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ABSTRACT

Fractal dimension for pre-image entropy is introduced for continuous maps throughout this paper.
First we show the definition of pre-image entropy dimension of a dynamical system from different
topological versions. Then we give those basic propositions of pre-image entropy dimension and
the formula for power inequality and forward generator. Relationships among different types of
pre-image entropy dimension are studied and an inequality relating them is given. Some basic
examples are provided to compare those values of polynomial growth type with the pre-image
entropy dimension. After that, this study constructs a symbolic subspace to attain any value
between 0 and 1 for pre-image entropy dimension.

Keywords: Fractal dimension; forward generator; polynomial growth type.
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1 INTRODUCTION
Fractal geometry is a traditional approach that
uses Mandelbrot’s original exploration of self-
similarity studies its properties, see [1]. A
fractal is a geometric or disintegrate pattern
that must be broken down into subparts, and
individual reduced parts. in order to maintain self-

similarity, it look like to original one. Because the
concept of fractal dimensional issue related to the
self-similarity is extensively used for identifying
roughness, fractal dimension plays a crucial role
in order to analyze complex objects that are
found in nature, but was failed to be analyze by
Euclidian geometry.
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Fractal dimension is an imperative aspect
of fractal geometry that provides indicative
application in different research fields, including
image processing, pattern recognition, computer
graphics and many more. Good references can
be found in [2, 3, 4, 5].

The complexity of the fractal set can be described
by the value of entropy. Topological entropies
represent the orbit complexity of a dynamical
system (X,T ), where T is a continuous map
from the compact metric space X to itself,
and have been extensively studied (e.g. see
[6, 7, 8, 9]). This value measures the exponential
growth rate of the number of separating orbits
for an arbitrary topological dynamical system.
Moreover, topological entropy is one of the
fundamental dynamical invariants associated
with a continuous map. These entropy invariants
have been discussed extensively and numerous
early studies have been cited in [10].

When a mapping T is invertible, it is clear to
show that topological entropy htop(T

−1) equals
htop(T ). However, if the mapping T is non-
invertible, several possibilities lead to entropy-
like invariants for non-invertible maps. During
1990s, several authors have studied entropy-like
invariants for non-invertible maps. Particularly,
Hurley [11], Nitecki and Przytycki [12] give
two point-wise entropies hm(T ) and hp(T ),
which are vaguely analogous to topological
entropy. Cheng and Newhouse [13] later
defined two other such invariants, one topological
and the other measure-theoretic in nature,
and proved a “pre-image variational principle”
relating these two invariants. Pre-image entropy
takes past behavior into account through the
backward mapping. A good survey of pre-image
entropy for continuous map can be found in
[13, 11, 9, 14, 12, 15, 16].

Although systems with positive entropy are
much more complicated than those with zero
entropy, zero entropy systems have various
levels of complexity, and have been studied
by [17, 18, 19, 20, 21]. Previous authors
adopted various methods to classify zero entropy
dynamical systems. For instance, Carvalho [17]
introduced the notion of entropy dimension to

distinguish the zero topological entropy systems
and obtained some basic properties of entropy
dimension. Ferenczi and Park [20] investigated
a new entropy-like invariant for the action of Z or
Zd on a probability space.

Researchers have used several notions,
including sequence entropy [22] and maximal
pattern entropy[23] to analyze topological entropy
zero systems. Pre-image entropy is another
fundamental dynamical invariant associated with
a continuous map. This type of entropy roughly
measures the complexity of the structure of the
map from the backward orbit. Zero pre-image
entropy generally means that the continuous map
exhibits a less complicated dynamical behavior
everywhere at each backward orbit. Motivated
by the technique of entropy dimension [18], the
similar approximation can be discussed for zero
pre-image entropy.

The purpose of this paper is to introduce the
pre-image entropy dimension to quantify the
complexity of zero pre-image entropy measurable
dynamics. It should be a measure of the growth
behavior of uncertainty from all backward orbits
at each point. Section 2 first defines the pre-
image entropy dimension and then gives some
properties of it. Relationship among different
forms of entropy dimension is discussed and
section 3 obtains an inequality about them.
This study considers some popular examples
to compare those values between polynomial
growth type of pre-image entropy and pre-image
entropy dimension. Section 4 reveals if these
values are the same or different. Section 5
presents an example to show that every value in
(0,1) can be attained by the pre-image entropy
dimension of dynamical systems.

2 FRACTAL DIMENSION

This section introduces the upper and lower pre-
image entropy dimension of a dynamical system,
and then gives those basic propositions of pre-
image entropy dimension and the formula for
power inequality.
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Note that for a nonnegative sequence {an}n≥1, if

lim sup
n→∞

1

ns
an is finite for s = s0,

with simple calculation, then the value of

lim sup
n→∞

1

ns0
an

is zero for all s0 > s. If

lim sup
n→∞

1

ns
an = ∞,

then
lim sup
n→∞

1

ns0
an = ∞

for all s0 ≤ s.

