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Abstract: This two-year study observed the influence of various barley-based cropping systems
on soil physicochemical properties, allometric traits and biomass production of barley sown under
different tillage systems. Barley was cultivated in different cropping systems (CS), i.e., fallow-
barley (fallow-B), maize-barley (maize-B), cotton-barley (cotton-B), mungbean-barley (mungbean-B)
and sorghum-barley (sorghum-B) under zero tillage (ZT), minimum tillage (MT), strip tillage (ST),
conventional tillage (CT) and bed-sowing (BS). Interaction between different CS and tillage systems
(TS) positively influenced soil bulk density (BD), total porosity, available phosphorus (P), ammonical
and nitrate nitrogen (NH4-N and NO3-N), available potassium (K), allometric traits and biomass
production of barley. The highest soil BD along with lower total porosity were noted in ZT leading
to lesser leaf area index (LAI), leaf area duration (LAD), specific leaf area (SLA), crop growth rate
(CGR) and net assimilation rate (NAR) of barley. Nonetheless, bed-sown barley produced the highest
biomass due to better crop allometry and soil physical conditions. The highest postharvest soil
available P, NH4-N, NO3-N, and K were recorded for zero-tilled barley, while BS followed by CT
recorded the lowest nutrient contents. Barley in mungbean-B CS with BS produced the highest
biomass, while the lowest biomass production was recorded for barely sown in fallow-B cropping
system with ZT. In conclusion, barley sown after mungbean (mungbean-B cropping system) with BS
seems a pragmatic choice for improving soil fertility and subsequently soil health.

Keywords: zero tillage; bed sowing; cropping systems; bulk density; leaf area index; barley

1. Introduction

World population is witnessing a rapid increase and expected to reach ~9100 million,
which would require 3000 million tons of grain crops’ production by 2050 [1]. Therefore,
improving crop yields to fulfil the rising demand of massive population is a dire need of the
time [2]. Barley (Hordeum vulgare L.), rice (Oryza sativa L.), maize (Zea mays L.) and wheat
(Triticum aestivum L.) are regarded as main cereal crops, which provide >50% of total caloric
intakes for human population [3]. Barley is a fast-growing, annual cereal, grown during
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winter season. Commonly, it is cultivated as a cover crop to preserve soil and usually used
as forage. Wheat crop could be substituted with barley as the later can withstand drought
and adverse environmental conditions [4]. Similarly, barley performs better in low rainfall
areas where other crops fail to establish [5]. Barley is an important food source for African
countries, while it is primarily cultivated for animal feed in Pakistan [6]. It is an important
cereal crop that ranks 4th (after wheat, rice, and maize crop) by production and 5th by
cultivation among cereals throughout the world.

Tillage is regarded as the main soil management tool used to improve soil physical
conditions and crop growth. Crop performance and soil properties are significantly altered
by tillage practices [7]. Tillage exerts 20% impact on crop yields among the factors affect-
ing crop production and ensures sustainable use of available resources through altering
soil characteristics [8,9]. Management practices opted to alter soil structure could have
positive or negative consequences [10–12]. Soil health is negatively affected by unsuitable
management practices, which decrease crop productivity [13]. Lowering soil disturbance
by reducing tillage intensity alters several physical, chemical and biological properties of
soil [7,14–16]. Any change in soil physical condition modifies ecosystem functions [17].
Nonetheless, excessive tillage practices negatively affect soil physical conditions [14,18].

Conservation agriculture (CA) is a resource-saving and environment-friendly ap-
proach. It consists of least or no soil disturbance (zero or no tillage) along with stable soil
cover [19]. The CA plays a significant role in water conservation and efficient utilization
of natural resources through integrated management of soil moisture and nutrients [20].
The CA or minimum tillage results in better system productivity than conventional tillage
practices [21,22]. Conservation tillage practices like zero tillage (ZT) combined with crop
residues and nutrient management improve soil organic carbon (SOC) content and its
retention in soil layer, resulting in moisture retention and improved hydraulic conductivity,
soil porosity and soil aggregation [23]. Better soil physical conditions stimulate root growth
and nutrient cycling [24]. Reduced tillage practices and residue retention influence soil
properties such as organic matter, nutrients and pH [14,25,26]. Total nitrogen is increased
by adoption of conservation tillage practices, including residues’ retention followed by
nutrient application and ZT [23].

