
Applied Mathematics, 2022, 13, 859-868 
https://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2022.1311054  Nov. 9, 2022 859 Applied Mathematics 
 

 
 
 

Rolling Gaussian Process Regression with 
Application to Regime Shifts 

William Menke 

Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA 

 
 
 

Abstract 
Gaussian Process Regression (GPR) can be applied to the problem of esti-
mating a spatially-varying field on a regular grid, based on noisy observations 
made at irregular positions. In cases where the field has a weak time depen-
dence, one may desire to estimate the present-time value of the field using a 
time window of data that rolls forward as new data become available, leading 
to a sequence of solution updates. We introduce “rolling GPR” (or moving win-
dow GPR) and present a procedure for implementing that is more computa-
tionally efficient than solving the full GPR problem at each update. Further-
more, regime shifts (sudden large changes in the field) can be detected by mon-
itoring the change in posterior covariance of the predicted data during the up-
dates, and their detrimental effect is mitigated by shortening the time window 
as the variance rises, and then decreasing it as it falls (but within prior bounds). 
A set of numerical experiments is provided that demonstrates the viability of 
the procedure. 
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1. Introduction 

Gaussian Process Regression (GPR) is a popular data assimilation method that 
can be used to reconstruct a field, ( )1 2, ,m x x ∈  , that varies with spatial coor-
dinates, ix ∈  (1 i K≤ ≤ ) [1] [2] [3] [4]. Observations of the field at particular 
positions, together with prior information on its value at these positions and its 
spatial correlation function, are used to estimate the field at arbitrary positions. 
GPR is conceptually similar to interpolation, but is not true interpolation be-
cause the reconstructed field does not, in general, reproduce the observations 
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(except for the special case called Kriging [1]). This behavior is advantageous in 
the case of noisy data, because the reconstruction contains fewer defects caused 
by data outliers. 

In many real-world applications, the field that is being reconstructed also has 
time, t∈ , dependence, that is, ( )1 2, , ,m t x x  . Furthermore, observations of-
ten are not made synchronously, but rather in a sporadic and ongoing manner. 
When the goal is to estimate the current state of the field, older measurements 
become obsolete and only the most recent observations are relevant. The choice 
of the length of the observation window, T, affects both the resolution of the re-
construction (for resolution improves with the number of data) and the variance 
of the reconstruction (for the inclusion of new data decreases variance but the 
inclusion of obsolete data increases it). The issue of window length is particular-
ly acute when the field is relatively stable, except for undergoing sporadic reorgan-
izations. These so-called regime shifts are common features of fields associated 
with the Earth’s biosphere [5] [6] [7], climate system [8] [9] and geodynamo [10] 
[11]. 

We use a formulation of GPR [3] in which the M model parameters,  
( ) ( );t c M N+ = ∈  m m m , and corresponding spatial coordinates,  

( ) ( );t c M N+ = ∈  x x x  (where the semicolon implies vertical concatenation), 
are divided into target, t, groups of length M and control, c, groups of length N. 
Only the control group is observed by data, d. The control points represent ob-
servations of the field at irregularly-spaced positions and the target points represent 
its values on a regularly-spaced grid. A prior estimate of the model parameters, 
m̂ , their covariance, mC , and the covariance of the data, 2

dσ I , are assumed to 
be known. The GPR estimate of the model parameters is then: 

( )

( )

( )

( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

T2 2 2 2

with

ˆ ˆand and and

andest est

tct
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estc cest pre

cc ttcc cc tc tc
d m m d m mm m
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−

− −

  ∆
∆ ≡ = ∆ ≡ +  

  ∆   

 = ∆ + ∆ ≡ − =  

= =

Cm
m A d A C I

Cm

m m m d d m d m

C C A C C C A C

       (1) 

The formula for the solution, ∆m , should be evaluated from right to left for 
maximum computational efficiency. The matrix inverse, 1−A , appears both in 
the estimated solution, estm , and its posterior covariance, estm

C  [4], which is 
an important diagnostic of the solution’s quality. In typical cases, A  is far from 
being sparse, so when N is large, 1−A  can be computationally expensive to com-
pute. Alternatives methods that omit the calculation of 1−A , such as solving the 
linear system, = ∆Au d , and then calculating ( ) ( );tc cc

m m
 ∆ =  m C C u , are nearly as 

expensive and do not provide a (simple) pathway for computing the posterior 
covariance. 