This indicates that the value of

lim sup
n→∞

1

ns
an

jumps from ∞ to 0 at both sides of one critical
point s, which is similar to a fractal measure
and will be useful in the following. Reference
materials can be found in [19, 24].

2.1 Some Definitions
In this paper, a topological dynamical system
(TDS, for short) is a pair (X,T ), where (X, d) is
a compact metric space and T : X → X is a
continuous function. Before defining the notion of
the fractal dimension of pre-image entropy for a
TDS, recall some notations of topological entropy.
Given a TDS (X,T ), denote by CX the set of finite
covers of X and C0

X the collection of finite open
covers of X. Given two covers U ,V ∈ CX , note
that U is finer than V if for every U ∈ U , there is
a set V ∈ V such that U ⊆ V ; this is denoted
by U ≽ V . It is obvious that U ∨ V ≽ U and
U ∨ V ≽ V if U ∨ V = {U

∩
V : U ∈ U , V ∈ V}.

Given two integers m ≤ n and a cover U ∈ CX ,
let Unm =

∨n
i=m T

−iU . If U ∈ C0
X , then ℵ(U , A)

denotes the number of sets in a subcover of U
with the smallest cardinality on the subset A of
X. According to this definition, it is obvious that
ℵ(U ∨ V, A) ≤ ℵ(U , A)ℵ(V, A).
Topological entropy considers the complexity
of a given system by forward orbits on the
whole space. This paper investigates the fractal
dimension of pre-image entropy, which considers
the complexity of a given system by backward
orbits at each point. The definition can be given
by using open covers as follows.

Definition 2.1. Let (X,T ) be a TDS, U be a finite open cover of X and s ≥ 0 be a real number. The
upper and lower s-pre-image entropy of T with respect to U are defined as

D(s, T,U) = lim sup
n→∞

1

ns
log sup

x∈X,k≥1
ℵ(
n−1∨
i=0

T−iU , T−kx), (1)

and

D(s, T,U) = lim inf
n→∞

1

ns
log sup

x∈X,k≥1
ℵ(
n−1∨
i=0

T−iU , T−kx). (2)

Here, T−kx means T−k(x). When s = 1, D(s, T,U) is just the pre-image entropy of T with respect to
U , (usually denoted by hpre(T,U)), see [13]. It is clear that D(s, T,U) ≤ D(s0, T,U) when s ≥ s0 ≥ 0
and the graph of D(s, T,U) against s shows that there is a critical value of s at which D(s, T,U) jumps
from ∞ to 0. Therefore, define the upper pre-image entropy dimension of T with respect to U from
this critical value by

D(T,U) = inf{s ≥ 0 : D(s, T,U) = 0} = sup{s ≥ 0 : D(s, T,U) = ∞}

Similarly, the lower pre-image entropy dimension of T w.r.t. U is

D(T,U) = inf{s ≥ 0 : D(s, T,U) = 0} = sup{s ≥ 0 : D(s, T,U) = ∞}

It is then clear that 0 ≤ D(T,U) ≤ D(T,U). If D(T,U) = D(T,U) = s, then this cover U has
pre-image entropy dimension s.
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Definition 2.2. If (X,T ) is a TDS, then the upper and lower pre-image entropy dimension of T are
defined as

Dpre(T ) = sup{D(T,U) : U ∈ C0
X}, (3)

and
Dpre(T ) = sup{D(T,U) : U ∈ C0

X}, (4)

It is clear that 0 ≤ Dpre(T ) ≤ Dpre(T ). When 0 ≤ Dpre(T ) = Dpre(T ), this value represents the
pre-image entropy dimension of (X,T ) and is denoted by Dpre(T ).

2.2 Dynamical Properties
The following propositions are the basic properties of pre-image entropy dimension in the topological
version. Statement 3 of the following lemma shows that the stability property of upper pre-image
entropy dimension of open covers is true.

Lemma 2.1. If (X,T ) is a TDS and U ,V ∈ C0
X , then the following statements are true.

(1) If U ≼ V, then D(T,U) ≤ D(T,V) and D(T,U) ≤ D(T,V);

(2) For any 0 ≤ m ≤ n, we have D(T,U) = D(T,Unm) and D(T,U) = D(T,Unm);

(3) D(T,U ∨ V) = max{D(T,U), D(T,V)}.