Cropping systems exert significant impacts on soil physicochemical properties, which
ultimately affect crop yield [27]. Soil physical properties are positively influenced by
cropping systems and management practices, i.e., residue retention and tillage [26–29]. The
CA could conserve soil from detrimental effects of excessive tillage and enhance soil fertility
in different cropping systems [15]. However, limited literature is available for the impact
of different tillage practices on soil properties in barley-based cropping systems [30,31].
Nonetheless, different barley-based cropping systems have rarely been compared for their
impact on soil properties under conventional and conservation tillage practices.

Therefore, this two-year field study assessed the soil physicochemical properties,
allometry and biomass production of barley crop grown in different barley-based cropping
systems under conventional and conservation tillage systems. The major objective of
the study was to infer the impact of different barley-based cropping systems on soil
physicochemical properties. Moreover, exploring the impact of different tillage systems on
soil physicochemical properties was the second major objective of the study.

2. Materials and Methods
2.1. Experimental Site

This 2-year field experiment was conducted at Agronomy Farm, Faculty of Agri-
cultural Sciences and Technology, Bahauddin Zakariya University, Multan (30.2◦ North,
71.43◦ East, and 122 m above sea level), Pakistan during winter seasons of 2017–2018 and
2018–2019.

Experimental soil was loamy in texture with 8.20 and 8.25 pH, 2.78 and 2.80 mS cm−1

EC, 0.03 and 0.03% total nitrogen (N), 7.25 and 7.18 mg kg−1 available phosphorus (P), 240
and 230 mg kg−1 available potassium (K) and 0.60 and 0.63% organic matter during 1st
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and 2nd year of study, respectively. Weather data during both cropping years are given in
Table 1.

Table 1. Weather data for the period of research at the experimental site.

Months 2017–2018 2018–2019

Mean Tem-
perature

(◦C)

Mean
Relative

Humidity
(%)

Mean
Daily

Sunshine
(h)

Total
Month-

lyRainfall
(mm)

Mean Tem-
perature

(◦C)

Mean
Relative

Humidity
(%)

Mean
Daily

Sunshine
(h)

Total
Month-

lyRainfall
(mm)

May 34.0 63.0 4.8 0.1 32.9 52.6 10.3 0.0
June 33.1 74.9 4.5 45.6 34.6 64.7 3.5 0.0
July 33.6 73.0 7.2 4.9 33.2 71.2 5.5 0.0

August 31.8 85.2 7.7 30.0 32.4 75.1 4.3 0.0
September 30.6 77.1 8.0 10.0 29.8 77.1 6.8 0.0

October 27.0 77.6 7.4 4.2 23.0 75.1 5.5 0.0
November 18.0 81.4 3.7 16.0 18.9 82.2 4.4 0.0
December 14.6 75.0 5.2 16.0 14.2 85.0 5.9 0.0

January 13.6 83.1 4.4 0.0 12.2 86.3 4.3 11.0
February 17.5 75.4 4.9 6.8 14.4 80.6 6.7 25.1

March 23.5 70.9 7.2 0.0 19.5 75.9 7.3 21.0
April 29.4 56.7 5.4 3.0 28.6 73.1 7.7 12.7

2.2. Experimental Details

Barley was sown under five different tillage systems, i.e., zero tillage (ZT), minimum
tillage (MT), strip tillage (ST), conventional tillage (CT) and bed-sowing (BS) in fallow-B,
maize-B, cotton-B, mungbean-B and sorghum-B cropping systems. In case of ZT, barley
seeds were directly drilled using a ZT drill and residues of previous summer crops were
retained in the soil. In MT, seeds were sown with the help of manual drill by disturbing
limited soil. In case of ST, seedbeds were made in the form of strips without interfering
the remaining field. In CT, field was cultivated two times with tractor-drawn cultivator
followed by planking. In BS, similar method of field preparation was used as in CT and
beds were prepared with manual bed maker. Experiment was laid out using randomized
complete block design with split-plot arrangement. Tillage systems were kept in main,
while cropping systems were allocated to sub-plots. During both years, experiment was
replicated three times with net plot size of 5 m × 2.7 m.