Suppose that we know the GPR solution when the control group has AN  ele-
ment, ordered by time of observation. Our goal is to compute an updated solution 
after we delete the first 1N  observations from the group, leaving 2 1AN N N= − , 
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and then append 3N  elements, so that it now has 2 3BN N N= +  elements. This 
process, which we term rolling GPR (or moving-window GPR) is repeated many 
times as new data become available and old data are deemed obsolete. The 
process ensures that the estimate of the field is kept up-to-date. 

The structure of this paper is as follows: The process of performing rolling 
GPR is detailed in Methodology section, and issues concerning its implementa-
tion are discussed. This process is divided into four conceptually distinct parts: 
discarding obsolete data from the GPR problem, appending new data, detecting 
and correcting the error in the solution, and detecting and responding to regime 
changes through changes in window length. The complete process of performing 
rolling GPR is outlined in Procedure section. Examples section provides a dem-
onstration of the technique, applied to the reconstruction of a two-dimensional 
field with a regime shift, using an exemplary synthetic dataset and a Gaussian prior 
covariance function. Finally, a discussion of the efficiency of the discard-append 
process, together with summary remarks, are presented in Discussion and Con-
clusion section. 

2. Methodology 

Discarding Obsolete Data. The quantities m̂ , ( )cx , d , ( )tc
mC , ( )cc

mC , A  and 
1−A  all need to be modified when data are discarded. The vectors, ( )ˆ cm  and d  

are modified by retaining only their last 2N  elements: 

( )
( )

( )
( )

( )

( )
( )

1
2

2

1
2

2

ˆ
ˆ ˆis replaced with

is replaced with

ˆ

c
c c

c

 
≡  
  

 
≡  
  

m
m m

m

d
d d

d

                 (2) 

Here, 1c  and 2c  refer to the deleted group and retained group, respectively. 
The corresponding xs must be modified in an identical manner. Similarly, only 
one block within the covariances matrices is retained: 

( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )
( )

1 2 2

1 1 1 2
2 2

2 1 2 2

is replaced with

is replaced with

tc tc tc tc
m m m m

c c c c
cc c cm m

m mc c c c
m m

 ≡  
 

≡  
  

C C C C

C C
C C

C C

             (3) 

The updating of 1−A  requires more effort, but uses only well-known techniques. 
At the start of the process, the A AN N×  matrix, A , and its inverse, 1−A , are 
known. These matrices are partitioned into submatrices: 

T T
1and −   

≡ ≡   
   

X Z P R
A A

Z Y R Q
                 (4) 

Here, X  and P  are 1 1N N× , Y  and Q  are 2 2N N× , and Z  and R  are 

2 1N N× , with 1 2 AN N N+ = . We mention an identity involving Z , R , P  and 
Q  that will be used later in the paper: 
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T 1 T T T 1 T 1 T T− − − − + = − + = Z RP I R Z Z QZ Z RP Z RP R Z Z QZ 0     (5) 

It can be derived by multiplying out the block matrix form of 1− =A A I , solv-
ing the diagonal elements for X  and Y , and substituting the result into the 
off-diagonal elements. The process of removing the first 1N  data corresponds 
to replacing A  with Y , and 1−A  with 1−Y . An efficient method for compu-
ting 1−Y  can be designed using the Woodbury identity [12]: 

( ) ( ) 11 1 1 1 1 1−− − − − − −+ = − +M UWV M M U W VM U VM          (6) 

Here, M , W , U  and V  are conformable matrices. The reader may con-
firm by direct substitution that: 

( )

1 11 1 1 1 1 2
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2 1 2 1 1 1 1 2
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  −    = = 
    

−
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Y
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0
0