Proof. Since the proof is trivial for (1) and (2), we only prove (3) here. For any nonnegative real
number s with max{D(T,U), D(T,V)} < s, note that

lim sup
n→∞

1

ns
log sup

x∈X,k≥1
ℵ(
n−1∨
i=0

T−iU , T−kx) = 0,

and

lim sup
n→∞

1

ns
log sup

x∈X,k≥1
ℵ(
n−1∨
i=0

T−iV, T−kx) = 0,

which implies

lim sup
n→∞

1

ns
log sup

x∈X,k≥1
ℵ(
n−1∨
i=0

T−i(U ∨ V), T−kx)

≤ lim sup
n→∞

1

ns
log sup

x∈X,k≥1
ℵ(
n−1∨
i=0

T−iU , T−kx) + lim sup
n→∞

1

ns
log sup

x∈X,k≥1
ℵ(
n−1∨
i=0

T−iV, T−kx)

= 0

Therefore, D(T,U ∨ V) < s. Since s is arbitrary,

D(T,U ∨ V) ≤ max{D(T,U), D(T,V)}.

From (1), we conclude that D(T,U ∨ V) = max{D(T,U), D(T,V)}.

Notice that if an = log supx∈X,k≥1 ℵ(
∨n−1
i=0 T

−iU , T−kx), then {an}n≥1 is a monotonically increasing
sequence. Given a fixed positive integer r ≥ 1, for any n ∈ Z+, there exists l ∈ N such that
lr ≤ n ≤ (l + 1)r. Thus,

(lr)s

((l + 1)r)s
alr
(lr)s

=
alr

((l + 1)r)s
≤ an
ns

≤ ((l + 1)r)s

(lr)s
a(l+1)r

((l + 1)r)s
=
a(l+1)r

(lr)s
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which implies that

lim sup
n→∞

an
ns

= lim sup
n→∞

anr
(nr)s

and lim inf
n→∞

an
ns

= lim inf
n→∞

anr
(nr)s

(5)

for any fixed positive integer r.

Obviously, pre-image entropy dimension as defined above is an invariant of topological conjugacy.
This value reveals to consider those two pre-image entropy zero dynamical systems as being not
the same or being not equivalent by different pre-image entropy dimension. The basic proposition of
pre-image entropy dimension is the power rule. The inequality of the power rule can be shown as
follows. The inverse part of inequality is still unknown.

Theorem 2.2. For each positive integer r and 0 ≤ s ≤ 1, we obtain

D(s, T r,U) ≤ rs ·D(s, T,U)

and
D(s, T r,U) ≤ rs ·D(s, T,U),

for any U ∈ C0
X .

Proof. First show that

D(s, T r,

r−1∨
i=0

T−iU) = rs ·D(s, T,U)

for any open cover U of X. In fact, for each positive integer r and 0 ≤ s ≤ 1,

D(s, T r,

r−1∨
i=0

T−iU) = lim sup
n→∞

rs

(nr)s
log sup

x∈X,k≥1
ℵ(
n−1∨
j=0

T−rj(

r−1∨
i=0

T−iU), T−kx)

= lim sup
n→∞

rs

(nr)s
log sup

x∈X,k≥1
ℵ(
nr−1∨
i=0

T−iU , T−kx)

= rs · lim sup
n→∞

1

(nr)s
log sup

x∈X,k≥1
ℵ(
nr−1∨
i=0

T−iU , T−kx)

= rs ·D(s, T,U) (using (5))

which implies

D(s, T r,U) ≤ D(s, T r,

r−1∨
i=0

T−iU) = rs ·D(s, T,U)

for any open cover U ∈ CoX . The same arguments yield that

D(s, T r,U) ≤ rs ·D(s, T,U).

In a metric space (X, d), define the diameter of a cover U as

diam(U) = sup
A∈U

diam(A),

where diam(A) denotes the diameter of the set A. If U ,V are open covers of X and diam(U) is less
than a Lebesgue number for V, then we have U ≽ V . The following lemma is a direct application of
this fact.
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Lemma 2.3. If (X,T ) is a TDS and {Un} is a sequence of finite open covers ofX with lim
n→∞

diam(Un) =
0, then

lim
n→∞

D(T,Un) = Dpre(T ) and lim
n→∞

D(T,Un) = Dpre(T ).

Except in very special cases, the pre-image entropy dimension cannot be easily computed by using
those definitions and results, see [25] for some results of computing topological entropy. Thus,
simplifying the definition is also important to us. Again, assume T : X → X is a continuous map. A
finite open cover U of X is a forward generator for T if for every sequence {An}n≥0 of members of
U , the set

∩∞
n=0 T

−n(An) contains at most one point of X. See [26] and [12] for details.

Lemma 2.4. Assume T : X → X is a continuous map of a compact metric space (X, d). Let U be
a forward generator for T . For any ε > 0, there exist N > 0 such that each set in

∨N
n=0 T

−nU has
diameter less than ε.