2.3. Crop Husbandry

During both seasons, experimental field was irrigated with a pre-soaking (locally
called rouni) irrigation of 10 cm before sowing of all crops. When soil attained appropriate
moisture level, field was prepared following respective tillage systems. Recommended
production technologies (http://agripunjab.gov.pk/) were followed for the cultivation of
all crops included in the study. The recommended crop production practices for all crops
are summarized in Table 2. For barley crop, 75 kg N and 50 kg P ha−1 were applied using
urea and di-ammonium phosphate as sources, respectively. Half of N and whole amount
of P were applied at sowing, whereas remaining N was applied with 1st irrigation. Barley
was irrigated four times during the whole growing season. Crop was harvested at 105 days
after sowing (DAS) to record total biomass production.

http://agripunjab.gov.pk/
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Table 2. Crop husbandry of different crops sown in barley-based cropping systems of the study.

Crops Sowing
Time Cultivars Seed Rate

(kg ha−1) PP
Fertilizer
NPK (kg

ha−1)

Plant
Spacing

(cm)

Row
Spacing

(cm)

Summer Seasons (2017 and 2018)
Cotton 15th May IUB-2013 25 6 250-200-0 20 75

Sorghum 10th June YS-16 10 11 100-60-0 15 60

Mungbean 15th June NIAB-Mung
2011 20 33 20-60-0 10 30

Maize 25th July YH-1898 25 6 200-150-0 22 75
Winter Seasons (2017–2018 and 2018–2019)

Barley 10th Nov Haider-93 80 400 50-25-0 25

PP = Plant population (plants or tillers m−2).

2.4. Soil Physical Properties

Soil bulk density (BD) and total porosity were analyzed by taking soil samples with
soil core sampler after barley harvest during both years of study. Three random samples
from all experimental plots were taken from 0–15 cm depth, mixed, dried in an oven
for 24 h at 105 ◦C and then BD was measured by following the procedure of Blake and
Hartge [32]. Total soil porosity was estimated following Danielson and Sutherland [33].

2.5. Soil Chemical Properties

The soil available NH4-N, NO3-N, P and K contents were determined during both
years after barley harvest by AB-DTPA method (Ammonium Bicarbonate-DTPA) devised
by Soltanpour and Schwab [34] and modified by Soltanpour and Workman [35].

2.6. Allometric Traits of Barley

The barley plants were harvested (1.0 m length of two rows) after every fifteen days
to determine different allometric traits. Three random samples were taken from each
replication of every experimental unit. Thus, the average was computed from 9 different
samples at each harvest for a given allometric trait. The sampling was started at 60 DAS
and terminated at 105 DAS of barley crop. The leaves of harvested plants were separated
from stem and leaf area was determined by using a leaf area meter (DT Area Meter, model
MK2). Briefly, fresh weight of leaves was recorded and then area of pre-weighed leaves was
measured. The measured leaf area was converted to total leaf area of the harvested samples
by unitary method. Later, leaf area index (LAI) was determined following Watson [36] by
dividing total leaf area to total ground area of the harvested samples. Specific leaf area
(SLA) was assessed by following Garnier et al. [37], while leaf area duration (LAD) was
determined following Hunt [38]. For SLA calculation, a pre-weighed quantity of leaves
was taken, their area was measured and leaves were dried in an oven. The SLA was then
computed by dividing leaf areas with dry biomass of the leaves. Moreover, the collected
plant samples were chaffed and dried for 3 days under sunlight and further oven-died
at 75 ◦C for constant weight. After that crop growth rate (CGR) and net assimilation
rate (NAR) were determined by following Hunt [38]. The dry biomass produced by the
harvested plants at each harvest was used to record CGR.

