Variable Representation (DVR) Method
	1. Introduction
	2. Formalism
	3. Decay Properties
	3.1. Leptonic Decay Widths
	3.2. M1 Radiative Transitions
	3.3. E1 Radiative Transitions

	4. Discussion and Summary
	Data Availability
	Conflicts of Interest