A continuous map T from a compact metric space (X, d) to itself is said to be forward expansive if
there exist δ > 0 such that, for any distinct x ̸= y ∈ X, the forward images Tnx and Tny are more
than δ apart, for some n. The following lemma is well-known, e.g. see [10].

Lemma 2.5. A continuous map T from a compact metric space (X, d) to itself is forward expansive
if and only if it has a forward generator.

Using the second item of lemma 2.3 and the above lemmas, the following conclusion is easily
obtained.

Theorem 2.6. Let T : X → X be a forward expansive continuous map of the compact metric
space (X, d). Then there exists a forward generator U such that D(T,U) = Dpre(T ) and D(T,U) =
Dpre(T ).

3 RELATIONSHIPS AMONG DIFFERENT DEFINITIONS

This section discusses the relations of different definitions of pre-image entropy dimensions.

3.1 Basic Definitions
For convenience, we first recall some concepts and notations adopted by Dou, Huang and Park [19].
Consider an increasing sequence of integers S = {si}∞i=1 = {s1 < s2 < s3...}. For γ ≥ 0, denote

D(S, γ) = lim sup
n→∞

n

(sn)γ

and
D(S, γ) = lim inf

n→∞

n

(sn)γ

It is clear that D(S, γ) ≤ D(S, γ́) if γ ≥ γ́ ≥ 0. Similarly, graphs of D(S, γ) and D(S, γ) against γ
show that there is a critical value of γ at which D(S, γ) and D(S, γ) jump from ∞ to 0. Therefore, the
upper dimension of this sequence S is given by

D(S) = inf{γ ≥ 0 : D(S, γ) = 0} = sup{γ ≥ 0 : D(S, γ) = ∞}

and the lower dimension of S is defined by

D(S) = inf{γ ≥ 0 : D(S, γ) = 0} = sup{γ ≥ 0 : D(S, γ) = ∞}
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It is then clear that 0 ≤ D(S) ≤ D(S) ≤ 1. If D(S) = D(S) = γ, this sequence S has dimension γ.

The following discussion investigates the dimension of a special kind of sequence, which we call the
pre-image entropy generating sequence.
Let (X,T ) be a TDS and U ∈ CoX . An increasing sequence of integers S = {si}∞i=1 = {s1 < s2 < · · · }
is a pre-image entropy generating sequence of U if

lim inf
n→∞

1

n
log sup

x∈X,k≥1
ℵ(

n∨
i=1

T−siU , T−kx) > 0.

Denote by E(T,U) the set of all pre-image entropy generating sequences of U and by P(T,U) the set
of sequence S = {si}∞i=1 = {s1 < s2 < · · · } of Z+ with the property that

lim sup
n→∞

1

n
log sup

x∈X,k≥1
ℵ(

n∨
i=1

T−siU , T−kx) > 0.

In other words, P(T,U) is the set of increasing sequence of integers along which U has positive
pre-image entropy.

Definition 3.1. Let (X,T ) be a TDS and U ∈ CoX . Define

De(T,U) =

{
supS∈E(T,U)D(S) if E(T,U) ̸= ∅
0 if E(T,U) = ∅

,

and

Dp(T,U) =

{
supS∈P(T,U)D(S) if P(T,U) ̸= ∅
0 if P(T,U) = ∅

.

Similarly, define De(T,U) and Dp(T,U) by changing the upper dimension to the lower dimension.

Definition 3.2. Let (X,T ) be a TDS, define

De(X,T ) = sup
U∈C0

X

De(T,U) and Dp(X,T ) = sup
U∈C0

X

Dp(T,U).

Similar definition for De(X,T ) and Dp(X,T ).

The following proposition shall explain why this study defines the entropy generating sequence as
lim inf instead of lim sup.

Theorem 3.1. Let (X,T ) be a TDS. Then

Dp(T,U) =

{
1 if P(T,U) ̸= ∅
0 if P(T,U) = ∅

for U ∈ CoX .

Proof. Assume that P(T,U) ̸= ∅. Thus, there exists S = {si}∞i=1 = {s1 < s2 < · · · } ⊂ Z+ such that

lim sup
n→∞

1

n
log sup

x∈X,k≥1
ℵ(

n∨
i=1

T−siU , T−kx) = a > 0.

Next, take a subsequence of positive integers {ni}i≥1 such that it attains the previous limit superior.
Without loss of generality, for each j ∈ N, let’s assume that

(i) nj+1 ≥ 2snj ;

(ii) nj+1 ≥ n1 +
∑j
i=1(ni+1 − sni).
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Otherwise, we can choose a subsequence of {nj}j≥1 to satisfy the above two conditions. Put

F = S ∪ {1, 2, · · · , n1} ∪
∞∪
i=1

{sni + 1, sni + 2, · · · , ni+1}.