2.7. Barley Biomass Yield

Two central rows from each experimental unit were harvested at 105 DAS. The har-
vested samples were sun-dried for three days and then oven-dried at 75 ◦C until constant
weight. Afterwards, dry weight of these samples was recorded by using spring balance to
determine dry biomass yield.
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2.8. Statistical Analysis

All data taken during both years of experiment were analyzed following Fisher’s
analysis of variance (ANOVA) technique and means of all treatments were compared by
least significant difference (LSD) test at 5% level of probability [39]. Data relating to soil
physicochemical properties had 9 values (3 replications and 3 samples from each replication)
for each experimental unit, which were used in statistical analysis. Similarly, biomass yield
had 3 values per experimental units included in the statistical analysis. The ANOVA
indicated significant differences among experimental years; therefore, data of both years
were analyzed, presented and interpreted, separately. The data were tested for normality
before ANOVA using Shapiro-Wilk normality test, which indicated normal distribution.
Therefore, statistical analysis was performed on original data. The tillage systems by
cropping systems’ interaction was significant during both years; therefore, only interactions
were presented and interpreted in the manuscript. Likewise, graphical presentation of the
data relating to LAI, LAD, SLA, CGR and NAR as well as nutrient dynamics was done
with MS-Excel Program 2010 along with standard errors (S.E.) of means.

3. Results
3.1. Soil Physical Properties

Soil BD and total soil porosity were significantly affected by TS × CS interaction during
both years (Table 3). Barley sown in fallow-B cropping system with ZT recorded the highest
soil BD, while lower BD was recorded for barley sown in all CS with BS. Furthermore,
higher porosity was noted for all cropping systems with BS except for sorghum-B during
1st year and maize-B systems during 2nd year of study. However, the lowest soil porosity
was recorded in all cropping systems with ZT during 2017–2018, and maize-B cropping
system with ST and fallow-B, maize-B and sorghum-B cropping systems with ZT during
2018–2019 (Table 3).

Table 3. Impact of barley-based cropping systems on soil bulk density and soil porosity after barley harvest under
conventional and conservation tillage systems.

Cropping
Systems

2017–2018 2018–2019

ZT MT ST CT BS ZT MT ST CT BS

Soil bulk density (g cm−3)
Fallow-B 1.52 a 1.48 c–e 1.49 b–d 1.46 fg 1.45 gh 1.53 a 1.48 de 1.48 de 1.46 fg 1.45 gh
Maize-B 1.50 b 1.49 bc 1.50 b 1.48 de 1.46 fg 1.50 bc 1.50 bc 1.51 b 1.49 cd 1.47 ef
Cotton-B 1.48 de 1.47 ef 1.48 de 1.45 gh 1.44 h 1.48 de 1.48 de 1.46 fg 1.45 gh 1.45 gh

Mungbean-B 1.48 de 1.46 fg 1.48 de 1.44 h 1.44 h 1.48 c–e 1.47 ef 1.47 ef 1.45 gh 1.44 h
Sorghum-B 1.50 b 1.48 de 1.49 b–d 1.46 fg 1.44 h 1.49 b–d 1.48 de 1.50 bc 1.47 ef 1.46 fg
LSD value
(p < 0.05) 0.01 0.01

Soil porosity (%)

Fallow-B 40.5 n 43.7 fg 43.8 e–g 45.1 b–d 46.0 ab 40.4 kl 42.3 gh 42.6 g 44.2 f 46.3 ab

Maize-B 41.0 mn 41.7 k–m 41.9 kl 43.4 g 44.9 cd 40.4 kl 41.3 i–k 40.0 l 44.6 ef 44.8
c–f

Cotton-B 41.3 l–n 42.3 i–k 43.1 g–i 44.6 de 46.3 a 41.8 g–j 42.6 g 43.8 f 45.9
a–c 46.8 a