U
0 Z

0

0
V

I

0
     (7) 

are consistent choices of the several matrices (with the subscripts indicating the 
sizes of selected matrices). Thus, 1−Y  can be read from the lower-right-hand 
block of ( ) 11 1 1 1−− − − −− +A A U I VA U VA . Note that the matrix, ( )1−+I VA U , is 
( ) ( )1 12 2N N× , so that its inverse requires less computational effort than does 
the 2 2N N×  matrix, Y , as long as a relatively few data are being removed. Be-
low, we will develop an analytic formular for ( ) 11 −−+I VA U  that further reduces 
the size of the necessary matrices to 1 1N N× ). An explicit formula for 1−Y  is 
obtained by manipulating the block matrix form of the Woodbury formula, start-
ing with: 

1 1

1 1

T T
1

T T
,

T
,

N N

N N

−    −   + = +        −    
  −  =
  −  

IZ P R
I VA U I

ZI R Q

I Z R Z QZ

P I R Z

00
00

           (8) 

Note that the off-diagonal elements of this matrix are symmetric, and the 
off-diagonal elements are transposes of one another. Its inverse has the form: 

1 1 1 1

1 1 1 1

1 , ,1

, ,

T 1 T 1 T T

1 1T T 1

with

and

N N N N

N N N N

−−

− −

− −−

 
 + =      

= = −

   = = − −   

I C
I VA U

D I

C Z RP Z RP R Z Z QZ

D R Z Z QZ P C

               (9) 

The formulas for C  and D  were derived by multiplying out the block di-
agonal form of 

11 1−− −   + + =   I VA U I VA U I , solving the diagonal elements for 
C  and D , and applying identity Equation (5). Note that both C  and D  are 
symmetric matrices. The products 1−A U  and 1−VA  have the forms: 
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Thus, the expression, ( ) 11 1 1−− − −+A U I VA U VA , can be simplified to: 

( )

( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

T T11 1 1
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The lower right-hand block of Equation (11) becomes the new 1−A : 

( )( )1 1 T T T T

is replaced with

is replaced with− − = − + + +

A Y

A Y Q RT TR RCR TDT
   (12) 

This formula has been tested numerically, and was found to be correct to 
within machine precision. Accuracy and speed are improved thorough the use of 
coding techniques that utilize and enforce the symmetry of all the symmetric 
matrices. 

Appending New Data. As before, the quantities ( )2ˆ cm , ( )2cx , ( )2d , ( )2tc
mC , 

( )2 2c c
mC , A  and 1−A  all need to be modified when new data are appended. The 

vectors, ( )ˆ cm  and d  are modified by appending 3N  elements: 

( ) ( )
( )

( )
( )

( )

( )

2
2

3

2
2

3

ˆ
ˆ ˆis replaced with and is replaced with

ˆ

c
c c

c

   
≡ ≡   
     

m d
m m d d
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 (13) 

The corresponding xs must be modified in an identical manner. Similarly, 
new blocks are appended to the covariances matrices: 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

32 2

2 32 2
2 2

3 2 3 3
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≡  
  

C C C C

C C
C C

C C

           (14) 

As before, the updating of 1−A  requires more effort, but use a well-known 
technique based on the Bordering method [13] [14]. We rename the existing 
matrix, A , to X , as it will become the upper-left block of the modified A . 
Both X  and its inverse, 1−X , are known 2 2N N×  matrices. We seek to add 
the blocks, Y  and Z , associated with the 3N  new data, creating an aug-
mented B BN N×  matrix, A , with 2 3BN N N= + . The matrix, A , and its in-
verse satisfy: 

2 2 2 3

3 2 3 3

T T
1 N N N N

N N N N

−
    

≡ =     
      

IP R X ZA A
IR Q Y

0

0Z
           (15) 

Multiplying out the equation and solving for P , Q  and R  yields: 
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T T 1

T T T T 1
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so so
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The matrices then become: 
T

T
1

is replaced with

is replaced with−

 
 
 
 
 
 

X Z
A

Z Y

P R
A

R Q

                  (17) 

These formulas have been tested numerically, and are correct to within ma-
chine precision. Accuracy and speed are improved thorough the use of coding 
techniques that utilize and enforce the symmetry of all the symmetric matrices. 