To simplify, write F = {t1 < t2 < · · · }, which implies that

lim sup
n→∞

1

n
log sup

x∈X,k≥1
ℵ(

n∨
i=1

T−tiU , T−kx) ≥ lim sup
j→∞

log supx∈X,k≥1 ℵ(
∨nj

i=1 T
−siU , T−kx)

|F ∩ [0, 1, · · · , snj ]|

≥ lim sup
j→∞

log supx∈X,k≥1 ℵ(
∨nj

i=1 T
−siU , T−kx)

2nj

=
a

2
> 0,

where the second inequality follows from condition (ii). Therefore, F ∈ P(T,U). Since nj+1 ≥ 2snj

for each j ∈ N, it is easy to see that the upper density of F is at least of 1
2
, hence D(F ) = 1. This

implies Dp(T,U) = 1.

3.2 Relationships

In the following, those relationships among these different kinds of dimensions are investigated.

Theorem 3.2. Let (X,T ) be a TDS and U ∈ CoX . Then,

De(T,U) ≤ De(T,U) ≤ Dp(T,U) ≤ D(T,U).

Proof. 1) De(T,U) ≤ De(T,U) is obvious by Definition 3.1.

2) To show that De(T,U) ≤ Dp(T,U), it is sufficient to assume that De(T,U) > 0.

Given τ ∈ (0, De(T,U)). There exists S = {si}∞i=1 = {s1 < s2 < · · · } ∈ E(T,U) with D(S) > τ , i.e.
lim supn→∞

n
(sn)τ

= ∞. Hence,

lim sup
n→+∞

n

n+ sτn
= 1. (6)

Let F = S ∪ {⌊n
1
τ ⌋ : n ∈ N}. Clearly D(F ) ≥ τ . Let F = {t1 < t2 < · · · }. Then for each n ∈ N there

exists a unique m(n) ∈ N such that sn = tm(n). Since

{s1, s2, · · · , sn} ⊆ {t1, t2, · · · , tm(n)} ⊆ {s1, s2, · · · , sn} ∪ {⌊k
1
τ ⌋ : k ≤ sτn},

we have n ≤ m(n) ≤ n+ sτn. Combining this with (6) leads to

lim sup
n→∞

n

m(n)
= 1. (7)
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This implies

lim sup
m→+∞

log supx∈X,k≥1 ℵ(
∨m
i=1 T

−tiU , T−kx)

m

≥ lim sup
n→∞

log supx∈X,k≥1 ℵ(
∨m(n)
i=1 T−tiU , T−kx)

m(n)

≥ lim sup
n→∞

log supx∈X,k≥1 ℵ(
∨n
i=1 T

−siU , T−kx)

n

n

m(n)

≥ (lim inf
n→∞

log supx∈X,k≥1 ℵ(
∨n
i=1 T

−siU , T−kx)

n
) · (lim sup

n→∞

n

m(n)
)

= lim inf
n→∞

log supx∈X,k≥1 ℵ(
∨n
i=1 T

−siU , T−kx)

n
(by (7))

> 0 (since S ∈ E(T,U)).

Thus, F ∈ P(T,U). Hence Dp(T,U) ≥ D(F ) ≥ τ . Since τ is arbitrary, we obtain De(T,U) ≤
Dp(T,U).

3) Assume by contradiction that Dp(T,U) > D(T,U). By assumption there exists τ ∈ (0, 1) such that
Dp(T,U) > τ > D(T,U). On the one hand,

lim sup
m→∞

1

mτ
log sup

x∈X,k≥1
ℵ(

m∨
i=1

T−iU , T−kx) = 0 (8)

since τ > D(T,U).

On the other hand, since Dp(T,U) > τ there exists S = {s1 < s2 < · · · } ∈ P(T,U) with D(S) > τ ,
i.e. lim infn→∞

n
sτn

= ∞. Hence, there exists c > 0 such that n
sτn

≥ c for all sufficiently large n. It
follows that

lim sup
m→∞

log supx∈X,k≥1 ℵ(
∨m
i=1 T

−iU , T−kx)

mτ

≥ lim sup
n→∞

log supx∈X,k≥1 ℵ(
∨sn
i=1 T

−iU , T−kx)

sτn

≥ lim sup
n→∞

log supx∈X,k≥1 ℵ(
∨n
i=1 T

−siU , T−kx)

n

n

sτn

≥ lim sup
n→∞

log supx∈X,k≥1 ℵ(
∨n
i=1 T

−siU , T−kx)

n
· c

> 0 (since S ∈ P(T,U)),

which contradicts (8).

Theorem 3.3. Let (X,T ) be a TDS and U ∈ CoX . Then

De(T,U) ≤ D(T,U) ≤ D(T,U).