Mungbean-B 41.3 l–n 42.4 h–k 43.0 g–j 44.5 d–f 45.8 a–c 41.4 g–j 42.6 g 42.1
g–i

44.8
d–f

45.8
b–d

Sorghum-B 40.9 mn 42.1 j–l 42.1 kl 43.3 gh 43.5 g 41.0 j–l 42.4 gh 42.1
g–j

45.2
b–e 46.2 ab

LSD value
(p < 0.05) 0.84 0.98

Means not having common letter for interactive effects significantly vary from each other at p ≤ 0.05., Here, ZT = zero tillage,
MT = minimum tillage, ST = strip tillage, CT = conventional tillage, BS = bed sowing, Fallow-B = Fallow-barley, Maize-B = Maize-
barley, Cotton-B = Cotton-barley, Mungbean-B = Mungbean-barley and Sorghum-B = Sorghum-barley.
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3.2. Soil Chemical Properties

The TS × CS interaction had significant effect on soil NH4-N and NO3-N contents,
and available P and K (Figures 1–4). The highest NH4-N contents were recorded for
mungbean-B (including maize-B during 2nd year) cropping system with ZT during both
years. Likewise, mungbean-B and maize-B systems with ZT recorded higher NO3-N
contents during 1st year of study. However, the lowest NH4-N and NO3-N contents were
noted in fallow-B cropping system with BS during both years (Figures 2 and 3). Mungbean-
B system with ZT noted higher available P and K contents, while fallow-B system with BS
had lower available P and K during both years (Figures 3 and 4).

Figure 1. Interactive effect of tillage systems and barley-based cropping on NH4-N (mg kg−1) after barley harvest
during 2017–2018 (A) and 2018–2019 (B) ±S.E. In the legend, Fallow-B = Fallow-barley, Maize-B = Maize-barley,
Cotton-B = Cotton-barley, Mungbean-B = Mungbean-barley and Sorghum-B = Sorghum-barley. The means sharing
same letters do not differ significantly (p > 0.05). LSD 0.05 (2017–2018 = 0.10, 2018–2019 = 0.07).



Agronomy 2021, 11, 8 7 of 19

Figure 2. Interactive effect of tillage systems and barley-based cropping systems on soil NO3-N (mg kg−1) after barley
harvest during 2017–2018 (A) and 2018–2019 (B) ±S.E. In the legend, Fallow-B = Fallow-barley, Maize-B = Maize-barley,
Cotton-B = Cotton-barley, Mungbean-B = Mungbean-barley and Sorghum-B = Sorghum-barley. The means sharing same
letters do not differ significantly (p > 0.05). LSD 0.05 (2017–2018 = 0.08, 2018–2019 = 0.05).
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Figure 3. Interactive effect of tillage systems and barley-based cropping systems on soil available P (mg kg−1) after barley
harvest during 2017–2018 (A) and 2018–2019 (B) ±S.E. In the legend, Fallow-B = Fallow-barley, Maize-B = Maize-barley,
Cotton-B = Cotton-barley, Mungbean-B = Mungbean-barley and Sorghum-B = Sorghum-barley. The means sharing same
letters do not differ significantly (p > 0.05). LSD 0.05 (2017–2018 = 0.65, 2018–2019 = 0.56).
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Figure 4. Interactive effect of tillage systems and barley-based cropping systems on soil available K (mg kg−1) after barley
harvest during 2017–2018 (A) and 2018–2019 (B) ±S.E. In the legend, Fallow-B = Fallow-barley, Maize-B = Maize-barley,
Cotton-B = Cotton-barley, Mungbean-B = Mungbean-barley and Sorghum-B = Sorghum-barley. The means sharing same
letters do not differ significantly (p > 0.05). LSD 0.05 (2017–2018 = 3.18, 2018–2019 = 3.24).