Detecting and Correcting of Errors in the Solution. Numerical tests (not shown) 
indicate that delete/append process can be repeated many (e.g. hundreds) of times 
without significant loss of precision, at least for the class of matrices encountered 
in GPR. However, as a precaution, we recommend that the inverse be corrected 
every few hundred iterations, either though the direct calculation of 1−A  from 
A , or through one application of the Schultz method [15] [16] [17]: 

( )1 1 1is replaced by 2− − −−A A I AA                 (18) 

One way to monitor accuracy is to compute the absolute value of just one (or 
a few) of the diagonal elements of the error matrix, 1−≡ −AA IΦ . For fixed i, 
quantity iiΦ  can be computed very efficiently, because only one inner prod-
uct (between the ith row of A  and the 𝑖𝑖th column of 1−A ) need be performed. 
The correction process then can be initiated when iiΦ  exceeds a threshold, 
chosen to be small fraction, say 10−8. 

Readjusting Window Length. The posterior data variance, 
2 1 T with pre

BNσ −= = −e e e d d                  (19) 

is a measure of how well the reconstruction fits the data. The quantity,  
2 2 2

B dNχ σ σ≡ , is approximately chi-squared distributed with BN  degrees of 
freedom, and therefore has an expected value of BN  and variance of 2 BN . Thus, 
the expected value of 2σ  is 2

dσ , its variance is 42 d BNσ  and its 95% confi-
dence bound is [ ]1 22 2 2

95 2 2d d BNσ σ σ= + . However, 2σ  can be expected to rise 
well above this bound during a regime shift due to model error, that is, two dis-
tinct spatial patterns are being comingled and cannot be fit simultaneously. 
Shortening the window length tends to bring 2σ  closer to the bound, because 
obsolete data are being discarded more rapidly. This suggests the strategy of de-
fining a threshold, guided by the value of 95σ , and decreasing the window 
length when E is above it (by setting 1 3N N>  when) and increasing it once 
E has dropped below it (by setting 1 3N N<  until BN  has reached some upper 
limit). 
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3. Procedure 

Step 1. Decide upon initial values of 1N , 2N , 3N . The choice 1 3N N=  im-
plies that the same number of data are appended as are discarded, leaving the 
window length, 2 3BN N N= +  unchanged. The rolling process is most efficient 
when 2 1N N  and 2 3N N . 

Step 2. Solve the GPR problem for an initial group of 1 2AN N N= +  data, as 
in Equation (1). 

Step 3. Discard 1N  data by modifying m̂  and d , and their corresponding 
xs, as in Equation (2), ( )tc

mC  and ( )cc
mC  as in Equation (3) and A  and 1−A  as in 

Equation (12). 
Step 4. Append 3N  data by modifying m̂  and d , and their corresponding 

xs, as in Equation (13), ( )tc
mC  and ( )cc

mC  as in Equation (14) and A  and 1−A  
as in Equation (17). 

Step 5. (Optional) Monitor the error iiΦ , where 1− ≡ − AA IΦ , for a sin-
gle index, i, and when it exceeds a threshold of say, 10−8, refine 1−A  as in Equa-
tion (18). 

Step 6. Solve the GPR problem for 2 3BN N N= +  data, obtaining estm  and 
pred  as in Equation (1). 
Step 7. (Optional) Compute the posterior data variance, 2σ , as in Equation 

(19) and reassign the values of 1N , 2N  and 3N , as needed (as discussed in the 
Readjusting Window Length section). 

Step 8. Once 3N  new are available, iterate the procedure, starting at Step 3. 