Proof. By the definitions, it is clear D(T,U) ≤ D(T,U). It suffices to show that De(T,U) ≤ D(T,U).
Without loss of generality, assume that De(T,U)) > 0. Otherwise, there is nothing to prove. For
any τ ∈ (0, De(T,U)), there exists S = {s1 < s2 < · · · } ∈ E(T,U) such that D(S) > τ , that is,
lim infn→∞

n
sτn

= ∞. Hence, there is c > 0 such that n
sτn

≥ c−τ , i.e. sn ≤ cn
1
τ for sufficiently large n.
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For m ∈ N with m ≥ s1, there exists a unique n(m) ∈ N such that sn(m) ≤ m − 1 < sn(m)+1 ≤
c(n(m) + 1)

1
τ . Since S ∈ E(T,U),

lim inf
m→∞

1

mτ
log sup

x∈X,k≥1
ℵ(
m−1∨
i=0

T−iU , T−kx)

≥ lim inf
m→∞

1

cτ (n(m) + 1)
log sup

x∈X,k≥1
ℵ(
n(m)∨
j=1

T−sjU , T−kx)

≥ 1

cτ
lim inf
k→∞

1

k
log sup

x∈X,k≥1
ℵ(

k∨
j=1

T−sjU , T−kx) > 0.

This implies that D(T,U) ≥ τ . Finally, as τ is arbitrary, we conclude that

De(T,U) ≤ D(T,U).

Proving that De(X,T ) = Dp(X,T ) = D(X,T ) requires the concept of “independent” and some
related combinatorial lemma.

Let (X,T ) be a TDS. Let A1, A2, · · · , Ak be k-subsets ofX andW ⊆ Z+. Note that {A1, A2, · · · , Ak}
is independent along W if for any s ∈ {1, 2, · · · , k}W we have

∩
w∈W T−wAs(w) ̸= ∅.

Next, recall the following lemma from [19].

Lemma 3.4. [19] Let (X,T ) be a TDS and A1, A2, · · · , Ak be k-pairwise disjoint non-empty closed
subsets of X (k ≥ 2), U = {Ac1, Ac2, · · · , Ack}. For τ ∈ (0, 1], 0 < η < τ and c > 0 there exists N ∈ N
(depending on k, τ, η, c) such that if a finite subset B of Z+ satisfies |B| ≥ N and ℵ(

∨
i∈B T

−iU , X) ≥
ec|B|τ , then there exists W ⊆ B with |W | ≥ |B|η such that {A1, A2, · · · , Ak} is independent along
W .

Let (X,T ) be a TDS. Let A1, A2, · · · , Ak be k subsets of X and W ⊆ Z+. We say {A1, A2, · · · , Ak}
is pre-image independent along W , if for any s ∈ {1, 2, · · · , k}W , then

∩
w∈W T−wAs(w)

∩
T−kx ̸= ∅

for some k and x.

The following lemma is obtained by a proof similar to that of lemma 3.1.

Lemma 3.5. Let (X,T ) be a TDS, and let A1, A2 be 2-pairwise disjoint non-empty closed subsets of
X, U = {Ac1, Ac2}. For τ ∈ (0, 1], 0 < η < τ and c > 0 there exists N ∈ N (depending on τ, η, c) such
that if a finite subset B of Z+ satisfies |B| ≥ N and ℵ(

∨
i∈B T

−iU , T−kx) ≥ ec|B|τ for some k and x,
then there exists W ⊆ B with |W | ≥ |B|η such that {A1, A2} is pre-image independent along W .

Based on the lemma above, the following theorem holds.

Theorem 3.6. Let A1, A2 be 2-pairwise disjoint non-empty closed subsets of a TDS (X,T ) and
U = {Ac1, Ac2}. Then there exists a sequence F ∈ E(T,U) such that D(F ) = D(T,U) when E(T,U)
is nonempty. Hence, by Theorem 3.2, D(T,U) = De(T,U).

Proof. If D(T,U) = 0 and E(T,U) is nonempty, then any sequence in E(T,U) will have upper
dimension zero.
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Assume that D(T,U) > 0 and let {τj} ⊂ (0, D(T,U)) be a sequence of strictly increasing real
numbers such that limj→∞ τj = D(T,U). Then, choose a > 0 so that

lim sup
n→+∞

1

nτj
log sup

x∈X,k≥1
ℵ(

n∨
i=1

T−iU , T−kx) > a for j ∈ N.

Let τj−1 < ηj < τj for j ∈ N. By Lemma 3.5, there exists Nj ∈ N such that for every finite set B with
|B| ≥ Nj and ℵ(

∨
i∈B T

−iU , T−kx) ≥ e
a
2
|B|τj for some x ∈ X and k ≥ 1, we can find W ⊆ B with

|W | ≥ |B|ηj and {A1, A2} pre-image independent along W .