3.3. Crop Allometry

All cropping systems with ZT had lower values of LAI at 60, 75, 90 and 105 DAS,
whereas all cropping systems with BS recorded the highest values of LAI during both years
(Figure 5). The mungbean-B cropping system noted higher LAI values, while sorghum-B
system recorded lower LAI values at all sampling dates (Figure 5). All cropping systems
with ZT recorded the lowest SLA, while the highest SLA was noted for all cropping systems
with BS at all sampling dates during both years (Figure 6). Periodic data showed that LAI
and CGR increased from 60–75 DAS and then started to decline.
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Figure 5. Interactive effect of tillage systems and barley-based cropping Scheme 2017. (A) and 2018–2019 (B) ±S.E. In the
legend, Fallow-B = Fallow-barley, Maize-B = Maize-barley, Cotton-B = Cotton-barley, Mungbean-B = Mungbean-barley and
Sorghum-B = Sorghum-barley.
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Figure 6. Interactive effect of tillage systems and barley-based cropping systems on specific leaf area (cm-2g-1) of bar-
ley during 2017–2018 (A) and 2018–2019 (B) ±S.E. In the legend, Fallow-B = Fallow-barley, Maize-B = Maize-barley,
Cotton-B = Cotton-barley, Mungbean-B = Mungbean-barley and Sorghum-B = Sorghum-barley.

Barley sown under all CS with ZT observed the lowest CGR, while all CS with BS
as well as CT had the highest values of CGR during both years (Figure 7). The NAR
progressively reduced throughout the growing season during both years (Figure 8). Barley
sown under BS and CT noted more NAR, while ZT had least NAR during both years
(Figure 8). However, the fallow-B cropping systems recorded the lowest, whereas maize-B
and cotton-B systems documented the highest NAR during both years (Figure 8).
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Figure 7. Interactive effect of tillage systems and barley-based cropping on crop growth rate (g m−2 day−1) of bar-
ley during 2017–2018 (A) and 2018–2019 (B) ±S.E. In the legend, Fallow-B = Fallow-barley, Maize-B = Maize-barley,
Cotton-B = Cotton-barley, Mungbean-B = Mungbean-barley and Sorghum-B = Sorghum-barley.
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Figure 8. Interactive effect of tillage systems and barley-based cropping systems on net assimilation rate (g m−2 day−1)
of barley during 2017–2018 (A) and 2018–2019 (B) ±S.E. In the legend, Fallow-B = Fallow-barley, Maize-B = Maize-barley,
Cotton-B = Cotton-barley, Mungbean-B = Mungbean-barley and Sorghum-B = Sorghum-barley.

3.4. Biomass Yield

The dry biomass yield of barley was significantly influenced by TS × CS interaction
during both years (Table 4). Barley sown in fallow-B cropping system with ZT recorded
the lowest, whereas the mungbean-B system with BS noted the highest value of biomass
during both years (Table 4).
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Table 4. Impact of different barley-based cropping systems on dry biomass yield (g m−2) of barley under conservation and
conventional tillage systems.

Cropping
Systems

2017–2018 2018–2019

ZT MT ST CT BS ZT MT ST CT BS

Fallow-B 222.8 r 254.0 kl 240.9 op 275.8 g 297.4 d 231.5 r 253.0 o 264.9 m 281.3 h 312.3 e
Maize-B 244.7 no 262.2 hi 249.2 mn 285.1 ef 310.8 b 246.7 p 266.2 lm 273.7 ij 290.3 g 326.6 c

Cotton-B 236.8 pq 259.6 ij 250.2 lm 284.3 ef 307.3
bc 255.8 o 268.7 kl 267.6 lm 287.5 g 317.8 d

Mungbean-B 226.3 r 264.7 h 259.1 ij 288.1 e 325.3 a 238.8 q 275.9 i 275.7 i 294.5 f 336.0 a
Sorghum-B 232.7 q 257.3 jk 250.2 lm 282.8 f 303.0 c 244.2 p 259.6 n 271.1 jk 294.3 f 330.5 b

LSD value (p < 0.05) 4.72 3.30

Means not having common letter for interactive effects significantly vary from each other at p ≤ 0.05. Here, ZT = zero tillage,
MT = minimum tillage, ST = strip tillage, CT = conventional tillage, BS = bed sowing, Fallow-B = Fallow-barley, Maize-B = Maize-
barley, Cotton-B = Cotton-barley, Mungbean-B = Mungbean-barley and Sorghum-B = Sorghum-barley.