4. Examples 

Test Scenario. In these examples, the two dimenional field, ( ),m x y ,  
0 30x≤ ≤ , 0 30y≤ ≤  is reconstructed on a regular 30 × 30 grid, using data 
that are acquired at the steady rate of 10 observations per time interval, ∆t. The 
observations are made at randomly chosen positions and have uncorrelated and 
uniform error with prior variance, 2 410dσ

−= . The true field experiences a regime 
shift at time, 25∆t, when it abruptly changes from a four-lobed to a three-lobed 
pattern: 

( ) ( ) ( ) ( )
( ) ( ) ( )

sin 2 sin 2 25
, , with 30

sin sin 3 25
x L y L t

m t x y L
x L y L t

 π π <= = π π ≥
     (20) 

The field is assumed to have zero prior value and Gaussian prior covariance: 

( ) ( )

2
2

2

2 22 2

ˆ and exp
2

1with and and 0.22
3

ij
ij

ij i j i j

r
C

s

r x x y y s

γ

γ

 
= = −  

 

= − + − = =

0m
       (21) 

Example without Window Length Readjustment. In this example (Figure 1(A)), 
the size of the rolling set of observations increases with time up to an upper 
bound of 90. For times, 25t t< ∆ , the field is correctly reconstructed, showing 
the correct four-lobed pattern, and the posterior variance is about equal to the  
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Figure 1. Example of rolling GPR. (A) Case where the window length is held constant. The 
window length (top curve) grows to 90bN =  and then is held constant. The two- dimen-

sional field, ( ),m x y  (colors), abruptly changes from a four-lobed patter to a three-lobed 

pattern, at time, 25t = . The posterior data variance, 2σ  (bottom curve), is low, except 
near the time of the change. (B) Case where the window length is varied. The posterior 
data variance, 2σ  (top black curve), and the time at which it exceeds a threshold (top 
red curve) is detected. The window length (bottom black curve) is decreased during the 
interval of high variance, and then increased afterwards, within bounds (bottom two red 
curves). 
 
prior variance. The field is incorrectly reconstructed during the time interval, 
25 33t t t∆ ≤ ≤ ∆ , when the window comingles the two patterns, and the posterior 
variance is about one thousand times higher than the prior variance. For times, 

34t t≥ ∆ , the field is correctly reconstructed, showing the correct three-lobed 
pattern, and the posterior variance returns to its original level. This example 
confirms the ability of the method to reconstruct the field in the presence of re-
gime shifts. 

Example with Window Length Readjustment. In this example (Figure 1(B)), 
the posterior data variance, 2σ  (a measure of the misfit of the data), is moni-
tored, and the size of the rolling set of observations is reduced when it increases 
past a threshold (but not below a lower bound of 50BN = ) (Figure 1(B)). Once the 
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error has declined below the threshold, the set size is allowed to increase, up to 
an upper bound of 90BN = . The duration of the interval of elevated error is 
reduced by a factor of about two compared to the first experiment. The presence 
of the second three-lobed pattern is evident at an earlier time than in the first 
example, demonstrating the utility of the window length readjustment. 

5. Discussion and Conclusions 

The main advantage of the rolling Gaussian Process Regression method that we 
describe here is its ability to reconstruct a time-varying field without any assump-
tions about its dynamics. This is in contrast to other data assimilation techniques, 
such as Kalman filtering [18], in which the differential equation describing the 
time dependence is assumed to be known. 

The N N×  matrix, A , that arises in Gaussian Process Regression is a non- 
sparse, symmetric positive definite matrix that takes ( )3 23B BN O N+  floating 
point operations to invert [19]. Careful counting of operations reveals that the dis-
card/append process described above takes about 2 26 4A B B CN N N N+  operations. 
Thus, for A CN N= , it is more efficient when 1 30A MN N ≈ , that is, when just 
a few percent of the data are being updated. 

The procedure for implementing “rolling GRP” (or moving window GPR) that 
we present here is more computationally efficient than solving the full GPR prob-
lem at each update, at least when the number of data that are deleted/appended 
is only a few percent of the total number used in the calculation. Regime shifts 
(sudden large changes in the field) can be detected by monitoring the posterior 
data variance (a measure of the misfit of the data) during the updates, and their 
detrimental effect is mitigated by shortening the time window as the variance 
rises, and then decreasing it as it falls (but within prior bounds). The numerical 
experiments presented here demonstrate the viability and usefulness of the pro-
cedure. 
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