Take 1 = n1 < n2 < · · · such that (nj+1 − nj)
ηj ≥ jnj +Nj and

sup
x∈X,k≥1

ℵ(
nj+1∨
i=nj+1

T−iU , T−kx) ≥ sup
x∈X,k≥1

ℵ(
nj+1−nj∨
i=1

T−iU , T−kx) ≥ e
a
2
(nj+1−nj)

τj

for each j ∈ N. For each j ∈ N there existsWj ⊆ {nj+1, nj+2, · · · , nj+1} with |Wj | ≥ (nj+1 − nj)
ηj

and {A1, A2} pre-image independent along Wj .

For each set Wj and s = (s(z))z∈B ∈ {1, 2}B , we can find xs ∈
∩
z∈B T

−zAs(z) ∩ T−kxj for some
xj ∈ X and k ≥ 1. Let Xj = {xs : s ∈ {1, 2}Wj}. It is clear that for any s ∈ {1, 2}Wj we have
|
∩
z∈Wj

T−zAcs(z) ∩Xj ∩ T−kxj | = 1. Combining this fact with |Xj | = 2|Wj | leads to

ℵ(
∨
z∈Wj

T−zU , T−kxj) ≥ 2|Wj |. (9)

Put F =
∪∞
i=1Wj and write F = {t1 < t2 < · · · }. For n ∈ N with n ≥ |W1| there exists a unique

k(n) ∈ N such that
∑k(n)
i=1 |Wi| ≤ n <

∑k(n)+1
i=1 |Wi|. Thus,

sup
x∈X,k≥1

ℵ(
n∨
j=1

T−tjU , T−kx) ≥ max{ sup
x∈X,k≥1

ℵ(
∨

w∈Wk(n)

T−wU , T−kx),

sup
x∈X,k≥1

ℵ(
∨

w∈Wk(n)+1∩{t1,··· ,tn}

T−wU , T−kx)}

≥ max{2|Wk(n)|, 2n−
∑k(n)

i=1 |Wi|} (by (9))

≥ 2
n−

∑k(n)−1
i=1

|Wi|
2 .

Hence,

lim inf
n→+∞

1

n
log sup

x∈X,k≥1
ℵ(

n∨
j=1

T−tjU) ≥ lim inf
n→+∞

n−
∑k(n)−1
i=1 |Wi|
2n

log 2

≥ lim inf
n→+∞

(
1

2
−

∑k(n)−1
i=1 |Wi|
2|Wk(n)|

) · log 2

≥ lim inf
n→+∞

(
1

2
−

∑k(n)−1
i=1 (ni+1 − ni)

2|Wk(n)|
) · log 2

≥ lim inf
n→+∞

(
1

2
−

nk(n)
2(nk(n)+1 − nk(n))

ηk(n)
) · log 2

≥ lim inf
n→+∞

(
1

2
− 1

2k(n)
) · log 2 =

1

2
log 2 > 0.
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This shows F ∈ E(T,U).

Note that

lim sup
m→+∞

m

t
ηj
m

≥ lim sup
k→+∞

|W1|+ |W2|+ · · ·+ |Wk|
t
ηj
|W1|+|W2|+···+|Wk|

≥ lim sup
k→+∞

|W1|+ |W2|+ · · ·+ |Wk|
n
ηj
k+1

≥ lim sup
k→+∞

|Wk|
n
ηj
k+1

≥ lim sup
k→+∞

(nk+1 − nk)
ηk

n
ηj
k+1

≥ 1,

we have D(F ) ≥ ηj . Hence, D(F ) = D(T,U). This completes the proof.

Remark 3.1. 1. Lemma 3.5 and Theorem 3.6 are also true for the case U = {Ac1, Ac2, · · · , Ack},
where A1, A2, · · · , Ak are k-pairwise disjoint non-empty closed subsets of X.

2. Following the proof of Theorem 3.6, it is easy to show that

D(T,U) = De(T,U);

3. Notice that
De(T,U) ≤ Dp(T,U).

Hence, D(T,U) = De(T,U) ≤ Dp(T,U).

Theorem 3.7. Let (X,T ) be a TDS. Then,

1. De(X,T ) = Dp(X,T ) = Dpre(T ).

2. De(X,T ) ≤ D(X,T ) ≤ Dpre(T ) ≤ Dp(X,T ).

where those notations come from definition 2.2 and 3.2.