4. Discussion

Different tillage and cropping systems significantly altered soil physicochemical prop-
erties. Nonetheless, tillage systems and barley-based cropping systems also differed for
allometric traits and biomass production of barley. The least soil BD and higher soil poros-
ity were noted for BS, while the highest soil BD and low soil porosity were recorded for ZT
during both years (Table 3). The CA approach helps in conserving soil physical conditions
by minimizing BD and penetration resistance, improves water penetration in the soil profile
and hydraulic conductivity, and protect soil against different weathering conditions [40].
Different CA practices, like ZT have various beneficial impacts, like minimum soil damage
by erosion, reduced soil disturbance and less soil evaporation [41]. Several studies have
indicated that BS plays a significant role in improving root development due to better
nutrient and water use efficiencies as a result of reduced mechanical impedance [42,43].
Khan et al. [44] also reported that ridge sowing method resulted in loose fertile soil with
better moisture availability and soil aeration. The BS reduces mechanical impedance of-
fered by the soil to germinating seeds and growing roots. The loose soil in BS allows the
roots to proliferate in deeper soil layers and extract moisture and nutrients. Conversely,
tillage systems resulting in hard soil structure restrict root growth; thus, prohibiting the
growing plants to extract nutrients and moisture from deeper soil layers. Tillage and crop-
ping systems exert strong impact on soil physicochemical properties [45]. Conventional
tillage or deep ploughing have negative impact on soil organic matter and exposes soils
to erosion [46]. Thus, conservative agricultural practices are alternative of conventional
deep ploughing for improving the physicochemical properties of the soil [47]. Likewise,
legumes are incorporated in the cropping systems to improve the soil fertility, particu-
larly N contents [48]. Although, the role of legumes in improving soil fertility is greatly
understood, interaction among cropping systems having legumes in rotation and tillage
systems remains unclear. This study inferred the interaction of different cropping and
tillage systems on soil properties and allometric traits of main crop.

Among different cropping systems, mungbean-B and cotton-B had minimum soil BD
and high soil porosity, whereas maize-B recorded the highest bulk density and the lowest
soil porosity (Table 3). Cropping systems significantly alter physicochemical properties
of soil [26,27]. Similarly, crop rotation improves soil aggregate stability, water contents in
the soil and organic matter [49,50]. Appropriate crop rotation practices produce numerous
macro and micro-pores in the soil, which permit the circulation of nutrients, air and
moisture encouraging healthier root growth [49,50]. Cotton, maize and sorghum are
exhaustive crops, whereas mungbean is a restorative crop. The differences in nutrients
contents of different barley-based cropping systems can be linked to the nature of the crops
sown before barley. Lu et al. [51] reported that inclusion of legumes in cropping systems
increases available N and K, while reduces P contents. Similar results have been recorded
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in the current study where addition of mungbean in the cropping system improved soil
available N and K and lowered available P contents. Nevertheless, ZT has been reported
to increase P, total N, and mineral N contents in the soil surface [52]. The combination of
ZT and mungbean-B cropping system improved soil nutrients in the current study, which
can be linked to the N fixing ability of mungbean and lower uptake of nutrients in ZT due
to compacted soil. Hence, inclusion of legume in the cropping system can improve soil
fertility if ZT is inevitable.

The BS resulted in the lowest NH4-N, NO3-N, P and K contents, whereas ZT observed
the highest values of these nutrients. As explained above ZT has been reported to increase
P, total N, and mineral N contents in the soil surface [52]. Thus, the results of the current
study are in a god agreement with the earlier reports of improved N contents in soil with
ZT. It may be due to higher uptake of nutrients from loose soil due to better root growth and
moisture uptake in BS. However, barley extracted lesser nutrients in ZT due to compacted
soil layer and hence more nutrients were recorded in ZT. Muhammad et al. [53] described
that reduced or minimum tillage had the highest NPK and organic matter contents in
soil as compared to deep or conventional tillage. Furthermore, higher NH4-N, NO3-N,
P and K contents were recorded in mungbean-B cropping system, while least was noted
in fallow-B cropping system (Figures 1–4). Mungbean is capable of fixing atmospheric
nitrogen and well-known for improving soil physical conditions and N availability. The
inclusion of legumes in cropping systems increases available N and K, while reduces P
contents [51]. The higher nutrient contents of mungbean-B are directly linked to N-fixing
ability of mungbean. Venkatesh et al. [54] reported that crop rotation enhances soil fertility
and ability of crops to absorb nutrients. Aref and Wander [55] noted that organic matter
content was lowest in fallow-maize, highest in maize-oat-hay rotation, while intermediate
in maize-oat rotation. In the same way, organic matter content was reduced as a result
of reduced practices of legume, green manure and jute-based rotation [56]. Thus, adding
legumes in crop sequence of different cropping systems could enhance organic matter
contents as well as N.