4 POLYNOMIAL GROWTH TYPE

Another conjugacy invariant that measures the orbit complexity of a dynamical system (X,T ) is
defined by the polynomial growth type in [27, 28]. With the same concept and notation, the upper and
lower polynomial growth types of pre-image entropy for TDS (X,T ) are defined as follows:

P pre(T,U) = lim sup
n→∞

log supx∈X,k≥1 ℵ(
∨n−1
i=0 T

−iU , T−kx)

logn
,

and

P pre(T,U) = lim inf
n→∞

log supx∈X,k≥1 ℵ(
∨n−1
i=0 T

−iU , T−kx)

logn
,

Set
P pre(T ) = sup{P pre(T,U) : U ∈ C0

X} and P pre(T ) = sup{P pre(T,U) : U ∈ C0
X},

Since
lim
n→∞

logn

nr
= 0, for any r > 0,

the velocity of nr to approach ∞ is much faster than that of logn. More precisely, it is obvious if the
pre-image entropy dimension Dpre(T ) = s > 0 or Dpre(T ) = s > 0, then the value of P pre(T ) and
P pre(T ) is always equal to infinity.
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Therefore, if Dpre(T ) = 0, then the cardinality supx∈X,k≥1 ℵ(
∨n−1
i=0 T

−iU , T−kx) is bounded or goes
to ∞ very slowly. Suppose the cardinality supx∈X,k≥1 ℵ(

∨n−1
i=0 T

−iU , T−kx) approaches ∞ as n →

∞, it is meaningful to compare the velocity between logn and log sup
x∈X

ℵ(
n−1∨
i=0

T−iU , T−nx) as n→ ∞.

The following calculations evaluate some basic examples.

(1) For the two-sided shift T on finite symbolic space X =
∏∞

−∞ Y where Y = {0, 1, 2, ..., k},

Dpre(T ) = Dpre(T ) = P pre(T ) = P pre(T ) = 0.

(2) For the one-sided shift T on finite symbolic space X =
∏∞

−∞ Y where Y = {0, 1, 2, ..., k},

Dpre(T ) = Dpre(T ) = 1, but P pre(T ) = P pre(T ) = ∞.

(3) Let Tλ(x) = λmin{x, 1−x} be a family of functions defined on [0, 1], where 0 < λ ≤ 2. These
functions are called tent maps.

When 1 < λ ≤ 2,

Dpre(T ) = Dpre(T ) = 1, but P pre(T ) = P pre(T ) = ∞.

When 0 < λ ≤ 1, we can easily verify that Tλ is contractive, thus,

Dpre(T ) = Dpre(T ) = P pre(T ) = P pre(T ) = 0.

5 CONCLUSION

Zero pre-image entropy systems have various
complexity. This paper introduces the notion of
pre-image entropy dimension to distinguish the
zero pre-image entropy systems and obtained
some basic properties of entropy dimension.
Thus, we can consider those two entropy zero
dynamical systems as being not the same or
being not equivalent by different pre-image
entropy dimension. We conclude this section by
constructing some examples to show that every
number in (0, 1) can be attained by the pre-image
entropy dimensions of the dynamical systems.

Let T : X → X be a homeomorphism of
the compact metric space X. Since the pre-
image of each point is only one point, it is trivial
that pre-image entropy dimension Dpre(T ) =
0. The Morse system also has zero pre-image
entropy dimension, since its complexity function
has linear growth rate (see, for example, [22]).
Given each value between 0 and 1, this section
will construct a topological dynamical system
which attains this value for pre-image entropy
dimension.

Example 5.1. For any 0 < τ < 1, there exists a
TDS which has pre-image entropy dimension τ .

The TDS comes from a uniformly recurrent
infinite 0-1 word constructed by Cassaigne, see
[29]. The construction of the infinite word is as
follows and all notations follow from [19].

Let N∗ and {0, 1}∗ denote the collection of finite
or infinite words over N and {0, 1}, respectively.
The dyadic valuation word v is defined by the
limit of a sequence of finite words zj , where
z0 = 0, z1 = 1, zj+1 = zjjzj , j = 1, 2, · · · . Define
inductively the substitution ψ : N∗ → {0, 1}∗
and the family (xk)k∈N of prefixes of the dyadic
valuation word v as follows:

• ψ(0) = 0, ψ(1) = 1;
• xk is the longest prefix of v such that

|ψ(xk)| ≤ max(φ
−1

(k+1)−φ−1
(k)−1, 0), where φ(t) = t

τ
;

• for all j ≥ 1, ψ(2j) = ψ(x⌊log j⌋)0ψ(j) and
ψ(2j + 1) = ψ(x⌊log j⌋)1ψ(j).

Let u = ψ(v) and (X,T ) be the TDS generated
by u under the left shift. Note that u is a uniformly
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recurrent word and its complexity pu(n) satisfies:

log pu(n) ∼ nτ ,

and for the forward generating open cover U =
{[0]X , [1]X} of X,

log sup
x∈X,k≥1

ℵ(
n−1∨
i=0

T−iU , T−kx) = log pu(n)

Thus, it is clear that D(T,U) = D(T,U) = τ .
Since U is a generator, we have that Dpre(T ) =
D(T,U) = τ and Dpre(T ) = D(T,U) = τ .
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