Better allometric traits of barley were observed for all cropping systems under BS,
whereas ZT resulted in poor allometric traits (Figures 5–8). The loose fertile soil of BS had
more soil porosity, which resulted in more CGR. Continuous tillage practices can cause
soil compaction [29,57], which result in lower crop yield. Soil compaction adversely affect
soil properties, which cause obstruction in plant root development and hence result in
lower crop yield [29,58]. Selection of appropriate tillage system can efficiently minimize
compaction [59]. In an experiment, zero-tilled wheat performed poor due to limited
availability of nutrients and moisture, which caused weaker allometric traits and finally
lesser crop yield [60]. However, in the current study, ZT had higher available nutrients,
but barley was unable to utilize these properly. Allometric traits and biomass production
of barley were poor under ZT, although nutrients were available in sufficient quantities.
Allometric traits of barley were significantly improved with BS method owing to loose
fertile soil. The BS system enhanced root growth due to suitable soil conditions, which
ensured better nutrient and moisture uptake and utilization than other tillage systems [44].
Similarly, it has also been reported that deep tillage, i.e., BS had considerable effect on
crop performance through better root development in addition to nutrient accumulation
and use [61].

Barley cultivated under BS recorded the highest dry biomass, while the lowest was
noted with ZT (Table 4). It may be due to better soil condition (more soil porosity) in
BS method, which played its role in healthier root growth. These roots have ability to
consume more nutrients and water ensuing higher LAI and CGR. These results are in line
with Khan et al. [44] and Bakht et al. [62] who found that the root growth of ridge-sown
maize crop was improved due to better soil condition. In the same way, raised beds or
ridges had less compacted soil, which is suitable for circulation of air and moisture than
flat seedbed [62]. Likewise, BS method can save irrigation water, decrease weed flora and
increase crop yield [63].
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The highest biomass yield was noted in mungbean-B system, while the lowest was
resulted in barley sown after fallow condition (Table 4). The reduction in yield-related
traits of barley in fallow-B cropping system may be owing to more weed population [64].
The mungbean-B system increased dry biomass and associated traits due to improved
soil condition, which helped in better root growth and finally ensured greater allometric
traits. Thus, plants uptake more water and nutrients, which lead to high dry matter yield of
barley and other yield components. In case of CS, legume-based system enhanced different
components of soil fertility like humus, N, P and SOC contents [65]. It was also reported
that pulses could increase SOC through the addition of organic C, N and biomass [66].
Similar findings were observed in the current study. The cropping systems containing
pulses can restore the soil nutrients, particularly N. Furthermore, legumes also play their
role in protecting the soil profile by bringing organic matter and soil fertility back to the
soil [67]. The mungbean-B cropping systems could lower the fertilizer use due to N fixing
ability of mungbean crop compared to the rest of the cropping systems.

5. Conclusions

Mungbean-barley cropping system with bed sowing significantly improved soil
physicochemical properties and barley growth. It may be due to more nutrients’ up-
take from loose fertile soil in bed-sown barley after mungbean crop, which resulted in
higher LAI and CGR, and ultimately total biomass yield. Nonetheless, mungbean-barley
cropping system and bed-sowing can be opted for improving barley growth and soil
health. Additional studies are needed to find the soil organic carbon contents and possible
mechanism(s) of nutrients removal from soil under different tillage systems as observed in
the current experiment.
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